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Abstract

A continuous-time nonlinear regression model with Lévy-driven linear noise process is
considered. Sufficient conditions of consistency and asymptotic normality of the Whittle
estimator for the parameter of spectral density of the noise are obtained in the paper.
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1 Introduction

The paper is focused on such an important aspect of the study of regression models with
correlated observations as an estimation of random noise functional characteristics. When
considering this problem the regression function unknown parameter becomes nuisance and
complicates the analysis of noise. To neutralise its presence, we must estimate the parameter
and then build estimators, say, of spectral density parameter of a stationary random noise
using residuals, that is the difference between the values of the observed process and fitted
regression function.

So, in the first step we employ the least squares estimator (LSE) for unknown parameter of
nonlinear regression, because of its relative simplicity. Asymptotic properties of the LSE in
nonlinear regression model were studied by many authors. Numerous results on the subject
can be found in monograph by Ivanov and Leonenko (1989), Ivanov (1997).
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In the second step we use the residual periodoram to estimate the unknown parameter of
the noise spectral density using the Whittle-type contrast process (Whittle 1951, 1953).

The results obtained at this time on the Whittle minimum contrast estimator (MCE) form
a developed theory that covers various mathematical models of stochastic processes and
random fields. Some publications on the topic are Hannan (1970, 1973), Dunsmuir and
Hannan (1976), Guyon (1982), Rosenblatt (1985), Fox and Taqqu (1986), Dahlhaus (1989),
Heyde and Gay (1989, 1993), Giraitis and Surgailis (1990), Giraitis and Taqqu (1999), Gao
et al. (2001), Gao (2004), Leonenko and Sakhno (2006), Bahamonde and Doukhan (2017),
Ginovyan and Sahakyan (2017), AvLeoSaspsoSTLTHUBLIetc, Anh et al. (2004), Bai et al.
(2016), Ginovyan et al. (2014), Giraitis et al. (2017).

In the article by Koul and Surgailis (2000) in the linear regression model the asymptotic
properties of the Whittle estimator of strongly dependent random noise spectral density
parameters were studied in a discrete-time setting.

In the paper by Ivanov and Prykhod’ko (2016) sufficient conditions on consistency and
asymptotic normality of the Whittle estimator of the spectral density parameter of the Gaus-
sian stationary random noise in continuous-time nonlinear regression model were obtained
using residual periodogram. The current paper continues this research extending it to the
case of the Lévy-driven linear random noise and more general classes of regression func-
tions including trigonometric ones. We use the scheme of the proof in the case of Gaussian
noise (Ivanov and Prykhod’ko 2016) and some results of the papers (Avram et al. 2010; Anh
et al. 2004). For linear random noise the proofs utilize essentially another types of limits
theorems. In comparison with Gaussian case it leads to the use of special conditions on linear
Lévy-driven random noise, new consistency and asymptotic normality conditions.

In the present publication continues-time model is considered. However, the results
obtained can be also used for discrete time observations using the statements like Theo-
rem 3 of Alodat and Olenko (2017) or Lemma 1 of Leonenko and Taufer (2006).

2 Setting

Consider a regression model

X(t) =g, ag) +&(t), t =0, (D
where g: (—y, o0) x A, — R is a continuous function, A C R? is an open convex
set, A, = U (A+ ye), y is some positive number, og € A is a true value of unknown

llell<1
parameter, and ¢ is a random noise described below.

Remark 1 The assumption about domain (—y, oo) for function g in 7 is of technical nature
and does not effect possible applications. This assumption makes it possible to formulate the
condition Ny, which is used in the proof of Lemma 7.

Throughout the paper (2, F, P) denotes a complete probability space.

A Lévy process L(t), t > 0, is a stochastic process, with independent and stationary
increments, continuous in probability, with sample-paths which are right-continuous with
left limits (cadlag) and L(0) = 0. For a general treatment of Lévy processes we refer to
Applebaum (2009) and Sato (1999).

Let (a, b, IT) denote a characteristic triplet of the Lévy process L(¢), t > 0, that is for all
t>0

logEexp {izL(t)} = tk(z)
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for all z € R, where

K(z) = iaz — %bzz +/ (e — 1 —izT(w)) M(du), z € R, )
R

wherea € R, b > 0, and

u, lul <1;
s Jul > 1.

T(u) = {
The Lévy measure IT in (2) is a Radon measure on R\ {0} such that IT({0}) = 0, and

/ min(1, uz)l'[(du) < 00.
R
It is known that L(#) has finite pth moment for p > 0 (E |L(#)|” < oo) if and only if

|u|PT1(du) < oo,

lu|=1

and L(¢) has finite pth exponential moment for p > 0 (E [e" L@ )] < o0) if and only if

eP“T1(du) < oo, 3
lu|>1

see, i.e., Sato Sato (1999), Theorem 25.3.

If L(¢),t > 0, is a Lévy process with characteristics (a, b, IT), then the process —L(¢),
t > 0, is also a Lévy process with characteristics (—a, b, I:[), where l:I(A) = [I(—A) for
each Borel set A, modifying it to be caddlag (Anh et al. 2002).

We introduce a two-sided Lévy process L(z), t € R, defined for r < 0 to be equal an
independent copy of —L(—t).

Leta : R — R, be ameasurable function. We consider the Lévy-driven continuous-time
linear (or moving average) stochastic process

&(t) :/&(z—s)dL(s), teR. “
R

For causal process (4) a(t) =0, t < 0.
In the sequel we assume that

aeLi(R)yNLyR)ora e Ly(R) with EL(1) =0. 5)

Under the condition (5) and

/ uzl'[(du) < 00,
R

the stochastic integral in (4) is well-defined in L;(£2) in the sense of stochastic integration
introduced in Rajput and Rosinski (1989).
The popular choices for the kernel in (4) are Gamma type kernels:
o a(t) = 1% M, 00y (1), A > 0,00 > —3;
e a(t) = e_}"]l[o, 00) (), A > 0 (Ornstein-Uhlenbeck process);
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e a(1) = e~ A > 0 (well-balanced Ornstein-Uhlenbeck process).

Aj. The process ¢ in (1) is a measurable causal linear process of the form (4), where a
two-sides Lévy process L is such that E L(1) = 0,a € L;(R) N L>(R). Moreover the Lévy
measure IT of L(1) satisfies (3) for some p > 0.

From the condition A it follows Anh et al. (2002) for any r > 1

r r
log E exp iZ zjetj) ¢ = / K Z zja (tj —s) ds. 6)
In turn from (6) it can be seen that the stochastic process ¢ is stationary in a strict sense.
Denote by
mr(tla MR tr) :Eg(tl)"'g(tr)a
ar d
e (ty, ..., ;) =1 ——— logEexp {i zie(t;
r(l 1) 8ZI-~-3Zr g p Z ](])
j=1 71=--=2,=0

the moment and cumulant functions correspondingly of order r, r > 1, of the process ¢.
Thus my(t1, to) = B(t; — t2), where

B(t) = dQ/ a(t +s)a(s)ds, t € R,
R
is a covariance function of ¢, and the fourth moment function
my(ty, B, 13, t4) = c4(ty, 1o, 13, t4) +ma(ty, t)ma (13, t4)
+ ma(ty, B3)ma(ta, t4) +mo(ty, t4)ma(t2, 13).

@)

The explicit expression for cumulants of the stochastic process & can be obtained from
(6) by direct calculations:

r

er(t1, ...,t,):d,/ [Ta(—s)ds. (8)

r /=l
where d, is the rth cumulant of the random variable L(1). In particular,
d =EL*(1) = —«@(0), ds=EL*(1)-3(E L2(1))2 )

Under the condition Ay, the spectral densities of the stationary process ¢ of all orders exist
and can be obtained from (8) as

r—1 r—1
[0 o) = @ e a | =Yg [T et ©)
j=1 j=1

where a € Ly(R), a(A) = f ame Mdr, a e R, if complex-valued functions f, €
R
Ly (]R"l), r > 2, see, e.g., Avram et al. (2010) for definitions of the spectral densities
of higher order f,, r > 3.
For r = 2, we denote the spectral density of the second order by

f) = AR = Qo) 'daGya(-2) = @r) dy la())? .
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Aj. (i) Spectral densities (9) of all orders f, € L R, r > 2;
(i) a) =a(r, 00),dr = dr (0?),0 = (61, 6P) € ©,,0, = | (© + 1e),
lell<1
7 > 0 is some number, ® C R is a bounded open convex set, that is f(}) =
f(x, 0),0 € O, and a true value of parameter 6y € O;
(i) f(r, ) >0, (%, 0) e R x O°.

In the condition A, (ii) above 8V represents parameters of the kernel a in (4), while 0@
represents parameters of Lévy process.

Remark 2 The last part of the condition A is fully used in the proof of Lemma 5 and
Theorem B.1 in “Appendix B”. The condition A, (i) is fully used just in the proof of Lemma 5.
When we refer to these conditions in other places of the text we use them partially: see, for
example, Lemma 3, where we need in the existence of f1 only.

Definition 1 The least squares estimator (LSE) of the parameter oyp € .A obtained by
observations of the process {X(¢), ¢ € [0, T]} is said to be any random vector a7y =
@17, ..., dqr) € A° (A is the closure of A), such that

T
Sr @r) 2529\16 St(@), Sr(e) =/ (X(1) — g(t, @) dr.
0

We consider the residual periodogram
2

T
Ir(h, @7) = @ T) ™! / (X(t) — g(t, ar)) e dt| , A eR,
0

and the Whittle contrast field
It (A, &)

Ur(, ar) :R/ (logf(}\, 0) + 70, 0)

) w(r)dr, 6 € O°, (10)

where w(X), A € R, is an even nonnegative bounded Lebesgue measurable function, for
which the intgral (10) is well-defined. The existence of integral (10) follows from the condi-
tion C4 introduced below.

Definition 2 The minimum contrast estimator (MCE) of the unknown parameter 6y € © is
said to be any random vector 07 = (017, ..., O7) such that

Ur (r, ar) = glggg Ur 0, ar) .

The minimum in the Definition 2 is attained due to integral (10) continuity in 0 € O as
follows from the condition C4 introduced below.

3 Consistency of the minimum contrast estimator

Suppose the function g (¢, «) in (1) is continuously differentiable with respect to « € A° for

any ¢t > 0, and its derivatives g; (f, @) = gt, w),i = ﬁ are locally integrable with

aOll'
respect to ¢. Let
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T

q). d (@) = / g (1, a)d,

0

dr(@) = diag(dir(oz), i=1

and liminf T 2diz (@) > 0,i = 1, ¢, a € A.
S T—o00
et

T
Or(ar, a) = / (g(t, a1) — g(t, w))?dt, ay, ar € A°.
0

We assume that the following conditions are satisfied.

C,. The LSE a7 is a weakly consistent estimator of og € A in the sense that

Tﬁédr(ao) (@r — ap) —P> 0, as T — oo.

C,. There exists a constant ¢ < oo such that for any og € A and T > Ty, where ¢o and
Tp may depend on «,

7 (a, a) < colldr (@) (@ — o) II?, a € A°.

The fulfillment of the conditions C; and C; is discussed in more detail in “Appendix A”.
We need also in 3 more conditions.
Cs. f(r, 61) # f(X, 62) onaset of positive Lebesgue measure once 0; # 0>, 01, 0, € OF.

C4. The functions w(X) log f (X, 6), flz}}\(,k)g)

are continuous with respect to § € ®¢ almost

everywhere in A € R, and

i) w) |log f(A, 6)] < Z1(1), 0 € BF, almost everywhere in A € R, and Z;(-) €
Li(R);

i sup M
AeR, epe(af fo,0)

Cs. There exists an even positive Lebesgue measurable function v(1), A € R, such that

c] < OQ.

v(A

)
[, 9)}\
(i) sup &) < 00.

reR V(X)

@

is uniformly continuous in (A, ) € R x ®F¢;

iy ~ P
Theorem 1 Under conditions A1, A, C1—C5 0y —> 0, as T — oo.
To prove the theorem we need some additional assertions.

Lemma 1 Under condition A

T
Vi :T_l/sz(t)dt L, B(0), as T — oo.
0
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Proof For any p > 0 by Chebyshev inequality and (7)

P{|v; — BO)| = p} < p*QT’Z// ca(t,t, s, s)dtds+

T T
+ 2p*2T*2// B2(t — s)dtds = I, + b.
0 0

From A it follows that I, = O(T1). Using expression (8) for cumulants of the process
& we get

T T

Iy =dyp™ T- 2///(1 (t—u)a (s — u)dudtds
0 0
T

T
~ ~ 2 A4 =
=dyp —27- 2/ /aZ(t—u) /az(s—u)ds du | dt <dyp 2||a||2T L
0 0
1
2
where |al|, = ( / &Z(M)du) ,thatis I; = O(T ") as well. o
R
Let
1Ztuj
FO @y, oo w) =FP (g o, wgy) = Qo) kDr! / e =ty .. .dh
[0,T]¢
k . Tuj

— o) VT 1‘[ -
i=1 2
withuy = —(uy + ...+ up—1),u; €R, j =1, k.
The functions Fg‘ ) (u1,...,ur), k > 3, are multidimensional analogues of the Fejér
kernel, for k = 2 we obtain the usual Fejér kernel.
The next statement bases on the results by Bentkus (1972a,b), Bentkus and Rutkauskas
(1973).

Lemma 2 Let function G (uy, ..., ug), uy = — (U1 + ...+ ur—1) be bounded and contin-
uous at the point (uy, ..., up—1) =, ..., 0). Then
Jim / FA(uy, o, wie) G (uy, ..., up)duy .. dug—1 = G(O, ..., 0).
REk-1
We set
T
gr(x, a) = / e Me(t, aydt, st(h, a) = gr(h, ag) — gr(n, @),
0
T
er(h) = / e Mendt, 150 = QrT) " er (WP,
0
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and write the residual periodogram in the form
It (h, @r) = I5() + (xT) ' Re {sm)sr(x, ’o?T)] + QT sr(h, @n)l?.

Let ¢ = (A, 0), (A, 8) € R x B, be an even Lebesgue measurable with respect to
variable A for each fixed 6 weight function. We have

Jr(p, ar) = f Ir Ok, ap)e(h, 0)da :/ Ir (Mg (h, O)dA
R R

+(xT)"! / Re{sT(A)sT(A, azT)]w(x, 0)d
R

+(27TT)_1/ Ist (A, @r))? e, B)dA
R

= J5(9) + 1 (0) + 12 (0).

Suppose
¢, 0) =0,  sup @, 0) = c(p) < oo. (11
AeR, He®C

Then by the Plancherel identity and condition C;

2 2

\J}”(w\ <2c(p) | @xT)™" / ler)2da | [ @rT)™! / Is7 (4, @) dA
R R

= 2c(p) ()} T} (@1 @r. o))} < 2c2c(p) (v])?

T~ 2dr (a) @7 — ) H .

Taking into account conditions A, C1, C; and the result of Lemma 1 we obtain

sup J}l)(go)‘ —P> 0, as T — oo. (12)
fee°
On the other hand
_ . _1 . 2
1) = c@T 10, @) = coele) | T~ 2dr @) @r —a0)|
and again, thanks to Cy, C;,
sup J}z)(go) L 0, as T — oo. (13)

0e®°

Lemma 3 Suppose conditions A1, Ay are fulfilled and the weight function ¢ (A, ) introduced
above satisfies (11). Then, as T — 00,

Ii(g) > J(go):/ O, 00)p(h, 0)dA, 6 € OF.
R

Proof The lemma in fact is an application of Lemma 2 in Anh et al. (2002) and Theorem 1
in Anh et al. (2004) reasoning to linear process (4). It is sufficient to prove

(1) EJE(@) — J(@): (2) J5(@) —BJi(p) —> 0.
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Omitting parameters 6, 6 in some formulas below we derive

EJ?(w)z/ Gz(u)F(Tz)(u)du, Gz(u)z/ fA+we)di;
R R
T Var J5.(¢) = 27 f Gaur, uz, un)F uy, uz, uz)duydusrdus,

R3

Gy4(uy, uz, uz) = 2/ SO +u) f—u3)p(M)e( +uj + uz)dr
R

+ f FO 4 ur, =+ un, 1+ uneOIe(drdp
RZ
= 2Gi”(u1, U, U3) —G—G‘(‘z)(u], Uy, u3).

To apply Lemma 2 we have to show that the functions G2(u), u € R; G‘T) (w), Gftz) (w),
u = (uy, us, u3) € R3, are bounded and continuous at origins.
Boundedness of G, follows from (11). Thanks to (11)

1

2

sup
ueR3

6 w| = IS < oo Ifla= | [ £20. o
R

On the other hand, by (9)

|G512)(u1, s, uz)| < d4(271)73/ la(h + up)a(=x + u2)| p(A)dx
R

f la(u +uz)a(—pn —uy —uz —u3z)| p(n)du
R
=dy-Qm)7 - I,

Iz < 2nc(g0)d2_1/ F O, 60)dn = 2mc(p)d; ' B(0).
R

Integral 14 admits the same upper bound. So,

sup
ueR3

6P| = e Rl B0,
dy . C . . (1) 2)
where y, = ? > 0 is the excess of L(1) distribution, and functions G2, G, G, are

2
bounded. The continuity at origins of these functions follows from conditions of Lemma 3
as well. O
w(A)
f, 0)

Corollary 1 Ifp(x, 6) = , then under conditions A1, A,, C1, Cy and Cy
f(x, )

~ P
ur@, ar) — U(9)=/ <logf(k, 0) + 0 0)

) wM)dx, 0 € OF.
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Consider the Whittle contrast function

fOub0) S )

70 0) TP ) wds = 0.

K (6o, 9)=U(9)—U(90)=/ <
R

with K (6p, 0) = 0 if and only if 6 = 6y due to Cs.
Lemma4 Ifthe coditions A1, A>, C1, Cy, C4 and Cs are satisfied, then

sup |Ur (8, ar) — U(©)] LN 0, as T — oo.
0eer

Proof Let {#;, j =1, Ns} be a §-net of the set @“. Then

sup |Ur (0, @r) —U(®)] <

He®°
< sup |Ur(61, ar) —U(61) — (Ur (62, ar) — U(62))]
61—62(<8
+ max |Ur (@), ar) —U®,)|,
1<j<Ns

and for any p > 0

p { sup |Ur (8, @r) —U©®)| > p} < P+ Py,
0e®°

with
~ P
P, :P{lg}zgva |Ur ;. a@r) — U ©))] = 5} — 0, as T — oo.

by Corollary 1. On the other hand,

P =P sup
61—02]1<8

W) wi)
P 15\ — di
=) s R/ r( )(m, o Ton 92)>

Ur (01, @r) — U(61) — (Ur 02, @r) — U(92))' > Z}

(14)

T— ff(/\ e>< v __wl) )dk
||91—95|sa 2 7 f, 00 f(, 6)

1(1) <w>’+2 sup J(z) (E) > B}.
T \f peor |\ f 2

By the condition Cs(i)

e w(R) w(}) / o W)
150 - dr <0 | 2ot a,
oo <5 R/ r( )<m, o 10 92>) =t )R M50

+ 2 sup
0ee°

where
v()L) _ v()L)
S0 f(, 62)

n(d) = sup —- 0,8 —0.

LER, [161—62]<8
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Since by Lemma 3 and the condition Cs(ii)

B 1) (A)
/IT(A)wm dr = / o, 9@%% as T — o0,

and the 2nd term under the probability sign in (14) by chosing 6 can be made arbitrary small,
then P; — 0,as T — 0, taking into account that the 3rd and the 4th terms converge to zero

in probability, thanks to (12) and (13), if ¢ = % O
Proof of Theorem 1 By Definition 2 for any p > 0
P{6r — 60| = p} =P{|6r — 60| = p; Ur@r, @r) < Ur(6o, ar)}

<P inf (Ur(8, ar) — Ur(6, ar)) < 0}
10—=6ol=p

=P} inf [Ur(6. @)~ U®) — Ur(6o, @) — U0) + K(60.0)| = 0}
16—6oll=p

<P{ inf [UT(O,&T)—U(H)—(UT(GO,&T)—U(Oo))]Jr inf K(GO,O)SO]
lo—6ol=p l6—6ol=p

<P{sup [Ur @, ar) — U+ |Ur (o, ar) — U6)| > inf K (6o, 9)} -0
0eO° —bollzp

when T — oo due to Lemma 4 and the property of the contrast function K. O

4 Asymptotic normality of minimum contrast estimator

The first three conditions relate to properties of the regression function g(#, «) and the LSE
a7. They are commented in “Appendix B”.

N;. The normed'LSI*; dr (ap) (o7 — @) is asymptotically, as T — oo, normal N(0, £, ,.),
isp = (EILJSE)i,j=1'
Let us
T
/ ’ ’ 2 c
gt a)= —g(t a); Dp(ar, o) =/ (g (t, a1) — g'(t, az)) dt, ay, ap € A°.
0
N,. The function g(#, «) is continuously differentiable withrespectto# > Oforany o € A€

and for any ag € A, and T > Tj there exists a constant c;, (Tp and c;, may depend on
) such that

2
(@, o) = ¢ |dr (@) @ —ap)| ", @ € AC.
Let
2 T
gil(t, o) = aa-aa,g(t’ @), dij 7(@) =/gl-2,(t, aydt, i,l=1,q,
l
0

v(r):{xeR‘f : ||x||<r},r>0.
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N3. The function g(¢, «) is twice continuously differentiable with respect to o € A€ for
any t > 0, and for any R > 0 and all sufficiently large T (T > Tp(R))

i (1 @0 + a7 o)

< d(R)T™2,i=T1,q;

() d;;' (@) sup
t€[0,T], ueve(R)

eer g1
(i) di[’T(OlO) sup
t€l0,T], uev(R)

i) ;' (@o)dj; (@o)din r(@o) < &@'T~2,i,1=T,q,

gir (1. @0 +d7 '@ )| = M RIT, 0,1 =T.g;

with positive constants ¢, ¢!, &, possibly, depending on ay.
We assume also that the functlon f (A, 0) is twice differentiable with respect to 0 € ®°
forany A € R.
Set
9 2
i(A, 0)=—f(, 0), fij(r,0 A, 0
fi(x, 0) 39if( ), fij(x, 0) = 96,00, o S 0),

and introduce the following conditions.

fi(x, 0)

———w), A eR,i =1,m,
0, a)w( ) i m, possess

Ny4. (i) For any 6 € ©F the functions ¢; (1) =

the following properties:
(1) ¢i € Loo(R) N L1 (R);

+00
2) Var Y < 00
3) hm1 sup |gi(nA) — i (M) =0;

=1 reR
(4) ¢; are differentiable and (plf are uniformly continuous on R.
% _
(ii) |§‘l()\ 9))| (A) < Zy(A), 0 € ©,i = 1, m, almost everywhere in A € R and

Z5()) € Li(R).

JiG, 0) [, 0) Jij (. 6)

(iii) The functions w(dr), w(X) are continuous with respect
F20, 0) e, 6) P
to 0 € ©° foreach A € R and
fE, 6) | fij (%, 0)]
A —— Zw) <a;i(A), A eR, 6 € O,
e PTG g M) S @i, kR, b€
where g;;(-) € L1(R), i, j =1,m
) fij(, 6) R — o
Ns. (i) w(d), w(A), i, j = 1, m, are bounded functions in (A, 6) €
3, 6) fz(?» 9)
R x ©¢;

(ii) There exists an even positive Lebesgue measurable function v(A), A € R, such that
Jix, 0) fj (%, 9)U(A) fij(x, 0)
30, 0) T 0. 0)

continuous in (A, 8) € R x ®F;

v(X), i, j = 1, m, are uniformly

the functions

(iii) sup < 0.

reR U ()L)

Conditions Ns(iii) and Cs(ii) look the same, however the function v in these conditions
must satisfy different conditions Ns(ii) and Cs(i), and therefore, generally speaking, the
functions v in these two conditions can be different.
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The next three matrices appear in the formulation of Theorem 2:

W1 (6) :/ Vo log f (A, 0)Vjlog f(x, O)w(r)dr,
R

W (0) = 471/ Vp log f (A, 0)V}log f(x, O)w?(h)d,

R
V(6) :y2/ Vo log f (A, O)w(k)dA/ V) log f (A, O)w()dA,
R R

72
. d2 .
V, is a row vector-gradient.

Ng. Matrices W1(0) and W;(0) are positive definite for 6 € ©.

where y» = > (is the excess of the random variable L (1), Vjy is acolumn vector-gradient,

1 o~
Theorem 2 Under conditions A1, Ay, C1—Cs and N1—Ng the normed MCE T2 (07 — 0y) is
asymptotically, as T — 00, normal with zero mean and covariance matrix

W©) = W, (60) (Wa(60) + V (60)) Wy ' (Bo). (15)

The proof of the theorem is preceded by several lemmas. The next statement is Theorem
5.1 Avram et al. (2010) formulated in a form convenient to us.

Lemma5 Letthe stochastic process ¢ satisfies A1, Az, spectral density f € L,(R), afunction

11 1
be Ly;R)(Li(R), where — + — = —. Let
p q 2
b(t) = / e b dA (16)
R
and
T T
Or :// (e()e(s) — B(t — 5)) b(t — s)dtds. (17)
00

Then the central limit theorem holds:
1
T72Qr = N(0, 0%), as T — oo,
where “=" means convergence in distributions,
2

o’ = 16713/ B>\ f2(NdA + v 27r/ b fFdr | (18)

R R

d.
where y, = d—; > 0 is the excess of the random variable L(1). In particular, the statement

2
is true for p = 2 and q = oo.

Alternative form of Lemma 5 is given in Bai et al. (2016). We formulate their Theorem
2.1 in the form convenient to us.
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Lemma 6 Let the stochastic process € be sz:tch thatE L(1) = 0, E L*(1) < oo, and Q7 be as
in (17). Assume that a € L ,(R) N Ly (R), b is of the form (16) with even function b € L1(R)
and b € L, (R) with

SRR
| —
%
N | W

then
T_%QT = N(O, 02), as T — 00,
where o2 is given in (18).

Remark 3 Tt is important to note that conditions of Lemma 5 are given in frequency domain,
while Lemma 6 employs the time domain conditions.

Theorems similar to Lemmas 5 and 6 can be found in paper by Giraitis et al. (2017),
where the case of martingale-differences were considered. Overview of analogous results for
different types of processes is given in the paper by Ginovyan et al. (2014).

Set

Ar(p)=T"7 / er (V57 (b, ar)e(VdA.

R
Lemma 7 Suppose the conditions A1, As, Cy, N1—N3 are fulfilled, (1), A € R, is a bounded
differentiable function satisfying the relation 3) of the condition N4(i), and moreover the
derivative ¢’ (1), ) € R, is uniformly continuous on R. Then

AT (p) i) Oas T — oo.

Proof Let B, be the set of all bounded entire functions on R of exponential type 0 < o < oo
(see “Appendix C”), and § > 0 is an arbitrarily small number. Then there exists a function
¢ € By, 0 = 0(8), such that

sup |9(A) — @o ()] < 6.
reR

n . . .

Let Tp(po; A) = Y ci.") e ﬂ, n > 1, be a sequence of the Levitan polynomials that
j=—n "~

corresponds to ¢, . For any A > 0 there exists ng = no(§, A) such that forn > ng

sup  |@s — T (ps; M| < 6.
LE[—ALA]

Write
Ar(@) = A1 (@ — ¢5) + Ar(ps — Ty) + A7 (Ty),

1 e~
[Ar(p — 95)| < 3T77/ ‘ET()\)ST()\s OlT)‘a”L
R
1 1

2
<872 /|eT(A)|2dA /m(x, a2 da
R R

[ 1 1 N
=278 (v;)? ®r@r, ao) <2mcs (vi)? lldr (o) @7 — o)l .
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So, under the condition Cs, for any p > 0

P{|A7(p —¢s)| = p} <

- o
<P {lldr (o) (a7 — )l > ; +P{v; —B(0) > 1} = P; + Py.

2 e 8(B0) + 1)2

The probability P4 — 0, as T — oo, and the probability P; under the condition Ny for
sufficiently large T (we will write T > Tp) can be made less than a preassigned number by
chosing § > 0 for a fixed p > 0.

As far as the function ¢, € B, and the corresponding sequence of Levitan polynomials
T, are bounded by the same constant, we obtain

A

800 =Tl <6773 [ [eros @] ax
—-A

4+ 2e(po) T2 / ’sr(x)sf(x, ar)ldr =D, + D,.

R\[-A,A]

The integral in the term D can be majorized by an integral over R and bounded as earlier.
We have further

st(On, ar) = (v~ [e”(g(T, ao) — g(T, @r)) — (g0, ap) — g(0, ar)) — 55 (, am] :

—_— T .
where s.(, @r) = [ e (g/(r, ap) — g'(¢, @r))dt.
0

Under the Lemma conditions

-4 / o7 (STOn ) ldA < T / ler ()2
R\[-A,A] \[=A,A]

=

_ ~ ~ ~ |2
30 [ le o)~ T @R 41200, @) - g0 G + s G @[ ar
R\[-A,A]

< V3 (2mvp)* (V2ATE (18T, @) — ¢(T, @)l + 1800, @) — (0, a0)])+

1
+ (27ch)2 A" |ldr (o) @1 — ao>||) .

Obviously,

q
e(T, @r) —g(T, ao) = Y gi(T, &), @1 — ctio) ,

i=1
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ak =ag+n@r —ao),n € (0, 1), dr(ao) (af — o) = ndr(ao) (@r — a), and for any
p>0andi=1,q

P[!s’i(T, ap), @r — aio)| = ,0]
=P{lai(, ap), @r - @i0)| = p. ldr (@) @r - a0l < R
+ Plldr(@o) @r — o)l > R} = Ps + Ps.

By condition N3(i) for any R > 0

Ps <P { (d,.;‘ @) sup i (o0 +d;‘(ao)u)]> (47" @) [@ir - aol) = p}

te[0,T], full<R

0
ci(R)

<P {T*%d,-}] (o) laiT — aiol > } — 0, as T — oo,

according to Nj (or Cy). On the other hand, by condition N; the value R can be chosen so
that for T > Tj the probability Ps becomes less that preassigned number.
So,

g(T. Gr) — g(T, ap) —> 0, as T — oo,

and, similarly, g(0, @7) — g(0, ap) LN 0,as T — oo.
Moreover, for any p > 0

P{A" lldr (o) @1 — a0)| = p} < Ps
+ P[A‘1 lldr (@0) @r — @0) | = p. lldr(20) @1 — @0)]| < R},

and the second probability is equal to zero, if A > R
Thus for any fixed p > 0, similarly to the probability P3, the probability P; = P{D, > p}

for T > Ty can be made less than preassigned number by the choice of the value A.
Consider

Ar(T)=T"7 ) c§”)/ er(W)st b, ap)e ntda,

Y : X o J—
st(h, ap)elnt = / M (g (t —j—, Ol()) —g(t —j—, ar)) dt, j = —n,n.
n n

It means that

T
n
Ar(Ty) =2m ) cj."’T*% / e(t) (g (t -2, ao) -8 (t -2, a‘r)) dt
k n n

j=1 jo
n

0 T+
+or Y / e (g (1= 7% a0) =g (1= j%. ar)) dr.
= / n n
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For j > 0 consider the value

T
/e(t) —j%,&r)—g(t—j%,ao))dt
i=1

! | ; .0 ~
= Z T 2d;; (060)/ e(t)gi (l i 060) dr | dir(ao) (@i — aio)
il

1 & _
+§ZT

ik=1

D=
™
~~
=<
N
%
=
—
~

a;) dt | @it — @io) (@ — ko)
= S+ LS
= Sir + 55,

o} = oo+ 71 @r — ), 7 € (0, 1).
Note that fori = 1, ¢

dir (c0) @i — o) = N(0, V), as T — oo,

by the condition N;j. Moreover,

2

T
Lo .0
E|T72d7 @) [ e (1= o) dr
]7

n

= T_ldi}z(ozo)// B(t —s)gi (t — j%, Ol()) gi (s — j%, ao) dtds

o jo
n n

T T
T_Z// B2(r — s)dtds =0(T—%),
00
since

T T
T—lff BX(t — s)dtds — 27| f|3, as T — oo.
0 0

p
It means that the sum S T —> 0,as T — oo.
For the general term SékT of the sum Sp7 and any p > 0, R > 0,

|

’ZI‘T‘Z,O]SPe—FPg, PszP{

%] = . ldr@o) @ — o)l < R).
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Under condition ||d7 (o) (@7 — )|l < R using assumptions N3(ii) and N3(iii) we get
as in the estimation of the probability Ps

T
SékT’ = T_%/ le(®)ldt -(dik’lT(ozo) sup

t€[0,T], ueve(R)

8ik (t, ao + d;l(ao)u) ’)

pica
n

- (47 @) @) 7 (@0)) - di7 (@) @it = @io)] - dk(@0) @k — )
T
< HRFT / le(@)ldt - di7 (o) @i — tio)| - ldier (@0) @it — ko)
0

By Lemma 1

T
1

T
_3 L1 1 __3 2 P
T2 le(®)|dt < ET 2 +§T 2 e“(t)ydt — 0, as T — oo.
0 0

.. . P .
So, by condition Ny P — 0,as T — oo, thatis So7 —> 0,as T — oo. For j <0 the
reasoning is similar, and

Ar(Ty) =50, T — oo.
O

Lemma 8 Let the function (X, 6)w (L) be continuous in 6 € OF for each fixed . € R with
lp(h, 0)] < @), 8 € O, and p(Yw(-) € L1(R).
If05 —> 6o, then
1(63) = / o (n, 03) wi)dr —> / 90, B)w()dA = I(60).
R R

Proof By a Lebesgue dominated convergence theorem the integral 7(6), 6 € ©F, is a con-
tinuous function. Further argument is standard. For any p > 0 and ¢ = g we find such a
8 > 0, that [1(0) — 1(6p)| < e as ||0 — 6|l < . Then

P{I163) — 1(80)] = p} = Py + Pro,
where
Py =P{I165) = 160)] = 5. 167 — 6]l < 6} =0,
due to the choice of ¢, and

Py =P[|1<9;) e

g, ||9;—90||25| — 0, as T — oo.
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Lemma9 Ifthe conditions Ay, Cy are satisfied and  sup (X, 0)| = c(¢) < oo, then
r€R, 0e®C
T‘l/q)(k, 05)er (W)st G, @r)dh —> 0, as T — oo,
R
T_lf oL, O3)|s7(n, @r)ldA —> 0, as T — oo.
R

Proof These relations are similar to (12), (13), and can be obtained in the same way. m]

Lemma 10 Let under conditions Ay, A, there exists an even positive Lebesgue measurable
Sfunction v(X), A € R, and an even Lebesgue measurable in X for any fixed 0 € OF function
oA, 0), (1, ) € R x O, such that

1) @, O)v(A) is uniformly continuous in (A, 6) € R x ©F;

(i) sup w®)
reR V()

(ii1) sup  |p(A, O)|w(r) < oo.
LeR, B

< 00y

P
Suppose also that 0}5 —> 0o, then, as T — 00,

fI;(A)w(A, O w(r)dr LN /f(k, o)A, Gp)w(A)dA.
R R

Proof We have
e % P x w(})
/ Lok, 05)wr)dr =/ L) (e, 05) — @A, 00))u(x)mdx
R R
+/ 17 (W@, Bp)wN)dr = Is + Ie.
R

By Lemma 3 and the condition (iii)

Ie - /f(k, 00)9(n, B0)w(M)dA, as T — oo. (19)
R

On the other hand, for any r > 0 under the condition (i) there exists § = §(r) such that for
|67 — 6o <8

w(A)
Is| < 15 ——=dx, 20
|5|_r/ T (20)
R
and by the condition (i)
w(A) P w(A)

15 ——=d) A, Op)——dA. 21
/Tvm _’/f( Ry @D

R R
The relations (19)—(21) prove the lemma. m]

Proof of Theorem 2 By definition of the MCE &7, formally using the Taylor formula, we get
0 = VoUr(@r, @r) = VoUr (60, ar) + VoVyUr (0%, @r)@r — o). (22)
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Since there is no vector Taylor formula, (22) must be taken coordinatewise, that is each row of
vector equality (22) depends on its own random vector 67, such that [|67 — 6ol < |67 — 6.
In turn, from (22) we have formally

1~ —~ — 1 ~
T2 @r — 60) = (VoVyUr 63, @r)) (—TZVGUT(QO, ar>) :

As far as the condition Ny implies the possibility of differentiation under the sign of the
integrals in (10), then

1 ~ 1 ~
—T2VyoUr (0, ar) = —T2]k/ (Vg log f (X, 6p) + Vg <7f(}\, 90)> Ir (A, (XT)> w(A)dAr

= b [ (S gy S

F2(, 60) J (. 6o)
Vo f (1, 6
+ (2n)—1T—%/ (2Re [er@sr G @ | +lsr e @) %w(k)dl

R

(1) (2) 3)
=Ar + A + AL o)
Similarly

1 ~
VOVéUT(Q;, ar) = / (Vevé log f (A, 67) + V@Vé <W> It (A, aT)) w(A)dr
» b

:/ {(%Véf()», 07) VoS (h, 67)Vyf(h, 9?))

fQ, 07) 2, 67)
<2v9f(x, OV f (R, 07)  VoVyf(x, 9;)) "
A, 63) f2, 03)

X (502 + (1 T) ™ Reler (W51 Gr, @) + @ T) ™ st (b, @) | wGdn
— B 1 B® 4 B® 4 B,
(24)
where the terms B?) and B(T4) contain values Re{er (\)s7 (A, @r)} and |s7 (A, @r)|%, respec-

tively.
Bearing in mind the 1st part of the condition N4 (i), we take in Lemma 7 the functions

i(A, 0)
25 v
f=, 0)

P = @i(1) = A, i=1,m.

Then in the formula (23) A(TZ) LN 0,as T — o0.
Consider the term A(T3) = (ai(;) )™ ., in the sum (23)

i=l1,

1 —~
ay = Qm)~' T2 / 57 (. @) P (M da,
R
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where @; (1) are as before. Under conditions C;, C2, Ny and (1) of N4(i) A(T3) —P> 0, as
T — o0, because

_1 o~
03| < c(p)T 27 @r, o)
_1 —~ ~ P
< c(@i)eollT~2dr (ap) (o — o) || lld7 (0) (07 —tg) || —> 0, as T — oo.

Examine the behaviour of the terms B(Tl) — B(T4) in formula (24). Under conditions C;
and Ny(iii) we can use Lemma 8 with functions
fij, 0)  fi(h, 0) fi (A, 0)
f, 6’ 2%, 6)

q)()"a e)z(plj()"a 9): B l,j:1,m,

to obtain the convergence

50 P, /(%vgm, 60) Ve f(h, 60)V [ (x, 60)
T FO., 6o) F2(x, o)

> wA)dA, asT — oo. (25)

Under the condition N5(i) we can use Lemma 9 with functions

fij(x, 0) JiG, 0) fi(x, 0)
2, 0) 36, 0)

i, j=1,m,

e, 0) =@ij(r, 0) = w(h),

to obtain that

B(T3) —P> 0, B?) —P> 0, as T — oo.

Under conditions C; and Njs

B0 P, / ( Vo f (s 00)V;f O 60) VeV f O, 60)
T 2, 60) F O, 60)

> w(A)dAr, (26)

if we take in Lemma 10 in conditions (i) and (iii)

fi, 0)fi @, 0)  fij, 0) .
Fose 0.0

So, under conditions Cy, Cy, N4(iii) and N5

Vo f (x, 80)Vy f (1, 60)
f2, 60)

e, 0) =¢;j(x, 0) = Lj=1,m.

VoViUr(6F, Gr) — f w(h)dA
® 27)
:/ Vg log f (%, 60)Vylog f(k, B)wh)dr = Wi (6),
R

because W1 (6p) is the sum of the right hand sides of (25) and (26).
From the facts obtained, it follows that for the proof of Theorem 2 it is necessary to study

an asymptotic behaviour of vector A(Tl) from (23):

M _ 1 Vo f(G. 6o0) o .. Vaof(k, 6o)
ap =1t [ ( o YT TG 6 )wmd”
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We will take

oy JiGs o) .
100 =G, i =T,

W) =Y uigi(A), u=(u1, ..., uy) €R™,

i=1

YT=/ 1500 W (W)dA, Y=/ FOn, 00)W (M)dA,
R R

and write
(a0 W) =Tr 7 —EYD + TEE Y - V).
Under conditions (1) and (2) of N4 (i) (Bentkus 1972b; Ibragimov 1963) for any u € R™
TXEYr —Y) — 0, as T — oo. (28)
On the other hand

T T
T%(YT—EYT):T*%/f (e(t)e(s) — B(t — 5)) b(t — s)dtds
0 0

with

b(t) = / M ) "W (h)da.
R

Thus we can apply Lemma 5 taking b(1) = (27)~"W (1) in the formula (18) to obtain for
any u € R™”
T2(Yr —EYr) = N, 0%, as T — o0, (29)
where
2

o? :471/ W2 F2(n, Go)dr + 2 / W) O, Op)dx
R R

The relations (28) and (29) are equivalent to the convergence
AY = N0, Wa(l0) + V(). as T — co. (30)
From (27) and (30) it follows (15).

Remark 4 From the conditions of Theorem 2 it follows also the fulfillment of Lemma 6
conditions for functions & and b. Really by condition A| @ € L1 (R) N L,(R) and we can
take p = 1 in Lemma 6. On the other hand, if we look at b = (27r)~'W as at an original
of the Fourier transform, from N4(i)1) we have b € L{(R) N L>(R). Then according to the
Plancherel theorem b € L>(R) and we can take ¢ = 2 in Lemma 6. Thus

2 1

and conclusion of Lemma 6 is true.
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5 Example: The motion of a pendulum in a turbulent fluid

First of all we review a number of results discussed in Parzen (1962), Anh et al. (2002), and
Leonenko and Papi¢ (2019), see also references therein.

We examine the stationary Lévy-driven continuous-time autoregressive process (t), ¢ €
R, of the order two ( C AR(2)-process ) in the under-damped case (see Leonenko and Papi¢
2019 for details).

The motion of a pendulum is described by the equation

B(t) + 208 + (0® +?) e(t) = L(1), t € R, 31

. . . . . . . 2w
in which e(¢) is the replacement from its rest position, « is a damping factor, — is the
1)

damped period of the pendulum (see, i.e., Parzen 1962, pp. 111-113).

We consider the Green function solution of the equation (31), in which L is the Lévy
noise, i.e. the derivative of a Lévy process in the distribution sense (see Anh et al. 2002;
Leonenko and Papi¢ 2019 for details). The solution can be defined as the linear process

e(t) = / a(t —s)dL(s), t € R,
R
where the Green function

_ot Sin(wt)

fl(t) =e ]I[(), oo)(t), o > 0. (32)

Assuming EL(1) =0,d, = E L2%(1) < oo, we obtain
oo

B(t) = dz/ a(t +s)a(s)ds =

dy o—ali (sin(a)|t|) n cos(wt)) . (33)
o

4(a? + w?) 1)
The formula (33) for the covariance function of the process ¢ corresponds to the formula
(2.12) in Leonenko and Papi¢ (2019) for the correlation function

B(t) _ —Ol‘tl
—_— =
B(0)

On the other hand for a(¢) given by (32)

Corr (¢(t), £(0)) = (Cos(wt) +2 sin(w|t|)> .
w

oo

a(h) = / e Madt =
0

1
a2 + w? — A2 4 2iar’

Then the positive spectral density of the stationary process € can be written as (compare with
Parzen 1962)

d> ) d 1
L) =—laW)|" == 5 , L eR. (34)
2w 2 (A2 —a? — ?)” +4a222
It is convenient to rewrite (34) in the form
1 B
S =f@&, 0)= 7 »eR, (35)

(A2 —— ]/2)2 + 40232
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where « = 61 is a damping factor, § = —@(0) = dr(62) = 65, y = w = 03 is a damped
cyclic frequency of the pendulum oscillations. Suppose that
0= (01, 02, 03) =(r, B, y) €O
= (., @) x (é, E) x (Z’ 7), a, By >0 @B,y < oo

The condition Cj is fulfilled for spectral density (35).
Assume that

w) =(1+2%) ", 1eR, a>0.

More precisely the value of a will be chosen below.

Obviously the functions w() log f (X, 9), % are continuous on R x ®¢. For any

A > 0 the function [log f (X, 0)] is bounded on the set [—A, A] x ©°. The number A can
be chosen so that for R\[—A, A]

87 5.2 —1 2 4 (=2 =2\2 2.2
1<l (A,Q)SE(Z(A + (@ +77)°) +43%2).

Thus the function Z; (1) in the condition Cy4(i) exists.
As for condition Cy(ii), if a > 2, then
w(A)
sup < 0
reR,0e0¢ [ (A, 0)

As a function v in condition Cs we take

vo) = (142", 1eR, b>0.

Obviously, if @ > b, then sup u(x) < 00 (condition Cs(ii)), and the function fl())(\A)G) is

uniformly continuous in (A, 9) 6 R x ©F, if b > 2 (condition Cs(i)).
Further it will be helpful to use the notation s(X) = ()\2 —a? - y2)2 + 4222, Then

fa(h, 0) = i — [0 0) = —2"‘7’5 (A +a® +y?) s

fp(h, 0) = ﬁf(k ) = 2rs(A) %, (36)
2

fy(h, 0) = —f(x 0) = iy( —a? —y?)s i ).

To check the condition N4(i)1) consider the functions

fa (X dro

_ 2 .
Pa(h) = fZ(A 9) w) = ——5= (3 + o+ y?) w;
fp(h, 0) B
g0 = 3w = ﬂ2s<x>w(x) 37)
fy (&, 0) 8ty o 5
@y (V) = 6.0) (A)——ﬂ (W = =y?)wm).

Then the condition N4(i)1) is satisfied for ¢, and ¢, when a > %, for g when a > % The
same values of a are sufficient also to meet the condition N4 (i)2).
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To verify N4(i)3) fix 6 € ®¢ and denote by (1), A € R, any of the continuous functions
©a (L), g(X), @, (A), A € R. Suppose |1 —n| <8 < % Then

sup lp(nA) — o) = maX< sup |p(mA) — )|, sup |p(ni) — w(k)l>
reR <A N> A

= max (s, $2),

52 < sup )|+ sup [pR)] = s3 + s4.
Al>A nIx>A

By the properties of the functions ¢ under assumption a > % for any ¢ > 0 there exists

A = A(g) > 0 such that for |A| > %A lp(M)] < 5. So, s3 < 5. We have also s4 <
sup |@(A)| < 5. On the other hand,

[A>2A

s1< sup |p(mA) —eM)|, Inh— il <2A8 =6,
A <2A

and by the proper choice of §

51 < sup lp(r1) —p(r2)| <&,
A, A€[—2A,2A]
|A.1_)\.2|<8/

and condition N4(i)(3) is met.
Using (37) we get for any 0 € ©F, as L — 00,

P, (W) = _871704 Aw(d) — 4”7“ (2 +a? 42w () = 0 (2

2
ACSES %(S’(k)w(x) 50w () = 0 (213,
<p}/,(k) = 16% Aw() + 8”7)/ ()»2 —a? - )/2) w' () =0 ()L*2a+1) '

Therefore fora > % these derivatives are uniformly continuous on R (condition N4(i)4). So,

to satisfy condition Ny4(i) we can take weight function w(X) with a > %

The check of assumption Ny4(ii) is similar to the check of Cy4(i).
As A — 00, uniformly in 6 € ©¢

7'];5‘((;’ ;))' W) =l W f G, Ow) =20 (32 + o + %) s WwR)=0 (77%);

|fﬁ()\7 9)} = — g1 — —2a\ .
o) VW = oSG Owk) =BT Twk) = 0 (7);
A, 0
Ww()\) = ‘(Py(k)‘ S, O)wr)=4y ‘)\'2 —a? - y2‘ S_l()\)w()\)z 1) (A—Za—2) )

(38)
On the other hand, for any A > 0 the functions (38) are bounded on the sets [—A, A] x ©€.
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To check Ny(iii) note first of all that the functions uniformly in 8 € ©¢, as . — oo,

2
?;3 Z; W) = ga () f O, 0) = 80> (12 + a2 + ) s 200w = 0 (72474 ;
f30., 0)
fi(k 5y V) = s f O 0) = B2w(h) = 0 ()
2 A, 0
j}zik 9; w() =g, () f (k. 0) = 167 (12 —o® = y2) s 2Mw(d) = 0 (17274

(39)
These functions are continuous on R x ®¢, as well as the functions

me = 0a(W) f(1, 0) = —%“ (3 +a? + ) s w;

2, 0)

a(r, 0 A, 0 )
%w()‘) = @A) fy (X, ) = =8ay <A4 - (052 + y2)2) s 2()\)11)(}\);
f30-, 61,0, 6) 4 _
e W =ee®f 0.0 =5 (A —a? = y?) s wm.

(40)

Moreover, uniformly in 6 € ®¢, as A — o0,

f;‘z?’;) w) = —4 (A2 43 + y?) s WwR) + 8 (A7 + o + %) s T2 (W)sL, (Mw(R)

— 0 (A—Za—Z) :
X, 0

f% 9))“’(“:0;

fVV()‘" 0) _ 2 2 2\ —1 2 2 2\ =2 /

Ww(x)_zt(x —a” =3y s Mw) =8y (A —a” —y7)s ()5, Mw(R)
— 0 ()\'—211—2) :

f‘;‘i?’:)) w(r) = —%“ (A +a? +yY) s wr) = 0 (A7),

fay(k’ 6) -1 4 2, .2\ 2 1y (3 —2a—4 .

gy W) = —8ays ™! (w0 + 160y (4 = (@ +v)") s 20w =0 (727,

Sy (4, 0) I A0 S S N _ —2a-2

0.0 w(d) = 5 (A —a”=y?) st wm) = 0 (2 )

41)
Note that the functions (41) are continuous on R x ®¢ as well as functions (39) and (40).
Therefore the condition N4(iii) is fulfilled.
Let us verify the condition N5(1). According to equation (39), uniformly in 6 € ®¢, as
A — 00,

2 2
Ta o 0) Gy = 17 2 4 o2 4 225wy = 0 (1)
f3x, 6) B

Z(x, 0
fi( )w()\) = Z%S(A)U)()») =0 ()\—Za+4); “2)
7@, 0) B

200, 0 2
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Therefore the continuous in (1, 6) € R x ©F functions (42) are bounded in (A, 8) € R x ®F¢,
ifa > 2.
Using equations (40) and (41) we obtain uniformly in 6 € ®¢, as A — o0,

Jaa (X, 0) 8 167 _
mw(x) =—5 (A + 32 +y?) w)+—— 5 ety s s, MwR)
-0 (A—2a+2) :
Tep(, 0) .
oo M=
A, 0 16 _ ,
J;yzy((k 9)) () = /3 T (32 —a? =3y w() — % (02 —a® =) s s, w )
-0 (}\—211—&-2) :
Jap(, 6) _ 8ra o, _ a4y
0. 6) 9) wl) = — e A+ +yH)wk) =0 (1 )
foty _ L6ay Rray (4 2 232\ 1 _ —2a\ .
ST0) 9) wo) = =2 w(A)+T(A — (@ +7%)") s Gawn =0 (17);
%ﬁ‘;@ Gy ) = %" (2 —a? =y wr) = 0 (1242,
’ (43)
So, continuous on R x ©¢ functions (43) are bounded in (A, 0) € R x ®¢, ifa > 1.
To check Njs(ii) consider the weight function
vo) = (142", 1eR, b>0.
If a > b, then function % is bounded on R (condition Nj(iii)). Using (42) we obtain
uniformly in 6 € ®¢, as A — o0,
2
;0;8 Z; ) = 16% (2 +a®+7%) s w0 = 0 (A7)
A, 0
M”m ) =0 (1) (44)
(*, 0) 32
?X(A 50 = ’;y (2 ==y s ) = 0 (7).

In turn, similarly to (40) it follows uniformly in 6 € ®¢, as A — oo,

Jfa (X, 0) fp(, 0) dra _ —2p42) .
w v(A) = — o (k +a +)/)v()»)—0<)u >,
Ja(, 0) fy (&, 0) _ l6ay (4 2 22\ —1 _ —2b\ .
gy =~ (x — (a +y))s (A)v(k)-O(k ) (45)
Sk, 0) fy (A, 0) 8y 2 2 _ —2p42

ol M= (2—a?—y )v(k)—O(k )

The functions (44) and (45) will be uniformly continuous in (1, 0) € R x ®F, if they
converge to zero, as A — 00, uniformly in 6 € ©°¢, that is if b > 2.
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Similarly to (43) uniformly in 6 € ®¢, as A — o0,

au (%, 0 - A0 A 0 B
'];2(()\79))1)()») =0 (A 2b+2); %v(k) =0; %v(;\) -0 (}\ 2b+2);

wp(h, 6 . ay(h, 6 -
7f; f((/\ 6))1)()\): 0 (x7%2); J;,j ((/\ 9))v()») =0 (37);

6 .
7?;(1 9))1)(/\) =0 (%2).
’ (46)

Thus the functions (44)—(46) are uniformly continuous in (1, 0) € R x O, if b > 2.
Proceeding to the verification of condition Ng, we note that for any x = (xa, xg, xy) #0

w(A)

————dA.
[0 0)

(Wi (@)x, x) =/ (Yo fa Oy 0) + x5 f5 (0, ) + xy £, (1, 6))
R

From equation (36) it is seen that the positive definiteness of the matrix Wy (A) follows from
linear independence of the functions A2 +a?+ yz, s, A2 —a?— yz. Positive definiteness
of the matrix W, (6) is established similarly.

In our example to satisfy the consistency conditions C4 and Cs the weight functions w(X)
and v(A) should be chosen so that @ > b > 2. On the other hand to satisfy the asymptotic
normality conditions N4 and N5 the functions w()) and v(}) should be such that a > % and
a>b>2.

The spectral density (35) has no singularity at zero, so that the functions v(1) in the
conditions Cs(i) and Ns(ii) could be chosen to be equal to w(1), for example, a = b = 3.
However we prefer to keep in the text the function v(}), since it is needed when the spectral
density could have a singularity at zero or elsewhere, see, e.g., Example 1 (Leonenko and
Sakhno 2006), where linear process driven by the Brownian motion and regression function
g(t, a) = 0 have been studied. Specifically in the case of Riesz-Bessel spectral density

B

T 0= ey

reR, 47)

where 0 = (61, 62, 03) = (@, B, ¥) € O = (¢, @) x (B, f) X (¥, V), > 0, @ < %
B >0, B < oo, Yy > %, Y < 0o, and the parameter « signifies the long range dependence,
while the parameter y indicates the second-order intermittency (Anh et al. 2004; Gao et al.
2001; Lim and Teo 2008), the weight functions have been chosen in the form

2b )LZb'
a>b>0;, v(h) = 7

AN =——2 —
YT R (1422

ad>b >0, reR.

Unfortunately, our conditions do not cover so far the case of the general non-linear regres-
sion function and Lévy driven continuous-time strongly dependent linear random noise such
as Riesz-Bessel motion.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.
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Appendix A: LSE consistency

Some results on consistency of the LSE @7 in the observation model of the type (1) with
stationary noise £(t), t € R, were obtained, for example, in Ivanov and Leonenko (1989,
2004, 2007, 2008), Ivanov (1980, 2010), Ivanov et al. (2015) to mention several of the rele-
vant works. In this section we formulate a generalization of Malinvaud theorem (Malinvaud
1970) on @7 consistency for linear stochastic process (4) and consider an example of nonlin-
ear regression function g(z, «) satisfying the conditions of this theorem and conditions Cy,
C,. Then we consider another possibilities of C; and C, fulfillment.
Set

T

wr(ay, o) = / e®) (g(t, a1) — g(t, ) dt, ay, ap € A°,
0

1 1
Urun, ) = br (a0 + T2d7 " @our, @0+ T2dy (o) )
For any fixed g € A, the function W7 (11, u) is defined on the set Uz (ag) X Ur(p),

1 .
Ur(ao) = T~ 2dr (o) (A — ).
Assume the following.
(1) Forany ¢ > 0 and R > 0 there exists 6 = §(¢, R) such that
sup T~y (ur, u2) <e. (48)
uy,ureUr (ag)Nve(R)

llur—uz(<8

(2) For some Ry > 0 and any p € (0, Rp) there exist numbers a = a(Rp) > 0 and
b = b(p, Rp) such that

inf T 'W(u, 0) > b; (49)
ueUT (a0)N(v¢ (Rp)\v(p))

inf T "W, 0) > 4B(0) + a. (50)
ueUr (ap)\v°(Ro)

It was proven in Lemma 1 that under condition A
E(vi— B©0) =0(T7). 1)
Lemma A.1 Under condition A1,
Ew} (a1, @) < c®% (a1, ), ay, a2 € A (52)
Proof By formula (7)

4
Ewj (a1, a2) = / cy(ty, B, 13, t4)l_[ (g, ay) — g(ti, an))dtidtrdtzdty

(0.7 i=l1

2

T T
+3 // B(ty — 1) (g(t1, a1) — g(t1, a2)) (g(12, 1) — g(t2, a2)) dtidty
00

=I; +3I3.
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By condition A and Fubini-Tonelli theorem

T T

1
3] < = IB(t — )| [(8(11, 1) — g(t1, 02))? + (g(r2, @1) — g(t2, 02))?]dtrdt
2

0 0
~112
a} 1
lall, = [ la@)ldz.
R
On the other hand by formula (8)

<d

mizdi [ as | ]'[\a(r,—s)(g(z,,al)—g(tz,az))\dndtzdzgdm

R [0.7T]4 i=1

d4fsf]l_[

oO.T 4 i=1

I A

it = )| [ (g1, @) = g, @) (g2, @) — g1z, @2))*+

2 2
+(g(13, 1) — g(13, @2)) (g (ta, 1) — (14, 2)) ]dlldt2dt3df4 = 17(1) + 1%

T T
1
5414/ ds// a( — s)a(ty — s)| (g1, ar) — g, az))
R 0

2
x (g(r, a1) — g(t2, @) dndny

T T
// |&(t3 —s)a(ts —S)|dl‘3dt4
0 0

)
17

T T
1
< qds all [ [ (et ) — s, ) (et an) ~ g2, @)’
0

0

I:flz(ll —5)+ ﬁz(tz — S)]ds dtidt

< sdy ”&”?d)%(al, a2).

Né- B —_—

For integral 17(2) we get the same bound. So, we obtain inequality (52) with

~ A2 A4
e =difal]al; +3d3 af.

Theorem A.1 If assumptions (1), (2), and A are valid then for any p > 0
P{”T—%dT(ao) @r — ao)H > p} — 0T, as T — co.

Proof The proof of this Malinvaud theorem generalization is similar to the proof of Theorem
3.2.1. in Ivanov and Leonenko (1989) and uses the relations (51) and (52).
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Instead of C, consider the stronger condition.
C/z. There exist positive constants cp, ¢; < oo such that for any « € A and T > Ty

ci]dr(@) (@1 —a)|* < @@, @) < coldr@) (@1 — )|, a1, a2 € A (53)

Point out a sufficient condition for C,’ fulfillment. Introduce a diagonal matrix

ST = diag(s,-T, i = 1,q>, sir > 00, asT — 00, i =1,q.

C’Q’ . (i) There exist positive constants ¢;, ¢;, i = 1, g, such that for T > Tp uniformly in
axe A

¢ <spdir(@) <e, i=1,q. (54)

(i) For some numbers cjj. ¢f and T > To,

2
, 1,00 € .AC.

c§ 57 (@1 —a2)|)* < @r(en. a2) < ¢ ||s7 (@1 — )]

Under condition C} as it is easily seen one can take in C),

-1 -1
co=cy| mn ¢;|] , co=cf| max ¢ | .
l<i=q I<i=<q

The next example demonstrates the fulfillment of the condition C), [compare with Ivanov
and Orlovskyi (2018)].

Example A.1 Let

g(t, a) = exp{{a, y(1))},

with (a, y(¢)) = i a;y; (1), regressors y(t) = (yl(t), ce Vg (t))/,t > 0, take values in a
compact set Y C E‘} . Suppose
T q
Jr = T_lfy,-(t)yj(t)dt = J=(J)] . as T — oo,
0 i,j=1

where J is a positive definite matrix, and the set .A in the model (1) is bounded. Set

M = ma e , , L= min e , .
LA xp {{e, ¥)} emin xp {{e, ¥)}

Then forany § > 0Oand T > Ty

L*(Jii —8) < T™'dip(@) < M* (i +8), i =T.q,
and condition C/Z’(i) is fulfilled with matrix s = T%]Iq, I, is identity matrix of order ¢, and

¢ =L*(Jii = 8),c =M (Ji+98),i =1,q.
Let us check the condition C’2’ (ii). We have

el y0) _ ploa.y(0) _ e, y(0) <e<a1—az,y(t>> _ 1) )

As far as (e* — 1)2 > x2,x >0, and (e* — 1)2 > ¢2%x2 x <0, then

(e<06|—0lzyy(f)> _ 1)2 > A (o) — az, y(t))2 . A =min {1’ e2<0t|—0427y(t)>] )
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Thus

20230 (=20 1) 2 22O A () — ey, y(©)) 2 L ey — an. y(0).

and forany 6 > Oand T > Tj

q

Q7 (ay, a2) = Lo Z Jij,r (T%(Olil - 0li2)> (T%(“jl _O‘ﬂ))
ij=1

2

> L? (hmin(J) = 8) HT%(OM —Olz)H ,

where Amin(J) is the least eigenvalue of the matrix J.
On the other hand,

q
Z ¥i (t)e(Y(t).0t1+n(t)(012—0t1))(ai1 )
i=1

Qlar y®) _ e(dz,y(t))‘ -

q
Z yi(D) (i — ai2)

i=1

<M

)

n(t) € (0, 1), and
T 2
k] 2
2 2 1
Or(ar, @) < M / (Z ¥i (1) @iy — m)) dt = M2 (hman (D) +8) [ T2 @1 — 0|,
o \i=l
where Amax (/) is the maximal eigenvalue of the matrix J. It means that condition C/ (ii) is
valid for matrix s = T%]Iq.
So the condition C} is valid as well and in (53) one can choose for T > Tj some numbers

o s M) - L2Ain(])
0 L2 min Jii ’ ! M? max Jii'
I<i<q I<i=q

Inequalities (53) can be rewritten in the equivalent form

2 uveUr(), ac A (55)

From the right hand side of (55) it follows (48). Similarly, from the left hand side of (55)
taking v = 0 we obtain (49) for any Ry > 0 and it is possible to choose Ry > 0 satisfying
(50).

In our example A; due to inequalities (54) with s;7 = T%, i =1,q, the set Ur () is
bounded uniformly in 7" and it is not necessary to use condition (50). However in Malinvaud
theorem we can not ignore the condition (50) of parameters distinguishability in the cases
when the sets Ur () expands to infinity as 7 — oo or the set .4 is unbounded.

It goes without saying not all the interesting classes of nonlinear regression functions
satisfy consistency conditions of Malinvaud or, say, Jennrich (1969) types. The important
example of such a class is given by the trigonometric regression functions.

c1||u—v||2 < T, v) < COHM—U

Example A.2 Let
N

g(t, a) = Z (A;j cos @it + B; sin ¢;t) (56)

i=1
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o = (a1, a2, @3,...,038-2, @3N—1, @3N) = (A1, B1, @1, ..., Ay, By, ¢n),0 < ¢ <
QY1 <...< PN <@ < O00.
Under some conditions on angular frequencies ¢ = (¢, ..., @y) distinguishability (see

Walker Walker 1973; Ivanov 1980; Ivanov et al. 2015) it is possible to prove that at least
T ®r@r, ap) —> 0, as T — oo, (57)
ar = (Air. Bir, i1, ..., An1. ByT, ont), a0 = (AY, BY, o0, ..., AY., BY. %),
(C)7 = (A2 +(BY > 0.k =T,
The convergence in (57) can be a.s. In turn, form (57) it follows (see cited papers)
A,’T —> A?, B,‘T —P> Bl-o, T((piT —golo) i) 0, as T — oo. (58)
Note that
_ _ 1 _ 1 2 2
T\ @ p(e0), T'd o) > 5. T3 (o) — = ((4D) +(Bf)°).
as T — oo, 59)
k=1, N.
From (58) and (59) we obtain the relation of condition C; for trigonometric regression:
T=2dr(e0) @r — ap) —> 0, as T — oo.
To check the fulfillment of the condition C, for regression function (56) we get
’Ai cos @it + B; sin ¢t — A? cos p;t — Bi0 singoit‘ < ’A,- — A?’

(60)
+|B; — BY| + (1A + 1B t | @i — o)

)

k =1, N, and therefore

o7 (ar, Oto)
1
< SNZ < (Ar — A9 + 7 (B — BY) + CHE 1BY) 73 (i — ¢?)2> .

Using again the relation (59) we arrive at the inequality of the condition C,.

2 ae A 61)

7 (e, ) < codr(ao) (@ — )

with constant ¢y depending on A0 BO i=1,N.
The next lemma is the main part of the convergence (57) proof.

Lemma 11 Under condition A

T
£(T) = sup T’I/ e Menydt| <> 0, as T — oo. (62)
reR
Proof Since
T 2 7 T—|ul T T—u
/e—"“e(t)dt =/ e / g(z+|u|)g(¢)d;du=2/cosxu/ e(r+u)e(t)dtdu,
0 -T 0 0 0
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then
T |T—u T
EEX(T) ng—Z/ E / e(t +w)e(t)dt|du < 2T—2/ K u)du.
0 0 0
By formula (7)
T—uT—u T—uT—u
K(u) = f / Ee(t +u)e(s +u)e(t)e(s)dtds = / / ca(t +u, s+u,t, s)dtds
0 0 0 0

T—uT—
+ (T —u)’B*(u) + / / B%(t — s)dids
0 0
T—uT—
+ / / B(t —s+u)B({t —s —u)dtds
0 0

< Ki(u) + Ko(u) + K3(u) + [Ka(u)|,

u

u u

and
T
1 1 1
EEX(T) < 2T—2/ (Kf W) + K2 (u) + K3 (u)+|1<4(u)|%)du.
0
By formula (8)
T—u 2
Kl(u):d4/ / a(t+u—ryat—r)| dr
R 0
T—u T—u
§d4/ / a*(t +u —r)dt / &>t —rydt | dr
R 0 0
T—u
< dy \|a||§/ dt/&z(t+u—r)dr§d4 la] T ),
0 R
that is
T T
-2 % d d%’*z—2 \/;d—zd%’\z_%
T Klwdu <d} |a|,T T —udu=zd; [af, 772
0 0
Obviously,
T T
1
T—Z/ K; (ydu = T—zf(T — W] Bw)ldu <372 | B2 T2,
0 0
T
-2 3 2 -1
T Ky (w)du < gIIBIIzT z,
0
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1
u 2

T T ! T—u T—
1
T_zf K} (wdu = T_2/ 5 / / (B*(t —s +u) + B*(t —s —u))dtds | du
0 0 0 0
2 _1
= FIBIT>. (67)

From inequalities (63)—(67) it follows
E£X(T) =0 (T—%), as T — oo.
m}

The result of the lemma can be strengthened to a.s. convergence in (62). Note also that in
the proof we did not use the condition @ € L (R).

Appendix B: LSE asymptotic normality

Cumbersome sets of conditions on the behavior of the nonlinear regression function are used
in the proofs of the LSE asymptotic normality of the model parameter can be found, for
example, in Ivanov and Leonenko (1989); Ivanov (1997); Ivanov et al. (2015), and it does
not make sense to write here all of them. We will comment only on the conditions associated
with the proof of the CLT for one weighted integral of the linear process ¢ in the observation
model (1).

; q
Consider the family of the matrix-valued measures pur(dx; o) = (,uJTl (dx; a)) o
Jil=
T > Ty, @ € A, with densities
_1
2 2 :
y . - .
Wl (v @) = gh (x, @)gh(x, @) /\gm, o) dxf\gé(x, o de| L xeRr,
R R
(63)
where
T
g%(x, 0) 2/ eMgi(t, 0)dt, j=1,q.
0

(1) Suppose that the weak convergence u7 = u as T — oo holds, where w7 is defined
by (68) and p is a positive definite matrix measure.

This condition means that the element /! of the matrix-valued measure j are complex
measures of bounded variation, and the matrix p(A) is non-negative definite for any set
A € Z, with Z denoting the o-algebra of Lebesgue measurable subsets of R, and () is
positive definite matrix, (see, for example, Ibragimov and Rozanov 1978).

The following definition can be found in Grenander (1954), Grenander and Rosenblatt
(1984), Ibragimov and Rozanov (1978) and Ivanov and Leonenko (1989).

Definition B.1 The positive-definite matrix-valued measure u(dx; o) = (ujl(x; o:))? =1 is
said to be the spectral measure of regression function g(¢, «).
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Practically the components /! (x; a) are determined from the relations
T
Rji(h; o) = Tli_)moo d;Tl (ot)dfT1 (O{)/ gi(t+h, a)g(t, a)dx
0

= /.ei’\huj’(d?»; w), j,l=1,q, (69)
R

where it is supposed that the matrix function (R 1 (h; Ol)) is continuous at 7 = 0.

Continuing Example A.2 with the trigonometric regression function (56) from
“Appendix A”, we can state using (69) that the function g (¢, «) has a block-diagonal spectral
measure w(dX; o) (see e.g., Ivanov et al. 2015) with blocks

s ipr Br
—ipr 2 vy |, k=1,N, (70)
Br vk
where
V3 V3 —
=_—_—(B | Ak pre), =—(-A iBypr), Cr=+A>+B? k=1,N.
Bk 2Ck( woo +iAPK), Vi 2Ck( k% + i Bipk) k it

In (70) the measure s, = s (d)) and the signed measure py = pi(dA) are concentrated at
the points ¢, and s ({£@x}) = 5, or ({£ex}) = £3.

Returning to the general case let the parameter o € A of regression function g(¢, o) be
fixed. We will use the notation di_Tl (@)gi(t, o) = b7 (t, @) and condition

@) sup |bir(t, @) <¢T 2, i=T.q.
tel0, T

The next CLT is an important part of the proof of LSE @7 asymptotic normality in the
model (1) and fully uses condition Aj.
Theorem B.1 Under conditions A1, 1) and (2) the vector
T T q
{r Zd;l(a)/ e(HVg(t, aydr = / e(Obir (1, a)dt (71)
0

0 i

is asymptotically, as T — oo, normal N (0, X),

£ =2n / FOY(dr: @) = dy / la)Puldh; ).
R —00

Proof For any z = (zl, o, zq) € RY set
r q
nr = {1, 2) :/ eMSr(t)dt, Sr(t) =Y bir(t, @)z.
0 i=1

By condition (1)

0’(z) = lim Enj =21 / FMp(dr; ),
— 00
R
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q .
u(dr; @) = Y pl(dr; @)ziz;.
ij=1
To prove the theorem it is sufficient to show for any z € R and v > 1, that

. (n— Do (z), n = 2v,
n o__ n o__
TlimenT_En _{0, n—2v 1. (72)
Use the Leonov—Shiryaev formula (see, e.g., Ivanov and Leonenko 1989). Let
I={L2 o Iy =i i} € Loep) =a, (oo, )
Then
r
m(I) =my (1. ... t) =Y [] e, (73)
A, p=1
.
where Y denotes summation over all unordered partitions A, = { U1 p} of the set I into
Ay p=l1
r
sets 1, ..., Iy suchthat I = \J I,, ;NI; =@,i # j.
p=1
Since
n
Enf = / ma(tr, .. t) [| Re@odn ... dt, (74)
[0, 71" k=1

then the application of formula (73) to (74) shows that to obtain (72) it is sufficient to prove

1}
I(l) = / cty, ..., tl)l_[ Ry (tp)dty...dty — 0, as T — oo. (75)
[0, 7y k=1
for all i = 3, n. Taking into account the equality E&(t) = 0, from (75) will follow that
in (72) all the odd moments E n2"*t! = 0. On the other hand, for even moments E 52" we
shall find that in (74) thanks to (73) only those terms correspond to the partitions of the
set I = {1, 2, ..., 2v} into pairs of indices will remain nonzero, i.e. “Gaussian part” : all
[p =2.1In (73) it will be (2v — 1)!! of such terms and each of them will be equal to o2V (2).
Let us prove (75). We note that condition (2) implies

_1
sup [RrD < llel 1 T2, c=(c1y-ooicq)s 2= (210 oevs 2g)-
t€l0, T]

Then using formula (8) we have

1
Lo fq(n—n,...,n_l—n,O)H Ry (t)dty ....dny

[0, 7y k=1

i / ds
R [0.7]

T T
§|d1|/|&(—s)|f f
0 0

R

IA

)

-1 1
( alti—1 —s)) a(=s) [ [ Rr@dn ...dn

1 k=1
-1

a(t—t —s)Rr(t)|dt |R7 (1) dids
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A

Tl 1
aly =) (Il iz 73) =

1)ZT*(%*I) 50, as T — o0, [>3. (76)

-1 -1
< ldil (Jlel"Jz

a

= 1di| (llell izl

To obtain (76) we have used @ € L{(R) only.

Using the theorem, just as in the works cited above (for definiteness, we turn our attention
to Ivanov et al. 2015), it can be proved that, if a number of additional conditions on the
regression function are satisfied, the normalized LSE d7 (a) (@7 — ap) is asymptotically
normal N (0, ,,), with

-1

1
ELSE =2z / u(dxr; ao) / Fpldr; ag) / n(dAr; ap)
R

R R
-1 -1

ds / w(d; o) / )P (dh; «o) / (s o)

R R R

Note that, firstly, our conditions N3, (1), (2) are included in the conditions for the LSE
asymptotic normality of Ivanov et al. (2015), and, secondly, the trigonometric regression
function (56) satisfies the conditions of Ivanov et al. (2015). Moreover, using (70) and (59)
we conclude that for the trigonometric model the normalized LSE

(T% (AIT — A(l)) . T% (BIT — B?) . T% (‘PIT — (p?), ey

T7 (Ayr — AY), T? (Byr — BY), T7 (onr — w;"v))

is asymptotically normal N (0, £,,,;), where £, is a block diagonal matrix with blocks

2 2
4 f () (AQ)" +4(BY) —3A§B,9 2—6B,9
oo | 3R (B)" +4(A0) 64y | k=1N.
(@) \ —68 6A 12

The matrix X, is positive definite, if f (¢{) > 0,k = 1, N. Hovewer it follows from our
condition Aj(iii).

Note also that condition N is satisfied, for example, for the trigonometric regression
function (56). Indeed, in this case

N
gt a)= Z (—@; A; sin @t + @; B; cos ¢;1) ,

i=1

and similarly to (60)
| =i Ai sin @it + @; Bi cos g1 + ¢
<o(|Ai — A} + |B; = BY|) + (1471 + |1BY1) (1 + 1) i — )

0o 0 00 0
Ajsing;t — ¢; B; cosgo,»t|

,i=1,N

which leads to the inequality of condition N, similar to (61), but with a different constant c;,
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Appendix C: Levitan polynomials

Some necessary facts of approximation theory adapted to needs of this article are represented
in this Appendix. All the definitions and results are taken from the book (Akhiezer 1965).

In complex analysis entire function of exponential type is said to be such a function F(z)
that for any complex z the inequality

F(z) < AeBl (77)

holds true, where the numbers A and B do not depend on z. Infinum o of the constant B
values for which inequality (77) takes place is called the exponential type of function F(z)
and can be determined by formula

. In|F(2)]

o = limsup ———.

|z] =00 |Z|
Denote by 5, the totality of all the entire functions F(z) of exponential type < o with
property sup | F(A)| < oo.

AeR
Let C be linear normed space of bounded continuous functions ¢ (1), A € R, with norm

llell = sup |@(z)| < co. Consider further some set of functions 9 C C. For the function of
reR
interest ¢ € 9 suppose that

lim sup [p(nA) — @ (A)| =0, (78)
n=1,eRr
and write
= inf —F|.
As o] Anf 1% Il

Let h(X), A € R, be uniformly continuous function. Denote by

w@) =w@; h)y= sup |h(h1) —h(A)|, 21,22 €R, § >0,
[A1—22|=<6
the modulus of continuity of the function 4. Obviously w(8), 6 > 0, is nondecreasing
continuous function tending to zero, as § — 0.

Let the set 91 introduced above consists of differentiable functions such that for ¢ € M
the derivatives ¢’ (1) = h(L), A € R, are uniformly continuous on R. Then for function ¢
satisfying the property (78) there exists a function F;, C B, such that (see Akhiezer 1965,
p- 252)

3 1
Aslel =l — Fsll = —o (*; h) . (719)
o o
The inequality (79) means that for the described function ¢ and any § > O there exists a
number o = ¢ (8) and a function F, € B, such that
g — Fsll <.

As it has been proved in the 40s of the 20th century by B.M. Levitan for any function
F € B, itis possible to build a sequence of trigonometric sums 7,,(F; z), n > 1,bounded on
R by the same constant as the function F, that converges to F(z) uniformly in any bounded
part of the complex plane. In particular, for any compact set K € R
lim sup |F(A) — T,(F; A)| =0.

n—oo reK
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Puts = 7, n e N; cﬁ.") =sE;(js), j € —n, n,
— -1 —ixu Zgln% :
Es(x) = 2m) e —= | F(uw)du, x eR.
su
R

Then the sequence of the Levitan polynomials that corresponds to F' can be written as

n
Ty(Fiz)= Y e,

j==n
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