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ABSTRACT

For a given stiffness tensor (tensor of elastic moduli) of a generally anisotropic
medium, we can estimate the extent to which the medium is transversely isotropic,
and determine the direction of its reference symmetry axis. In this paper, we rotate
the given stiffness tensor about this reference symmetry axis, and determine the
reference transversely isotropic (uniaxial) stiffness tensor as the average of the ro-
tated stiffness tensor over all angles of rotation. The obtained reference transversely
isotropic (uniaxial) stiffness tensor represents an analytically differentiable approx-
imation of the given generally anisotropic stiffness tensor. The proposed analytic
method is compared with a previous numerical method in two numerical examples.

Keywords : elastic anisotropy, stiffness tensor, elastic moduli, transverse iso-
tropy, approximate transverse isotropy, reference symmetry axis, nearest media
approximation

1. INTRODUCTION

For a given 3×3×3×3 stiffness tensor (tensor of elastic moduli) of a generally
anisotropic medium, we can estimate the extent to which the medium is transversely
isotropic, and determine the direction of its reference symmetry axis using the
method of Klimeš (2016). The reference symmetry axis of Klimeš (2016) minimizes
the Frobenius norm of the angular derivative of the given stiffness tensor about
it. The direction of the reference symmetry axis is specified in terms of the unit
reference symmetry vector.

If we find that the medium is approximately transversely isotropic (approximately
uniaxial), we may wish to determine the transversely isotropic (uniaxial) medium
which approximates the given generally anisotropic medium. We shall refer to this
transversely isotropic medium as the reference transversely isotropic medium.
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The stiffness tensor of a transversely isotropic medium is independent of the
rotation around the symmetry axis. We thus take the reference symmetry axis de-
termined using the method of Klimeš (2016), rotate the given stiffness tensor about
this reference symmetry axis, and determine the reference transversely isotropic
stiffness tensor as the average of the rotated stiffness tensor over all angles of rotation.
In this way, we obtain an analytically differentiable analytic solution of a problem
that was initially solved by brute–force numerical methods (Dellinger, 2005 ; Norris,
2006 ; Moakher and Norris, 2006 ; Kochetov and Slawinski, 2008 ) or by very rough
approximations (Arts et al., 1991 ). Note that this paper is devoted to the nearest
media approximation by a transversely isotropic medium, but not by media of other
symmetries.

The lower–case Roman indices take values 1, 2 and 3. The Einstein summation
over repetitive lower–case Roman indices is used throughout the paper. We consider
Cartesian coordinates with unit metric tensor in this paper. In these coordinates,
the Frobenius norm of a tensor is independent of the choice of coordinate system
orientation.

2. REFERENCE TRANSVERSELY ISOTROPIC STIFFNESS TENSOR

We denote the density–reduced stiffness tensor of a given generally anisotropic
medium by aijkl . The unit reference symmetry vector ti in the direction of the
reference symmetry axis can be obtained using the method of Klimeš (2016).

The projection matrix onto the reference symmetry vector is

Zia = tita . (1)

The projection matrix onto the plane perpendicular to the reference symmetry vector
is

Cia = δia − tita , (2)

where the Kronecker delta δin represents the elements of the identity matrix. Minus
the generator matrix of the rotation about the reference symmetry vector is

Sia = εiartr , (3)

where εijk is the Levi–Civita symbol.
Then the transformation matrix corresponding to the rotation of vectors about

the given reference symmetry vector ti by angle ϕ reads

Ria(ϕ) = Zia + Cia cos(ϕ) − Sia sin(ϕ) . (4)

The rotated stiffness tensor reads

ãijkl(ϕ) = Ria(ϕ)Rjb(ϕ)Rkc(ϕ)Rld(ϕ) aabcd , (5)

where apqrs without argument ϕ is the given non–rotated tensor.
We define the stiffness tensor aijkl of the reference transversely isotropic medium

as the average of the rotated stiffness tensor,

aijkl =
1

2π

2π
∫

0

dϕ ãijkl(ϕ) . (6)
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On inserting the rotated stiffness tensor (5) with transformation matrix (4) into
definition (6), the reference stiffness tensor is composed of terms proportional to the
integrals

1

2π

2π
∫

0

dϕ = 1 , (7)

1

2π

2π
∫

0

dϕ cos(ϕ) = 0 , (8)

1

2π

2π
∫

0

dϕ [cos(ϕ)]2 =
1

2
, (9)

1

2π

2π
∫

0

dϕ [cos(ϕ)]3 = 0 , (10)

1

2π

2π
∫

0

dϕ [cos(ϕ)]4 =
3

8
, (11)

1

2π

2π
∫

0

dϕ sin(ϕ) = 0 , (12)

1

2π

2π
∫

0

dϕ cos(ϕ) sin(ϕ) = 0 , (13)

1

2π

2π
∫

0

dϕ [cos(ϕ)]2 sin(ϕ) = 0 , (14)

1

2π

2π
∫

0

dϕ [cos(ϕ)]3 sin(ϕ) = 0 , (15)

1

2π

2π
∫

0

dϕ [sin(ϕ)]2 =
1

2
, (16)

1

2π

2π
∫

0

dϕ cos(ϕ) [sin(ϕ)]2 = 0 , (17)

1

2π

2π
∫

0

dϕ [cos(ϕ)]2 [sin(ϕ)]2 =
1

8
, (18)

1

2π

2π
∫

0

dϕ [sin(ϕ)]3 = 0 , (19)

1

2π

2π
∫

0

dϕ cos(ϕ) [sin(ϕ)]3 = 0 (20)

and
1

2π

2π
∫

0

dϕ [sin(ϕ)]4 =
3

8
. (21)
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We insert the rotated stiffness tensor (5) with transformation matrix (4) into def-
inition (6), and consider integrals (7)–(21). The stiffness tensor of the reference
transversely isotropic medium then reads

aijkl =
{

ZiaZjbZkcZld

+ 1

2
[ZiaZjbCkcCld + ZiaCjbZkcCld + ZiaCjbCkcZld

+CiaZjbZkcCld + CiaZjbCkcZld + CiaCjbZkcZld]

+ 1

2
[ZiaZjbSkcSld + ZiaSjbZkcSld + ZiaSjbSkcZld

+SiaZjbZkcSld + SiaZjbSkcZld + SiaSjbZkcZld]

+ 1

8
[CiaCjbSkcSld + CiaSjbCkcSld + CiaSjbSkcCld

+SiaCjbCkcSld + SiaCjbSkcCld + SiaSjbCkcCld]

+ 3

8
[CiaCjbCkcCld + SiaSjbSkcSld]

}

aabcd . (22)

In the special case of ti = (0, 0, 1) and aijkl = aklij , this equation is equivalent to
an analogous equation by Dellinger (2005, Eq. 3).

For any given reference symmetry vector ti, the reference transversely isotropic
medium (22) minimizes the Frobenius norm of the difference between the given
3× 3× 3× 3 stiffness tensor aijkl and the stiffness tensor aijkl of a transversely
isotropic medium rotationally invariant with respect to the given reference symmetry
vector. However, the reference symmetry vector ti obtained by the analytic method
of Klimeš (2016) and recommended in this paper does not minimize the Frobenius
norm of the difference exactly; it only approximates the reference symmetry vector
of Dellinger (2005), which corresponds to the exact minimum. On the other hand,
the reference symmetry vector ti by Klimeš (2016) is obtained analytically and is
analytically differentiable (Klimeš, 2016 ; Klimeš and Bulant, 2017 ).

3. NUMERICAL EXAMPLES

We compare the reference transversely isotropic medium determined analytically
according to this paper with the reference transversely isotropic medium determined
according to Dellinger (2005), who numerically minimizes the Frobenius norm of the
difference between the reference transversely isotropic medium and a given stiffness
tensor aijkl.

In his first example, Dellinger (2005, Appendix A) considers a transversely iso-
tropic given medium aijkl , calculates the unit symmetry vector, and obtains the
reference transversely isotropic medium that coincides with the given medium within
rounding errors. Since the given medium in this example is exactly transversely
isotropic within rounding errors, the method of Klimeš (2016) yields the unit refer-
ence symmetry vector that coincides with the exact symmetry vector within rounding
errors, and is thus equal to the unit symmetry vector determined by Dellinger (2005,
Appendix A) within rounding errors. The reference transversely isotropic medium
(22) then naturally coincides with the given medium within rounding errors.
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In his second example, Dellinger (2005, Appendix A) considers a medium aijkl

that is not transversely isotropic. He numerically calculates a unit reference sym-
metry vector

texact

i = (0.0525,−0.0056, 0.9986) (23)

that minimizes the Frobenius norm of the difference between the given medium and
the reference transversely isotropic medium. The approximate analytic method of
Klimeš (2016) yields a unit reference symmetry vector

ti = (0.0661,−0.0057, 0.9978) . (24)

For the unit reference symmetry vector (23), the reference transversely isotropic
medium (22) naturally coincides with the reference transversely isotropic medium
determined by Dellinger (2005, Appendix A) within rounding errors. The relative
Frobenius norm of the difference between the given medium and the reference
transversely isotropic medium corresponding to unit reference symmetry vector (23)
is 3.464 %. For the unit reference symmetry vector (24) proposed in this paper,
the relative Frobenius norm of the difference between the given medium and the
reference transversely isotropic medium (22) is 3.482 %.

4. CONCLUSIONS

The proposed method of determining the reference transversely isotropic stiffness
tensor for the given stiffness tensor of a generally anisotropic medium has been coded
as a new option of program tiaxis.for of software package FORMS (Bucha and
Bulant, 2016 ).

Gazis et al. (1963) proposed a general but considerably involved method of
the nearest media approximation consisting in the normal projection of the given
stiffness tensor onto the subset of invariant tensors. It can be proved that the
reference transversely isotropic medium (22) obtained here as the average of the
rotated stiffness tensor is identical to the transversely isotropic medium obtained
by the normal projection of the given stiffness tensor onto the subset of tensors
invariant with respect to rotation (5) about a given reference symmetry axis. The
reference transversely isotropic medium (22) thus minimizes the Frobenius norm
of the difference between given stiffness tensor aijkl and stiffness tensor aijkl of
a transversely isotropic medium for a given reference symmetry axis.

In this paper, we have proposed to determine the reference symmetry axis using
the analytic method of Klimeš (2016), instead of numerically minimizing the Frobe-
nius norm of the difference between the given medium and the reference transversely
isotropic medium (22) according to Dellinger (2005). The reference symmetry vector
obtained by the analytic method of Klimeš (2016) does not minimize the Frobenius
norm of the difference exactly, but is obtained analytically and is analytically differ-
entiable (Klimeš and Bulant, 2017 ).

If the given stiffness tensor of a generally anisotropic viscoelastic medium is not
symmetric with respect to the exchange of the first pair of indices and the second pair
of indices, the stiffness tensor (22) of the reference medium is rotationally invariant
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but is not symmetric with respect to the exchange of the first pair of indices and
the second pair of indices, and is characterized by three additional parameters in
comparison with a transversely isotropic medium (Klimeš, 2017 ).
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