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ABSTRACT

The coupling ray theory is usually applied to anisotropic common reference rays,
but it is more accurate if it is applied to reference rays which are closer to the
actual wave paths. If we know that a medium is close to uniaxial (transversely
isotropic), it may be advantageous to trace reference rays which resemble the SH–
wave and SV–wave rays. This paper is devoted to defining and tracing these SH
and SV reference rays of elastic S waves in a heterogeneous generally anisotropic
medium which is approximately uniaxial (approximately transversely isotropic), and
to the corresponding equations of geodesic deviation (dynamic ray tracing). All
presented equations are simultaneously applicable to ordinary and extraordinary ref-
erence rays of electromagnetic waves in a bianisotropic medium with the symmetric
constitutive matrix which is approximately uniaxially anisotropic. The improvement
of the coupling–ray–theory seismograms calculated along the proposed SH and SV
reference rays, compared to the coupling–ray–theory seismograms calculated along
the anisotropic common reference rays, has already been numerically demonstrated
by the authors in four approximately uniaxial velocity models.

Keywords : wave propagation, elastic anisotropy, electromagnetic bianisotropy,
heterogeneous media, wave coupling, approximately uniaxial (approximately trans-
versely isotropic) anisotropic medium, reference symmetry axis, SH (ordinary) and
SV (extraordinary) reference rays
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1. INTRODUCTION

1 . 1 . E l a s t i c w a v e s

Consider a line intersection singularity at the slowness surface in an uniaxial
(transversely isotropic) elastic medium. In this special case, the SH–wave and SV–
wave rays cross smoothly this intersection singularity. However, this intersection
singularity is unstable, and any perturbation from transverse isotropy causes this
intersection singularity to split (Crampin, 1981 ). The slower S–wave slowness sheet
then separates from the faster S–wave slowness sheet, forming smooth but very sharp
edges on both sheets (Bulant and Klimeš, 2014 ; Klimeš and Bulant, 2014b).

When the slowness vector of a ray passes smoothly through a split intersection
singularity, the ray–velocity vector rapidly changes its direction and creates a sharp
bend in the ray. This sharp bend is connected with a rapid rotation of the eigen-
vectors of the Christoffel matrix. The sharply bent rays thus cannot describe the
correct wave propagation.

The actual S waves do not propagate along the sharply bent rays, but tunnel
smoothly through a split intersection singularity (Klimeš and Bulant, 2012 , 2016 ).
If a medium is close to uniaxial (transversely isotropic), the actual S–wave paths
resemble the SH–wave and SV–wave rays.

On the one hand, the coupling ray theory (Chapman and Shearer, 1989 ; Coates
and Chapman, 1990 ; Bulant and Klimeš, 2002 ) is usually applied to anisotropic
common reference rays (Bakker, 2002 ; Klimeš and Bulant, 2004 , 2006 ; Klimeš,
2006 ; Bulant and Klimeš, 2008 ). On the other hand, the coupling ray theory is
more accurate if it is applied to reference rays which are closer to the actual S–wave
paths (Klimeš and Bulant, 2014a, 2015 ; Bulant and Klimeš, 2017 ).

If we know that a medium is close to uniaxial, it is reasonable to trace the
reference rays which tunnel smoothly through a split intersection singularity and
resemble the SH–wave and SV–wave rays. This paper is devoted to defining and
tracing these SH and SV reference rays in a heterogeneous generally anisotropic
medium which is approximately uniaxial, and to the corresponding equations of
geodesic deviation (dynamic ray tracing). The proposed equations are especially
useful in approximately uniaxial media, but can also be applied to media which are
not close to uniaxial.

Whether an elastic medium is close to uniaxial can be determined by the method
of Klimeš (2015, 2016a). This method also determines the direction of the corre-
sponding reference symmetry axis in terms of the reference symmetry vector.

The improvement of the coupling–ray–theory seismograms calculated along the
proposed SH and SV reference rays, compared to the coupling–ray–theory seismo-
grams calculated along the anisotropic common reference rays, has already been
numerically demonstrated in four approximately uniaxial velocity models by Klimeš
and Bulant (2014a, 2015) and Bulant and Klimeš (2017).

On the one hand, the proposed SH and SV reference rays are extremely important
as the reference rays for the coupling ray theory in an approximately uniaxial elastic
medium with a split intersection singularity at the slowness surface (Klimeš and
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Bulant, 2015 ; Bulant and Klimeš, 2017 ). On the other hand, if there is no split
intersection singularity at the slowness surface, we can use the anisotropic–ray–
theory rays successfully as the reference rays for the coupling ray theory instead of
the SH and SV reference rays (Klimeš and Bulant, 2014a).

1 . 2 . E l e c t r o m a g n e t i c w a v e s

In the propagation of electromagnetic waves, a rotationally invariant anisotropic
medium (Klimeš, 2017a) which is transversely isotropic is referred to as uniaxial
rather than transversely isotropic. The rays in an uniaxial anisotropic electromag-
netic medium are referred to as ordinary rather than SH, and extraordinary rather
than SV.

The coupling ray theory for electromagnetic waves in its quasi–isotropic ap-
proximation was proposed by Kravtsov (1968). In order to increase the accuracy
of the coupling ray theory, Naida (1977, 1979) and Fuki et al. (1998, Sec. 3.2)
proposed to apply the coupling ray theory for electromagnetic waves to ordinary
and extraordinary reference rays.

All equations presented in this paper are applicable to electromagnetic waves in
bianisotropic media with symmetric constitutive matrices which are approximately
uniaxially anisotropic. Using the Weyl gauge (zero electric potential), we just
need to replace the elastic Christoffel matrix by the analogous Kelvin–Christoffel
matrix corresponding to the Maxwell equations for the magnetic vector potential
in electromagnetic bianisotropic media, see Klimeš (2010, 2016b,c). We then read
generally anisotropic as bianisotropic, approximately uniaxial as approximately uni-
axially anisotropic, SH as ordinary and SV as extraordinary. The two S–wave
eigenvectors and the corresponding eigenvalues of the Christoffel matrix then stand
for the two eigenvectors and two eigenvalues of the Kelvin–Christoffel matrix corre-
sponding to electromagnetic waves, while the P–wave eigenvector and eigenvalue
of the Christoffel matrix stand for the third eigenvector and the corresponding
eigenvalue of the Kelvin–Christoffel matrix which do not correspond to a propagating
electromagnetic wave.

Whether a bianisotropic or anisotropic electromagnetic medium is close to rota-
tionally invariant or uniaxial can be determined by the method of Klimeš (2017b).
This method also determines the direction of the corresponding reference symmetry
axis in terms of the reference symmetry vector.

However, since there is no line intersection singularity at the slowness surface in
an uniaxial anisotropic electromagnetic medium, we can probably successfully use
the anisotropic–ray–theory rays as the reference rays for the coupling ray theory in
a bianisotropic medium which is approximately uniaxially anisotropic instead of the
proposed ordinary and extraordinary reference rays.

1 . 3 . N o t a t i o n

The lower–case Roman indices take values 1, 2 and 3. The upper–case Roman
indices take values 1 and 2. Indices in parentheses are used to index the eigenvalues
and eigenvectors of the Christoffel matrix. The Einstein summation over repetitive
indices is used throughout the paper.
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2. HAMILTONIAN FUNCTION AND HAMILTON’S EQUATIONS OF RAYS

We consider a smooth manifold (differentiable manifold), and coordinates xi of
its coordinate chart. At each point xi, the cotangent space contains covariant vectors
pi such as the gradients of functions. We consider Hamiltonian function H(xi, pj),
which is a real–valued function of coordinates xi and of covariant vector pj from the
cotangent space at point xi, and which is differentiable within its definition domain.
The Hamiltonian function may be represented by any reasonably smooth function
of xi and pj.

Hamilton’s equations (equations of geodesics, equations of rays, ray tracing equa-
tions) read

d

dγ
xi =

∂H

∂pi

(xm, pn) , (1)

d

dγ
pi = −

∂H

∂xi
(xm, pn) . (2)

Hamilton (1837) referred to these equations as the general equations of rays. The
meaning of the independent parameter γ along the ray and the sensitivity of the ray
to the initial conditions depend on the form of the Hamiltonian function (Klimeš,
2013 ).

We define vectors

X i
α =

∂xi

∂γα
(3)

and

Piα =
∂pi

∂γα
(4)

representing the geodesic deviation corresponding to some parameter γα parametriz-
ing the initial conditions for the rays (geodesics). Since derivatives d

dγ
and ∂

∂γα

commute, the equations for X i
α and Piα are obtained by differentiating Hamil-

ton’s equations (1)–(2) with respect to γα. The resulting Hamiltonian equations of
geodesic deviation (paraxial ray equations, dynamic ray tracing equations) derived
by Červený (1972) read

d

dγ
X i

α =
∂2H

∂pi∂xj
(xm, pn)Xj

α +
∂2H

∂pi∂pj

(xm, pn)Pjα , (5)

d

dγ
Piα = −

∂2H

∂xi∂xj
(xm, pn)Xj

α −

∂2H

∂pj∂xi
(xm, pn)Pjα . (6)

Note that Hamiltonian equations (5)–(6) of geodesic deviation may differ for different
Hamiltonian functions corresponding to equal rays.

In the following sections, we propose reference Hamiltonian function H(xi, pj) =
HSH(xi, pj) for tracing the SH or ordinary reference rays, and reference Hamiltonian
function H(xi, pj) = HSV(xi, pj) for tracing the SV or extraordinary reference rays
in order to increase the accuracy of the coupling ray theory.
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3. REFERENCE SH AND SV HAMILTONIAN FUNCTIONS

We assume that a given heterogeneous bianisotropic or anisotropic medium with
the symmetric constitutive or stiffness matrix is approximately uniaxially anisotropic
with respect to given reference symmetry vector ti. For the sake of simplicity, we
consider the reference symmetry vector constant in this paper. However, the pre-
sented equations can simply be generalized to a generally heterogeneous dependence
of the reference symmetry vector on the spatial coordinates.

For the sake of simplicity, we assume the Christoffel matrix Γjk symmetric in
this paper.

We project the reference symmetry vector onto the plane defined by two S–wave
eigenvectors gi(1), gi(2) of the Christoffel matrix Γjk, and introduce the reference SV
polarization in the direction of this projection. The unit reference SV polarization
vector then reads

giSV =
gi(A)gk(A)tk√
trgr(N)gs(N)ts

. (7)

We cannot use this definition in a special singular case when the denominator
of definition (7) is zero within the rounding errors at a point of the traced ray.
In this case, we can replace reference symmetry vector tk in definition (7) and all
other presented equations by the reference SV polarization vector determined at the
previous point of the traced ray. Note that we do not need to introduce the reference
SH polarization vector whose definition is slightly more cumbersome and thus less
suitable for differentiation.

We define twice the reference SV Hamiltonian function GSV = 2 HSV(xm, pn) as

GSV = gjSVΓjkgkSV . (8)

We then define twice the reference SH Hamiltonian function GSH = 2 HSH(xm, pn)
in terms of twice the reference SV Hamiltonian function as

GSH = G(1) + G(2) − GSV , (9)

where G(1) and G(2) are the S–wave eigenvalues of the Christoffel matrix.

As we need to handle both the derivatives with respect to spatial coordinates xm

and slowness–vector components pn, we denote any partial phase–space derivative
∂/∂xm or ∂/∂pn by ′ or ⋆.

The phase–space derivatives of twice the reference SH Hamiltonian function can
then be expressed as

G′
SH = G′

(1) + G′
(2) − G′

SV (10)

and

G′⋆
SH = G′⋆

(1) + G′⋆
(2) − G′⋆

SV . (11)
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For the phase–space derivatives of the S–wave eigenvalues of the Christoffel matrix
refer to Klimeš (2006, Eqs 22, 23). Hereinafter, we shall concentrate on the ref-
erence SV Hamiltonian function and its first–order and second–order phase–space
derivatives.

We insert projection (7) into definition (8) and obtain

GSV =
tigi(K)gj(K)Γjkgk(L)gl(L)tl

trgr(M)gs(M)ts
. (12)

Since the eigenvectors of the Christoffel matrix are orthonormal,

gi(a)gj(a) = δij , (13)

we insert identity
gi(K)gj(K) = δij − gi(3)gj(3) (14)

into twice the reference SV Hamiltonian function (12), and obtain expression

GSV =
ti(δij−gi(3)gj(3))Γjk(δkl−gk(3)gl(3))tl

tr(δrs−gr(3)gs(3))ts
. (15)

After multiplication, this expression becomes

GSV =
tiΓijtj − (tigi(3))

2G(3)

tsts − (tsgs(3))2
, (16)

where
G(3) = gi(3)Γijgj(3) (17)

is the P–wave eigenvalue of the Christoffel matrix. For simpler differentiation, we
express twice the reference SV Hamiltonian function (16) as

GSV =
tiΓijtj − G(3)trtr

tsts − (tsgs(3))2
+ G(3) . (18)

4. PHASE–SPACE DERIVATIVES
OF THE REFERENCE SV HAMILTONIAN FUNCTION

4 . 1 . D i f f e r e n t i a t i n g
t h e r e f e r e n c e S V H a m i l t o n i a n f u n c t i o n

We now differentiate relation (18),

G′
SV =

tiΓ
′
ijtj−G′

(3)trtr

tsts−(tsgs(3))2
+ G′

(3) + 2
tiΓijtj−G(3)trtr

[tsts−(tsgs(3))2]2
tmgm(3) tng′n(3) . (19)

We again differentiate relation (19),

G′⋆
SV =

tiΓ
′⋆
ijtj−G′⋆

(3)trtr

tsts−(tsgs(3))2
+ G′⋆

(3) + 2
tiΓ

′
ijtj−G′

(3)trtr

[tsts−(tsgs(3))2]2
tmgm(3) tng⋆

n(3)

+ 2
tiΓ

⋆
ijtj−G⋆

(3)trtr

[tsts−(tsgs(3))2]2
tmgm(3) tng′n(3) + 8

tiΓijtj−G(3)trtr

[tsts−(tsgs(3))2]3
(
trgr(3)

)2
tmg′m(3) tng⋆

n(3)

+ 2
tiΓijtj−G(3)trtr

[tsts−(tsgs(3))2]2

(
tmg′m(3) tng⋆

n(3) + tmgm(3) tng′⋆n(3)

)
. (20)
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We insert relation (18) and identity

tsts−(tsgs(3))
2 = trgr(M)gs(M)ts (21)

into relation (19),

G′
SV =

tiΓ
′
ijtj−G′

(3)trtr

trgr(M)gs(M)ts
+ G′

(3) − 2
G(3)−GSV

trgr(M)gs(M)ts
tmgm(3) tng′n(3) , (22)

and into relation (20),

G′⋆
SV =

tiΓ
′⋆
ijtj−G′⋆

(3)trtr

trgr(M)gs(M)ts
+ G′⋆

(3) + 2
tiΓ

′
ijtj−G′

(3)trtr

(trgr(M)gs(M)ts)2
tmgm(3) tng⋆

n(3)

+ 2
tiΓ

⋆
ijtj−G⋆

(3)trtr

(trgr(M)gs(M)ts)2
tmgm(3) tng′n(3) − 8

G(3)−GSV

(trgr(M)gs(M)ts)2
(
trgr(3)

)2
tmg′m(3) tng⋆

n(3)

− 2
G(3)−GSV

trgr(M)gs(M)ts

(
tmg′m(3) tng⋆

n(3) + tmgm(3) tng′⋆n(3)

)
. (23)

4 . 2 . Tr a n s f o r m a t i o n i n t o t h e e i g e n v e c t o r s
o f t h e C h r i s t o f f e l m a t r i x

We define the elements of the Christoffel matrix and of its phase–space derivatives
with respect to the eigenvectors of the Christoffel matrix as

Γ(ab) = gi(a)Γij gj(b) , (24)

Γ′
(ab) = gi(a)Γ

′
ij gj(b) (25)

and

Γ′⋆
(ab) = gi(a)Γ

′⋆
ij gj(b) . (26)

Note that Γ(ab) is a diagonal matrix with diagonal elements

Γ(aa) = G(a) , (27)

and that the first–order phase–space derivatives of the eigenvalues of the Christoffel
matrix represent the diagonal elements of symmetric matrix Γ′

(ab) (Klimeš, 2006,

Eq. 22 ),

G′
(a) = Γ′

(aa) . (28)

We define the components

t(a) = tn gn(a) (29)

of reference symmetry vector ti with respect to the eigenvectors of the Christoffel
matrix.

We insert definitions (24) and (29) into definition (12) and obtain relation

GSV =
t(A)Γ(AB)t(B)

t(S)t(S)
, (30)
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which can be expressed considering Eq. (27) as

GSV =

∑
A G(A)(t(A))

2

t(S)t(S)
. (31)

We insert definitions (25) and (29) and relation (28) into relation (22), and obtain

G′
SV =

t(a)Γ
′
(ab)t(b)−(t(3))

2Γ′
(33)

t(S)t(S)
− 2

G(3)−GSV

t(S)t(S)
t(3) tng′n(3) (32)

We insert definitions (25), (26) and (29) and relation (28) into relation (23), and
arrive at

G′⋆
SV =

t(a)Γ
′⋆
(ab)t(b)−(t(3))

2Γ′⋆
(33)

t(S)t(S)
+ 2

t(a)Γ
′
(ab)t(b)−Γ′

(33)t(r)t(r)

(t(S)t(S))2
t(3) tng⋆

n(3)

+ 2
t(a)Γ

⋆
(ab)t(b)−Γ⋆

(33)t(r)t(r)

(t(S)t(S))2
t(3) tng′n(3) − 8

G(3)−GSV

(t(S)t(S))2
(
t(3)

)2
tmg′m(3) tng⋆

n(3)

− 2
G(3)−GSV

t(S)t(S)

(
tmg′m(3) tng⋆

n(3) + t(3) tng′⋆n(3)

)
, (33)

which can be expressed as

G′⋆
SV =

t(a)Γ
′⋆
(ab)t(b)−(t(3))

2G′⋆
(3)

t(S)t(S)
+ 2

t(a)Γ
′
(ab)t(b)−Γ′

(33)t(r)t(r)

(t(S)t(S))2
t(3) tng⋆

n(3)

+ 2
t(a)Γ

⋆
(ab)t(b)−Γ⋆

(33)t(r)t(r)

(t(S)t(S))2
t(3) tng′n(3) − 2

G(3)−GSV

t(S)t(S)

(
1 + 4

(t(3))
2

t(S)t(S)

)
tmg′m(3) tng⋆

n(3)

− 2
G(3)−GSV

t(S)t(S)
t(3) tng′⋆n(3) . (34)

We now have to express the second–order phase–space derivatives of the eigenvalues
of the Christoffel matrix and the first–order and second–order phase–space deriva-
tives of the eigenvectors of the Christoffel matrix in relations (32) and (34) in terms
of the phase–space derivatives of the Christoffel matrix.

4 . 3 . S e c o n d – o r d e r p h a s e – s p a c e d e r i v a t i v e s
o f t h e e i g e n va l u e s o f t h e C h r i s t o f f e l m a t r i x

The expression for the second–order phase–space derivatives of the eigenvalues
of the Christoffel matrix is (Klimeš, 2006, Eq. 23 )

G′⋆
(a) = Γ′⋆

(aa) + 2
∑

b6=a

Γ′
(ab)Γ

⋆
(ab)

G(a)−G(b)
, (35)

which for a = 3 reads

G′⋆
(3) = Γ′⋆

(33) + 2
∑

B

Γ′
(B3)Γ

⋆
(B3)

G(3)−G(B)
. (36)

This expression can be inserted into relation (34).
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4 . 4 . F i r s t – o r d e r p h a s e – s p a c e d e r i v a t i v e s
o f t h e e i g e n v e c t o r s o f t h e C h r i s t o f f e l m a t r i x

The first–order phase–space derivatives of the eigenvectors of the Christoffel
matrix can be expressed as (Klimeš, 2006, Eq. 17 )

g′i(a) =
∑

b6=a

gi(b)

gj(b)Γ
′
jkgk(a)

G(a)−G(b)
, (37)

which for a = 3 with definition (25) reads

g′i(3) =
∑

B

gi(B)

Γ′
(B3)

G(3)−G(B)
. (38)

We multiply relation (38) by reference symmetry vector ti and obtain expression

tng′n(3) =
∑

A

t(A)

Γ′
(A3)

G(3)−G(A)
(39)

which can be inserted into relations (32) and (34).

4 . 5 . S e c o n d – o r d e r p h a s e – s p a c e d e r i v a t i v e s
o f t h e e i g e n v e c t o r s o f t h e C h r i s t o f f e l m a t r i x

The second–order phase–space derivatives of the eigenvectors of the Christoffel
matrix can be obtained by twice differentiating the Christoffel equation (Klimeš,
2006, Eq. 11 ),

g′⋆i(a)G(a) + g′i(a)G
⋆
(a) + g⋆

i(a)G
′
(a) + gi(a)G

′⋆
(a) = Γ′⋆

ijgj(a) + Γ′
ijg

⋆
j(a) + Γ⋆

ijg
′
j(a) + Γijg

′⋆
j(a) . (40)

We multiply relation (40) for a = 3 by eigenvector gi(C) of the Christoffel matrix,

gi(C)g
′⋆
i(3)G(3) + gi(C)g

′
i(3)G

⋆
(3) + gi(C)g

⋆
i(3)G

′
(3)

= gi(C)Γ
′⋆
ijgj(3) + gi(C)Γ

′
ijg

⋆
j(3) + gi(C)Γ

⋆
ijg

′
j(3) + gi(C)Γijg

′⋆
j(3) . (41)

We then express two components of the second–order phase–space derivatives of the
eigenvector of the Christoffel matrix as

gi(C)g
′⋆
i(3) =

gi(C)Γ
′⋆
ijgj(3)+gi(C)Γ

′
ijg

⋆
j(3)+gi(C)Γ

⋆
ijg

′
j(3)−gi(C)g

′
i(3)G

⋆
(3)−gi(C)g

⋆
i(3)G

′
(3)

G(3)−G(C)
. (42)

Since the eigenvectors of the Christoffel matrix are unit, the third component of the
second–order phase–space derivatives of the eigenvector of the Christoffel matrix can
be expressed in terms of its first–order phase–space derivatives as

gi(3)g
′⋆
i(3) = −g′i(3)g

⋆
i(3) . (43)

We insert relations (28) and (38) into Eq. (42) and obtain

gi(C)g
′⋆
i(3) =

gi(C)Γ
′⋆
ijgj(3)

G(3)−G(C)
+

∑

B

gi(C)Γ
′
ijgj(B)Γ

⋆
(B3) + gi(C)Γ

⋆
ijgj(B)Γ

′
(B3)

(G(3)−G(C))(G(3)−G(B))

−

∑

B

gi(C)gi(B)Γ
′
(B3)Γ

⋆
(33) + gi(C)gi(B)Γ

⋆
(B3)Γ

′
(33)

(G(3)−G(C))(G(3)−G(B))
, (44)
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which with definitions (25) and (26) reads

gi(C)g
′⋆
i(3) =

Γ′⋆
(C3)

G(3)−G(C)
+

∑

B

Γ′
(CB)Γ

⋆
(B3) + Γ⋆

(CB)Γ
′
(B3)

(G(3)−G(C))(G(3)−G(B))
−

Γ′
(C3)Γ

⋆
(33) + Γ⋆

(C3)Γ
′
(33)

(G(3)−G(C))2
. (45)

We insert relation (38) into identity (43) and obtain

gi(3)g
′⋆
i(3) = −

∑

C

Γ′
(C3)Γ

⋆
(C3)

(G(3)−G(C))2
. (46)

Relations (45) and (46) yield expression

tng′⋆n(3) =
∑

C

t(C)

Γ′⋆
(C3)

G(3)−G(C)
+

∑

C

t(C)

∑

B

Γ′
(CB)Γ

⋆
(B3) + Γ⋆

(CB)Γ
′
(B3)

(G(3)−G(C))(G(3)−G(B))

−

∑

C

t(C)

Γ′
(C3)Γ

⋆
(33) + Γ⋆

(C3)Γ
′
(33)

(G(3)−G(C))2
− t(3)

∑

C

Γ′
(C3)Γ

⋆
(C3)

(G(3)−G(C))2
(47)

which can be inserted into relation (34).

4 . 6 . F i r s t – o r d e r a n d s e c o n d – o r d e r p h a s e – s p a c e
d e r i v a t i v e s o f t h e r e f e r e n c e S V H a m i l t o n i a n f u n c t i o n

We insert Eq. (39) into relation (32),

G′
SV =

t(a)Γ
′
(ab)t(b)−(t(3))

2Γ′
(33)

t(S)t(S)
− 2

G(3)−GSV

t(S)t(S)
t(3)

∑

N

t(N)

Γ′
(N3)

G(3)−G(N)
. (48)

We insert Eqs (36), (39) and (47) into relation (34), and obtain

G′⋆
SV =

t(a)Γ
′⋆
(ab)t(b)−(t(3))

2Γ′⋆
(33)

t(S)t(S)
−

2 (t(3))
2

t(S)t(S)

∑

B

Γ′
(B3)Γ

⋆
(B3)

G(3)−G(B)

+ 2
t(a)Γ

′
(ab)t(b)−Γ′

(33)t(r)t(r)

(t(S)t(S))2
t(3)

∑

N

t(N)

Γ⋆
(N3)

G(3)−G(N)

+ 2
t(a)Γ

⋆
(ab)t(b)−Γ⋆

(33)t(r)t(r)

(t(S)t(S))2
t(3)

∑

N

t(N)

Γ′
(N3)

G(3)−G(N)

− 2
G(3)−GSV

t(S)t(S)

(
1 + 4

(t(3))
2

t(S)t(S)

)( ∑

M

t(M)

Γ′
(M3)

G(3)−G(M)

)( ∑

N

t(N)
Γ⋆

N3

G(3)−G(N)

)

− 2
G(3)−GSV

t(S)t(S)
t(3)

∑

C

(
t(C)

Γ′⋆
(C3)

G(3)−G(C)
+ t(C)

∑

B

Γ′
(CB)Γ

⋆
(B3)+Γ⋆

(CB)Γ
′
(B3)

(G(3)−G(C))(G(3)−G(B))

− t(C)

Γ′
(C3)Γ

⋆
(33)+Γ⋆

(C3)Γ
′
(33)

(G(3)−G(C))2
− t(3)

Γ′
(C3)Γ

⋆
(C3)

(G(3)−G(C))2

)
. (49)

The colours in relation (49) will serve for referencing the individual terms of the
relation in the next section.
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5. WEIGHTING FACTORS OF THE PHASE–SPACE
DERIVATIVES OF THE CHRISTOFFEL MATRIX

5 . 1 . R e f e r e n c e S V H a m i l t o n i a n f u n c t i o n

We express the first–order phase–space derivatives of twice the reference SV
Hamiltonian function GSV in terms of the first–order phase–space derivatives of the
Christoffel matrix,

G′
SV =

∑

a

∑

b

w ′
(ab)Γ

′
(ab) . (50)

The weighting factors in derivative (50) obey symmetry relation

w ′
(ab) = w ′

(ba) . (51)

We express the second–order phase–space derivatives of GSV in terms of the first–
order and second–order phase–space derivatives of the Christoffel matrix,

G′⋆
SV =

∑

a

∑

b

w ′⋆
(ab)Γ

′⋆
(ab) +

∑

a

∑

b

∑

c

∑

d

w ′⋆
(abcd)Γ

′
(ab)Γ

⋆
(cd) . (52)

The weighting factors in derivative (52) obey symmetry relations

w ′⋆
(ab) = w ′⋆

(ba) (53)

and

w ′⋆
(abcd) = w ′⋆

(bacd) = w ′⋆
(abdc) = w ′⋆

(cdab) . (54)

The weighting factors in derivative (50) can be obtained from relation (48) as

w ′
(AB) =

t(A)t(B)

t(S)t(S)
, (55)

w ′
(A3) =

t(A)t(3)

t(S)t(S)
−

G(3)−GSV

t(S)t(S)

t(A)t(3)

G(3)−G(A)
, (56)

which can be expressed as

w ′
(A3) =

t(A)t(3)

t(S)t(S)

GSV−G(A)

G(3)−G(A)
, (57)

and

w ′
(33) = 0 . (58)

Note that the weighting factors are independent of particular phase–space deriva-
tives ′.
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The weighting factors in derivative (52) can be obtained from relation (49), and
are again independent of particular phase–space derivatives ′ and ⋆. The terms with
blue in relation (49) correspond to weighting factors

w ′⋆
(AB) = w ′

(AB) , (59)

w ′⋆
(A3) = w ′

(A3) , (60)

w ′⋆
(33) = 0 . (61)

There are no terms in relation (49) corresponding to weighting factors

w ′⋆
(ABCD) = 0 , (62)

w ′⋆
(AB33) = 0 , (63)

w ′⋆
(3333) = 0 . (64)

The second and third lines and the first term with green in relation (49) yield
weighting factors

w ′⋆
(ABC3) =

t(A)t(B)t(C)t(3)

(G(3)−G(C)) (t(S)t(S))2
−

(G(3)−GSV) (t(A)δBC +t(B)δAC) t(3)

2 (G(3)−G(A)) (G(3)−G(B)) t(S)t(S)
. (65)

The second and third lines and the terms with red in relation (49) yield weighting
factors

w ′⋆
(A3C3) =

t(A)t(3)t(C)t(3)

(t(S)t(S))2

(
1

G(3)−G(A)
+

1

G(3)−G(C)

)
−

δAC(t(3))
2

2 t(S)t(S) (G(3)−G(A))

−

G(3)−GSV

2 (G(3)−G(A))(G(3)−G(C))

[
t(A)t(C)

t(S)t(S)

(
1 + 4

(t(3))
2

t(R)t(R)

)
− δAC

(t(3))
2

t(S)t(S)

]
. (66)

The second and third lines and the second term with green in relation (49) yield
weighting factors

w ′⋆
(A333) = −

t(A)t(3)

t(S)t(S) (G(3)−G(A))
+

G(3)−GSV

t(S)t(S)

t(A)t(3)

(G(3)−G(A))2
. (67)

Relation (66) can be expressed as

w ′⋆
(A3C3) =

1

G(3)−G(A)

1

G(3)−G(C)

×

{[
G(3)−G(A)

2
+

G(3)−G(C)

2

][
2

t(A)t(3)t(C)t(3)

(t(S)t(S))2
−

δAC

2

(t(3))
2

t(S)t(S)

]

−

(
G(3)−GSV

)[
t(A)t(C)

t(S)t(S)

(
1

2
+ 2

(t(3))
2

t(R)t(R)

)
−

δAC

2

(t(3))
2

t(S)t(S)

]}
, (68)
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and finally as

w ′⋆
(A3C3) =

1

G(3)−G(A)

1

G(3)−G(C)

×

[(
GSV−

G(A)

2
−

G(C)

2

)
(t(3))

2

t(R)t(R)

(
2

t(A)t(C)

t(S)t(S)
−

δAC

2

)
−

G(3)−GSV

2

t(A)t(C)

t(S)t(S)

]
. (69)

Relation (67) can be expressed as

w ′⋆
(A333) = −

t(A)t(3)

t(R)t(R)

GSV−G(A)

(G(3)−G(A))2
, (70)

and finally as

w ′⋆
(A333) = −

w ′
(A3)

G(3)−G(A)
. (71)

5 . 2 . R e f e r e n c e S H H a m i l t o n i a n f u n c t i o n

We express the first–order phase–space derivatives of twice the reference SH
Hamiltonian function GSH in terms of the first–order phase–space derivatives of the
Christoffel matrix,

G′
SH =

∑

a

∑

b

w̃ ′
(ab)Γ

′
(ab) . (72)

The weighting factors in derivative (72) obey symmetry relation (51) analogously as
the weighting factors in derivative (50).

We express the second–order phase–space derivatives of GSH in terms of the
first–order and second–order phase–space derivatives of the Christoffel matrix,

G′⋆
SH =

∑

a

∑

b

w̃ ′⋆
(ab)Γ

′⋆
(ab) +

∑

a

∑

b

∑

c

∑

d

w̃ ′⋆
(abcd)Γ

′
(ab)Γ

⋆
(cd) . (73)

The weighting factors in derivative (73) obey symmetry relations (53) and (54)
analogously as the weighting factors in derivative (52).

Relations (10), (11), (28), (35) and (59)–(61) yield weighting factors

w̃ ′⋆
(11) = w̃ ′

(11) = 1 − w ′
(11) , (74)

w̃ ′⋆
(22) = w̃ ′

(22) = 1 − w ′
(22) , (75)

w̃ ′⋆
(1313) = −

1

2 (G(3)−G(1))
− w ′⋆

(1313) , (76)

w̃ ′⋆
(2323) = −

1

2 (G(3)−G(2))
− w ′⋆

(2323) . (77)
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L. Klimeš and P. Bulant

All other weighting factors in derivatives (72) and (73) are

w̃ ′⋆
(ab) = w̃ ′

(ab) = −w ′
(ab) , (78)

w̃ ′⋆
(abcd) = −w ′⋆

(abcd) . (79)

6. CONCLUSIONS

The SH (ordinary) and SV (extraordinary) rays in uniaxial (transversely iso-
tropic) anisotropic media or the SH and SV reference rays in approximately uniaxial
anisotropic (approximately transversely isotropic) media may represent very accu-
rate reference rays for the coupling ray theory. To trace the SH and SV reference
rays in an approximately uniaxial anisotropic medium, we need the reference SH and
SV Hamiltonian functions. The reference SH (ordinary) and SV (extraordinary)
Hamiltonian functions can be defined using the reference symmetry vector of an
approximately uniaxial anisotropic medium (Klimeš, 2015 , 2016a).

In this paper, we have proposed the expressions for the reference SH and SV
Hamiltonian functions, and derived the expressions for their first–order and second–
order phase–space derivatives, which are necessary for ray tracing and for the equa-
tions of geodesic deviation (dynamic ray tracing). The derived equations may be
applied to an anisotropic or bianisotropic medium with the symmetric stiffness or
constitutive matrix, and are especially useful if the medium is close to uniaxially
anisotropic (transversely isotropic).

For the sake of simplicity, we have assumed a constant reference symmetry
vector of an approximately uniaxial anisotropic medium in this paper. However,
the presented equations can simply be generalized to a generally heterogeneous
dependence of the reference symmetry vector on the spatial coordinates using the
equations by Klimeš (2015, 2016a).

Improvement of the coupling–ray–theory synthetic seismograms calculated along
the SH and SV reference rays in an approximately uniaxial (approximately trans-
versely isotropic) elastic medium in comparison to the anisotropic common reference
rays have been demonstrated in velocity models QI2 and QI4 by Klimeš and Bulant
(2014a) and Bulant and Klimeš (2017), and in velocity models SC1 I and SC1 II
by Klimeš and Bulant (2015) and Bulant and Klimeš (2017).
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Klimeš L., 2016c. Ray series for electromagnetic waves in static heterogeneous bianisotropic
dielectric media. In: 2016 URSI International Symposium on Electromagnetic Theory,
USB Proceedings. IEEE, Washington, 331–334 (ISBN 978-1-5090-2501-5).

Klimeš L., 2017a. Rotationally invariant bianisotropic electromagnetic medium. Seismic
Waves in Complex 3–D Structures, 27, 111–118 (http://sw3d.cz).
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