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Abstract
In this study, the text information of academic papers published by Japanese authors 
(about 1.7 million papers) and patents filed with the Japan Patent Office (about 12.3 mil-
lion patents) since 1991 are used for analyzing the inter-relationship between science and 
technology. Specifically, a distributed representation vector using the title and abstract of 
each document is created, then neighboring documents to each are identified using the 
cosine similarity. A time trend and sector specific linkages within science and technology 
are identified by using the count of neighbor patents (papers) for each paper (patent). It is 
found that the science intensity of inventions (the number of neighbor papers for patents) 
increases over time, particularly for university/PRI patents and university–industry col-
laboration patents over the 30 years studied. As for university/PRI patents, the institutional 
reforms for the science sector (government laboratory incorporation in 2001 and national 
university incorporation in 2004) contributed to the interactions between science and tech-
nology. In contrast, the technology intensity of science (the number of neighbor patents 
by paper) decreases over time. It is also found that the technology intensity of life science 
papers is rather low, although they have a significant impact on subsequent patents. How-
ever, there are some scientific fields which are affected by technological developments, so 
that the state of science and innovation interactions is heterogeneous across the fields.
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Introduction

The increasing importance of scientific knowledge in innovation can be observed across 
industries. In the pharmaceutical industry, well known for having a high degree of sci-
entific linkage, the importance of science in new drug development processes is increas-
ing due to the advancement in genomic science (Pisano, 2006). In the electronic device 
industry, as the large-scale integration production process is miniaturized, understand-
ing the characteristics of nanoscale materials has become indispensable. Furthermore, a 
recent advancement in machine learning (AI) is achieved through corporate scientists, 
who make scientific publications and patent inventions, simultaneously (Motohashi, 
2019; Hartmann & Henkel, 2020).

The linkage of science and technology has been attracted many scholars in the past, 
mainly to see whether science-technology linkage leads to novel innovation. For exam-
ple, Veugelers and Wang (2019) show a positive correlation between scientific novelty 
and the technological impact of science-based innovation. Cassiman et al. (2018) ana-
lyze factors that bridge the gap between scientific knowledge and innovation, focus-
ing on the relationship between the flow of human resources between industry and 
academia. Consequently, science-based information obtained by a company is more 
likely to lead to new market innovations (Mention, 2011; Kobarg et  al., 2018). How-
ever, incorporating scientific knowledge into the innovation process involves a signifi-
cant technology and market risk for companies (Arora et al., 2016). Therefore, a proper 
measurement of science and technology interactions is critical to understanding sub-
sequent process of innovation, materializing such science based technology into new 
products and services.

A typical approach to measure science and technology interaction is based on the 
information of patent citing to non-patent literature (NPL), mainly research papers, 
and the majority of studies cited above use this NPL citation based index  (Narin and 
Noma, 1985; Schmoch, 1997; Marx and Fuegi, 2020). However, there are some short-
comings regarding the measure of the linkage between science and innovation. First, it 
is well known that papers with a substantial volume of citations get more mentions in 
research papers (Mathew effect; Merton, 1973). Such bias with patent citations should 
be smaller, given that the patent citations are regulated by the patent system, such as 
disclosure obligations of relevant prior arts in US patent law. However, it has been 
found that disproportionally large number of citations are made to some specific patents 
(Kuhn et al., 2020) and the citation patterns could be geographically biased toward more 
concentration as compared to the patterns by textual similarity measures (Feng, 2020). 
These findings suggest that the NPL citations in patent documents suffer from some bias 
associated with their nature by citing practices by patent applicants and examiners.

Second, NPL citation represents the science used in a patented technology, but it lacks 
the information of how technology impacts science. In other words, it is unable to show the 
two-way relationship between science and innovation. While there exists some information 
of patents cited in research papers, such a scenario is rather rare. Additionally, the nature 
of citations in scientific papers differ from those of patents, where the novelty factor of the 
invention is the focus. Put differently, scientific papers, which fulfill the requirements for 
scientific knowledge, including objectivity and replicability, tend to be used as the citations 
that form the basis of scientific developments. Therefore, the two-way information between 
papers/patents to the other patents/papers provides inconsistent information of the inter-
linkage of science and innovation, even though such information is available.
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Therefore, this study relies on the textual information of research papers and patents to 
delineate the relationship between science and innovation. Specifically, we used the titles 
and abstracts from research papers and patents published by Japanese authors and inven-
tors between 1991 and 2017 to determine the content similarity across scientific papers and 
patents. We grouped the documents with high-content similarity and clarified the mutual 
relationship between research papers and patents.

The content similarity between research papers and patents have been investigated in 
some specific technology fields, such as Magerman et  al. (2015), or by using academic 
inventors, involving both research papers and patents (Ikeuchi et al., 2017; Lissoni et al., 
2013). However, to the best of our knowledge, there is no such work that combines research 
papers and patents to establish the interlinkage of science and innovation across science 
and technology fields, while a large-scale content examination of patent text information 
has been conducted and evaluated in the past (Arts et al., 2017; Younge & Kuhn, 2016). 
This study fills the aforementioned research gap by providing systematic information in 
connection to science and innovation interlinkage across technology and scientific fields 
based on the document contents in two forms.

The remainder of this study is organized as follows: “Data sets and text mining tech-
niques” section  presents an outline of our obtained data as well as a visualization of the 
overlapping of science and technology over time. In “Checking contents similarity by 
document embedding” section, we use the citation information from research papers and 
patents to perform an evaluation of a similarity index via text mining. In “Neighbor doc-
uments-based indicator of science and technology linkage” section, we present a relation 
index of science and technology linkage based on the neighbor patent or paper information. 
“Dynamic analysis of science and technology coevolution” section  extends this analysis 
to observe the changes in the mutual interactions in relation to the science and technology 
field. Finally, we conclude our study with some research limitations in “Conclusion” sec-
tion .

Data sets and text mining techniques

Data sets

In this study, to comprehensively observe the interlinkage between Japanese science and 
technology, we used the following data sets:

Research paper information: Papers included in the Science Citation Index expanded 
from Clarivate’s Web of Science, published between 1991 and 2017, containing at least 
one Japan-based author.
Patent information: All patents filed to the Japan Patent Office (Goto and Motohashi, 
2017)  at PATSTAT2020 Spring Version (those for which English-translated title and 
abstract information are available).

Regarding the number of documents, we used 1,696,338 research papers and 12,330,725 
patents, forming a total of 14,027,063 documents.

Figure 1 shows the changes in the number of documents by publication year (for patents, 
the application year). The number of patents shows a declining trend since 2000, while the 
number of research papers remains stable, with ~ 100,000 publications per year.
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Text mining method and clustering results

We followed two steps in creating document embedding vectors that represent the con-
tent of each document. First, we extracted only the nouns that appear in a total of 
approximately 14 million titles and abstracts (all paper and patents described above) 
and used FastText (Bojanowski et  al., 2017; Joulin et  al., 2016) to create embedding 
vectors for words other than common and rare words with a dimension of 300. Here 
the common words are about 170 stop words recorded in Python NLTK library, and the 
rare words are those occurs only one time in our whole corpus. Second, this embedding 
vectors for each of words are aggregated into document level, by summing up of all 
word vectors within each document, and normalizing the document vectors. Regarding 
the embedding results for the words, we conducted cluster analysis using the K-means 
method and confirmed, by visual checking, that semantically similar words belong to 
the same cluster (for details, see Motohashi et al., 2019).

The embedding results of the words were aggregated for each document. We clus-
tered these using the K-means method (classification with 16 clusters) and compressed 
the results into two dimensions using the uniform manifold approximation and projec-
tion (UMAP) technique (McInnes et al., 2018) (Fig. 2).

Fig. 1  Numbers of papers and patents by application/publication year
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Visualizing the relationship between research papers and patents

Figures 3 compares the distribution of papers and patents in the same science-technology 
space as one of Fig. 2, between papers/patents published/applied in 1990s and those in the 
2010s, where the red indicates the location of patents, while the blue indicates the location 
of research papers.

Overall, a large percentage of the research papers were related to life science (cells/
genes, medicine) and chemistry/materials (chemical compounds, metal ingredients). They 
were evidently distributed across the fields of optics, fluid processing, and video display. 
However, fields relating to mechanics (motion control, structural mechanics, and thermo-
dynamics), electronic devices, and image processing are mostly covered by patents.

Fig. 2  Visualization of document distribution with clustering results

Fig. 3  Paper and patent mapping (1990s and 2010s)
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Regarding changes over time, as the number of research papers increases with respect to 
the total number of documents, an expansion of research papers in technical fields can be 
observed (overlapping area of red and blue). This trend is particularly notable in the fields 
of chemistry/materials (compounds, metallic materials). It was also evident that research 
papers had been published in fields such as electronics devices and image displays, which 
were previously only covered mainly by patents.

Checking contents similarity by document embedding

We evaluated the document embedding results by using citation pairs (paper–paper, 
paper–patent, and patent–patent) and document pairs in the same research project. Specifi-
cally, the cosine similarity of randomly selected pairs are compared with that of those pairs 
whose contents are similar each other.

First, the distribution of the cosine similarity of randomly selected 10,000 pairs for 
the three patterns of “paper–paper,” “paper–patent,” and “patent–patent” is presented in 
Fig. 4, where the decile values for cosine similarity of each pair are plotted. Looking at 
the median values (median, P50), “paper–paper” has the highest value at 0.73, followed 
by “patent–patent” (0.70), and finally, “paper–patent” (0.69). Additionally, considering the 
10th percentile (P10), the respective values are ~ 0.6, and it can be seen that cosine similar-
ity between randomly extracted samples is distributed in a relatively narrow region (the 
width between the 10th and 90th percentiles being ~ 0.2). In a similar exercise using pat-
ent abstract information in Japanese, the median of randomly extracted cosine similarities 
was ~ 0.5 (Motohashi et al., 2019). Therefore, the cosine similarity in this study (using an 
English abstract) is relatively higher than that of Japanese. This may be due to the differ-
ence in the vocabulary of both languages.

Further, we compared these distributions (in Fig. 4) with those by the document pairs 
of citing and cited relationship, as well as those of the outputs from the same research pro-
ject. The citation pair information is taken from the patent literature and NPL citations of 
patents (patent–patent, and patent–paper pairs) and paper citations in each research paper 

Fig. 4  Distribution of cosine similarity of random sampled pairs
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Fig. 5  a Comparison of cosine similarity distribution (paper–paper). b Comparison of cosine similarity dis-
tribution (paper–patent). c Comparison of cosine similarity distribution (patent–patent)
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(paper–paper citation). In addition, we take the information of papers and patents with sim-
ilar contents from the JSPS Kakenhi “Report on the Research Results,” where documents 
(papers and patents) are declared as the outputs within an identical funded research project. 
The cosine similarity between those pairs (citing pairs and pairs in an identical project) is 
supposed to be greater than that of randomly selected pairs due to the similarity of docu-
ment contents. Figure 5a–c compare the results for the “paper–paper,” “paper–patent,” and 
“patent–patent” pairs, respectively.

It is confirmed that the cosine similarity between citation pairs and same-project out-
comes is higher in all figures. In addition, it is found that the citation pairs and same-
project pairs between research papers provide information with high homogeneity (0.8 or 
greater even at the 10th percentile). However, for some other pairs, 10th percentile values 
are under 0.7, which is a value lower than the median value for random pairs. Additionally, 
the distributions for citation pairs and same-project pairs are almost the same, except for 
those between patents. With regard to “patent–patent” pairs, the variation in same-Kak-
enhi-project pairs is greater than for citation pairs. Arts et al. (2017) has validated the accu-
racy of content similarities derived from using patent abstract information. Therefore, the 
variation of cosine similarity infers the substantial variance of content similarities among 
citation pairs of documents (together with those with research outcomes within the same 
project).

Neighbor documents‑based indicator of science and technology 
linkage

Identification of neighbor documents in terms of the document contents

The science and innovation linkage can be detected by the coexistence of research papers 
and patents with similar embedding vectors. To identify such fields, we extracted the 
neighbor documents for each of the 14 million documents (papers or patents). We applied 
the neighborhood graph and tree (NGT) for Indexing High-dimensional Data algorithm, 
where a certain number of neighboring documents can be efficiently searched, out of sev-
eral documents (Iwasaki, 2011). In this study, we extracted 200 neighboring documents 
based on cosine similarity with each of the 14 million focal documents.

The number of the neighbor documents, a global parameter of the NGT algorithm, 
reflects the area of document search in the document content space. The greater number 
of neighbor documents allows for a more comprehensive search of the documents, but it 
requires more computer costs in terms of the process speed and the storage area.

The distribution of the cosine similarity for the 100th and 200th documents with each 
of the focal documents is presented in the Table 1. It is found that the values of the cosine 
similarities between the 100th and 200th document are almost the same (for example, the 
median value is 0.899 for the 100th and 0.893 for the 200th). Our embedding vector has 
a dimension of 300, and the cosine similarity is proportional to the Euclidian distance 
between a focal document and its neighboring one. The number of neighbor documents is 
proportional to the volume of a hypersphere with a dimension of 300, which is the 300th 
power of the radius from the position of a focal document.

This raises a pertinent question of the result of enlarging the number of neighbor docu-
ments to 1000 for example. For this we assumed that the cosine similarity of the 200th 
neighbor is 0.9 and the documents are evenly distributed in a 300 dimensional space. Then, 
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the question entails determining the extent to which the cosine similarity decreases. First, 
the cosine similarity is converted to the radius (Euclidian distance by 2(1 − cos)), to get 
0.2.1 Then, the radius of the hypersphere with 1000 documents inside (x) can be derived 
from the following equation:

From the estimated x, the radius of a 1000 document search can be obtained to be 
0.201076, which is only 0.53% larger than that of 200 documents (0.2). However, the 200 
neighbor results lead to 2.8 billion (20*14 million) observations with a tsv file size of 
about 70 GB. In the case of 1000 neighbor extractions, the output size becomes five times 
as above, so that the cost performance to increase the size of neighbors is very poor. There-
fore, we stick to the size of 200 neighbors for subsequent analysis.

The number of neighbor documents also depends on the search objective, that is, the 
extent of the similarity to be required for document search. In this regard, the cosine simi-
larity of 0.9 for the 200th document corresponds to the proximity in the 60th percentile 
for “paper–paper,” the 90th percentile for “paper–patent,” and the 80th percentile for 
“patent–patent” based on citation pairs (Fig. 5a–c in the previous section). Therefore, by 
extracting 200 neighbor documents, it provides an opportunity to investigate the overlap-
ping paper and patent documents within the content similarity comparable to the citing and 
cited pair ones.

Another potential concern would be that up to 200 similar documents is too many. As is 
analyzed in Table 1, the distribution of cosine similarity with 100th documents and 200th 
ones is not so different. But how about looking at only smaller documents such as 10 or 
20? In order to address the issue of false positive, we have conducted a sensitivity analysis 
of the numbers neighbors to the degree of similarity. Since the patent documents contain 
detail information about technological classification, we constructed the similarity measure 
by looking at the share of same IPC subclass pairs in all neighbor patents. Table 2 shows 
the results, indicating the share by the number of neighbors (column) and the quadrant 
group by cosine similarity of the 200th document (row). It should be noted that the quad-
rant is created by the threshold cosine similarity measures of 0.892, 0.90 and 0.927, indi-
cating that the density of document distribution becomes greater for higher quadrant.

(x)
300

(0.2)300
=

1000

200

Table 1  Distribution of the 
cosine similarities of neighboring 
documents

100th 200th

1% 0.843 0.834
5% 0.870 0.863
10% 0.881 0.875
25% 0.899 0.893
50% 0.916 0.911
75% 0.932 0.928
90% 0.944 0.941
95% 0.951 0.948
99% 0.961 0.958

1 Our embedding vector is normalized, as its norm = 1.
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First, it is natural to see that the same IPC share decreases by the number of neigh-
bor increasing, showing that the larger the size of neighbor is, the more likely it suffers 
by false positive errors. Second, the same IPC share increases by the document density 
around the focal document. It should be noted that the same IPC share of 200 documents 
(36.6%) of Q4 (the most dense area) is greater than that of 10 documents (30.6%) of Q1 
(the least dense area). Therefore, the likelihood of false positive is not so sensitive to the 
size of neighbor documents, as compared to the variation of document density across sci-
ence-technology space. Given that the false negative error is higher for smaller numbers 
of neighbors for use, we have decided 200 neighbors for subsequent analysis of science 
technology interactions.

It is conceivable that the cosine similarity of citation pairs would also be affected by this 
state of technical spatial density. This is because it is highly likely that a document with 
higher cosine similarity is cited among documents that are located in a place with high-
technical spatial density. In Fig.  6, neighboring documents are divided into four groups 
based on their cosine similarities with the 200th document (Groups Q1–Q4, same as in the 
Table 2), and the distribution of cosine similarities with the citation pairs of documents in 
each group (decile values) are observed. As hypothesized, documents located in a dense 
technical space (e.g., a document in Q4) have a high-cosine similarity with their cited doc-
uments. Additionally, the effect of spatial density is greater in the groups with sparse den-
sity (e.g., Q1).

Table 2  Share of same IPC 
subclass pairs by # of neighbors

10 20 50 100 200

Q1 30.6% 28.1% 25.0% 22.8% 20.7%
Q2 33.1% 31.0% 28.4% 26.5% 24.7%
Q3 36.5% 34.6% 32.2% 30.5% 28.8%
Q4 42.9% 41.3% 39.4% 37.9% 36.6%

Fig. 6  Cosine similarity distribution of citation paper by content density
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Counting neighbor papers of patent documents

Counting the number of papers in 200 neighbor documents by each patent allows us to 
investigate the degree of scientification of inventions. The mean of the number of neighbor 
papers is 5.88 (out of 200 neighbor documents). Its median value is 0, and 7,171,041 pat-
ents (58.2% of the total number of patents) do not have any paper (paper count = 0) in 200 
neighbor documents. As indicated in Figs. 1, 2, and 3, there are substantial technological 
fields with no overlap with the distribution of scientific papers.

Figure 7 shows the mean value of the number of neighbor papers by patent application 
year, together with the cosine similarity in the 200th document (minimum cosine similar-
ity in 200 neighbor documents). In general, an increasing pattern of the mean paper counts 
is found, implying that the science intensity of invention increases over time. It should 
be noted that there are more neighbor papers published before the patent application as 
the application year become later. Therefore, the increasing pattern of the neighbor paper 
could be interpreted by the fact that more scientific papers existed before patents to be 
applied in later years than the scientific papers published after the patent applications in 
earlier years. In other words, science influences technology more than technology affects 
science. In addition, the minimum cosine similarity (200th document) decreases over time, 
implying that newer patents are applied in relatively sparse areas in the technology space.

Figure 8 shows the mean neighbor paper counts by patent applicant type. Here, we dis-
tinguished the patents by firm only, university or public research institute (PRI) only, and 
joint application of firm and university/PRI. We eliminated all patents by other patterns of 
applicant compositions, such as those involving individual inventors. The increasing pat-
tern of overall paper counts is driven by the patents involving university or PRI, as is the 
share of patents by university or PRI increases from 0.7% in the 1990s and 1.6% in the 
2000s to 1.7% in the 2010s. It should be noted that the substantial institutional reforms 

Fig. 7  Number of neighbor papers and cosine similarity in 200th for patents
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in public science sector was introduced in 2001 for the central government laboratories 
and in 2004 for national universities. Both types of entities, which used to belong to the 
government, became an independent agency, and they started applying the patents after 
these years (Motohashi & Muramatsu, 2012). As the central government laboratories and 
national university focus more on basic science in their research activities, compared to 
local government laboratories and private universities, the mean science index by paper 
counts increased after years of these new players started patenting (2001 for government 
laboratories and 2004 for national universities).

Furthermore, it should be noted that the science index by firm’s patents is relatively sta-
ble, while that of university–industry joint application patents (UI patents) increases over 
time. The increase in the science index of UI patents is found not only in the 2000s but also 
after the 2010s. The pattern of private firms’ retreat from basic science in the US (Arora 
et al., 2016) is also found in Japan. However, private firms substitute their in-house scien-
tific activities by joint research with universities and PRIs.

Finally, changes in the science index are analyzed by technology field. Figure 9 shows 
the neighbor paper counts by technology field of focal patent in the 1990s and 2010s (clas-
sified into the 35 categories used by WIPO for its annual report; Schomoch, 2008).

First, the scientification of inventions has a highly skewed distribution with very high 
intensity in life science fields, such as biotechnology and pharmaceuticals. In addition, the 
intensity is relatively high for micro-structural and nano, fine chemistry, and IT methods/
management. In contrast, the mean value of neighbor science paper counts is only less than 
10 (5% of the total of 200 documents) in most of the technology fields.

Second, the science index in the 2010s is higher than that of the 1990s for most of the 
technology fields. It is important to note that the majority of the neighbor papers for the 

Fig. 8  Neighbor paper counts by patent applicant type
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patents in the 2010s are published before their applications and vice versa for the patents 
in the 1990s. Therefore, a higher science index in the 2010s suggests that new inventions 
are born in the technology fields where some scientific understandings have been achieved 
beforehand. Alternatively, technology generally relies on science. This is typically the case 
for technology fields, where substantial differences in the level of science indices in two 
periods exist, such as pharmaceuticals and nano technology.

Counting neighbor patents of paper documents

The interlinkage between science and technology can also be observed by counting neigh-
bor patents around each research paper. The mean neighbor patent counts is 23.05 (out of 
200 documents). The median value is 2 and the number of papers without any neighbor 
patents is 618,238 (36.4% of all research papers). Again, there are substantial areas for pure 
science without any patent applications nearby.

Figure 10 shows the trend of mean neighbor patent counts, together with the cosine 
similarity with the 200th neighbor document (minimum cosine similarity for all neigh-
bor documents). In contrast to the science index of patent, the technology index of paper 
decreases over time. Such an overall trend is the reverse side of the coin of the increas-
ing trend of the science index of patent, that is, technology relies on science, but not so 
much for vice versa.

Figure 11 shows the technology index of paper by author affiliation type, firm only, 
university/PRI only, or joint publication of firm and university/PRI. The technology 
index decreases for paper by all sectors, but such a trend is clearer for papers by private 

Fig. 9  Mean paper counts by technology field
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Fig. 10  Number of neighbor patents and cosine similarity in 200th for papers

Fig. 11  Neighbor patent counts by paper author affiliation type
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firm authorship. It should be noted that the number of papers by private firms decreases 
over time (4408 in 2000 v.s. 2226 in 2017), while the number of joint paper with uni-
versity/PRI increases (5386 in 2000 v.s. 5980 in 2017). In the process of such struc-
tural change, the technology indices of firm only and joint paper with university/PRI are 
converged to a similar level. This can be interpreted as that a firm substitutes in-house 
research activities to joint activities with public research organizations.

For the papers involving university/PRI authors, the technology index is stable in the 
2000s due to the institutional reforms in national laboratory and university in the early 
2000s. It starts declining around 2007 after a temporary shock.

Finally, Fig. 12 shows the technology intensity in the 1990s and 2010s by the scien-
tific field of research paper (based on Web of Science subject code). The scientific fields 
with high technology index in the 1990s, such as energy, chemical engineering, and 
material science, have relatively greater impacts on subsequent inventions, while there 
are many fields with smaller numbers of technology applications. It should be noted that 
the technology intensities in life sciences, such as biochemistry and pharmacology, are 
relatively small, even though the science index of such applications is high. Put differ-
ently, the scientific frontier in these fields expands very rapidly, where only small part 
of them can be a basis of subsequent innovations.

Fig. 12  Mean patent counts by scientific discipline
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Dynamic analysis of science and technology coevolution

In this section, we discuss the dynamics of science and technology evolution over 30 years 
and how the results are interpreted in the foregoing sections.

Table 3 shows the changes in the distribution of neighbor documents for patents and 
research papers. COSMIN is the cosine similarity of the 200th neighbor document, and 
Radius is the Euclidian distance converted by 2(1  −  COSMIN) covering the neighbor 
search in a 300 dimensional technology space. This radius should be adjusted by the num-
ber of documents, as the time trend of patent applications and research paper publications 
exists, if such a trend comes from changes in application/publication propensity, given 
the same technological or scientific findings. Radius-adj shows the adjusted values in the 
2010s by using the following equation.

Regarding the patent, the mean adjusted radius to the 200th neighbor document 
increases from 0.1793 to 0.1911, representing an increase of 6.5%. In the case of the origi-
nal value (0.1918 in the 2010s), it increases by 7.0%. In contrast, the same measure is rela-
tively stable for research papers (0.1645 to 0.1661, 1.0% growth). These findings imply that 
the technological frontier measured by patent expands to more sparse places in the technol-
ogy space. In other words, the area covered by patent applications expands its space. In 
contrast, the size of the scientific frontier covered by research papers is relatively stable.

Next, its dynamics in the science-technology space is analyzed. The science intensity 
of patents increases on average (from 4.71 neighbor papers in the 1990s to 7.40 neighbor 
papers in the 2010s), while the share of patents with no research paper as a neighbor docu-
ment does not change significantly (58.1% in the 1990s and 59.0% in the 2010s). In con-
trast, the technology intensity of papers decreases on average (from 25.7 neighbor patents 
in the 1990s to 20.2 neighbor patents in the 2010s), and the share of papers with no patent 
as a neighbor increases (from 20.0% in the 1990s to 37.0% in the 2010s).

The Fig. 13 graphically explains the changes of the area covered by papers and patents 
with one dimension science-technology space representation with the document quantity 
by area. “Paper 1990s” stands for the papers published in 1990s, while “Paper 2010s” does 
for the papers published in 2010s, and the same for patents. Therefore, for example, the sci-
ence and technology linkage for “Paper 1990s” can be shown in the overlapping areas with 
both “Patent 1990s” and “Patent 2010s”.

Frist, the share of patents with no research paper does not change over time, by 
looking at (a–b)/a for the 1990s and (d–c)/d for the 2010s. Second, the science inten-
sity, represented by the share of A to the whole area of triangle for the 1990s and the 
share of A + B + C to the whole area of rectangle for the 2010s, increases over time. It 
should be noted that the quantity of scientific papers as a neighbor is represented by the 

Radius2010
adj

= Radius1990 ∗
300

√

#of doc2010

#of doc1990

Table 3  Changes in the 
distribution of neighbor 
documents

COSMIN
(a)

Radius
(b)

# of docs
(c)

Radius-adj (d)

Patent in 1990s 0.9103 0.1793 6,472,191 0.1793
Patent in 2010s 0.9041 0.1918 2,207,567 0.1911
Paper in 1990s 0.9177 0.1645 420,412 0.1645
Paper in 2010s 0.9170 0.1659 612,618 0.1661
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overlapped area of each of patent area (1990s and 2010s), with a whole area covered by 
both 1990s and 2010s papers. Hence the area A for the 1990s and the area A + B + C for 
the 2010s.

Similarly, the technology linkage from the viewpoint of papers can be looked as fol-
lows. First, the increase of the share of papers with no patent as a neighbor is described 
as (c–e)/e (1990s) to (f–g)/f (2010s). Second the decrease in the technology intensity 
can be described as the share of the A + B + C to the whole area of half circle for the 
1990s and the C to the whole area of half circle for the 2010s.

In summary, technology evolutions reflected in patents occurs in the direction of sci-
entific fields, as well as an opposite direction (non scientific fields). Therefore, science 
based technological development has been progressed, but there are some other areas of 
technological developments, regardless of scientific findings. In contrast, scientific fron-
tier expansion occurs toward to the left direction in Fig. 13 only, indicating the technol-
ogy has little influence over scientific progress, at least at the macro level.

Finally, we examined the dynamics of technology changes in relationship with sci-
ence and technology interactions by technology or science field. First, we measured the 
technological (scientific) changes in patents (papers) by considering how an individual 
technology (science) field moves from the 1990s to the 2010s. More specifically, we 
calculated the centroid vector for each technology (science) field in the 1990s and 2010s 
and used the 1 minus cosine similarity of these vectors as the degree of technological 
(scientific) changes of each field. Figure 14 shows the scatter graph of this measure and 
the changes in neighbor papers from the 1990s to the 2010s of 35 technology fields.

Except for “furniture and games” and “digital communication,” the technology fields 
with growing science intensity, such as “pharmaceuticals,” “organic fine chemicals,” 
“biotechnology,” and “nano-technology,” show a relatively greater level of dynamics in 
the contents of patents. Two exceptions may be explained by the market change, such 
as video games and mobile telecommunications services, together with technological 
advancements related to new products. But the other technology fields rely heavily on 
scientific findings. In addition, we cannot find any technology field with high science 
intensity and relatively less dynamics in technological change. Therefore, it leads us to 
say that the science is one of important factors behind technological dynamics.

Fig. 13  Changes in the relationship between science and technology
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Fig. 14  Change of science intensity and technology space position for patents

Fig. 15  Change of technology intensity and technology space position for papers
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Figure 15 shows the dynamics of science and technology intensity by scientific field. 
As the proportion of neighbor patents to research paper decreases over time in general, the 
changes in neighbor patents become negative from the 1990s to the 2010s for most of the 
scientific field. However, there are some fields without substantial decrease or even some 
increase in that count, such as “health professions,” “nursing,” and “multidisciplinary.” It 
should be noted that the degree of technology position change is relatively higher for these 
fields. As for the scientific fields contributing to science-based innovation (mainly life sci-
ence fields), the reverse impact (from innovation to science) is unclear. However, it should 
be noted that there are some scientific fields, such as “health professions” and “nursing,” 
where technological change and industry applications lead to their dynamics.

Conclusion

In this study, we analyzed the two-way relationship between science (research papers) and 
technology (patents) using text data from 1.7 million published papers and 12.3 million 
filed patents since 1990. Specifically, we created document embedding vectors using the 
titles and abstracts for each document and used cosine similarity to extract 200 neighbor-
ing documents by using the NGT algorithm. The relationship between research papers and 
patents was quantified using the number of neighboring patents (research papers) for each 
research paper (patent).

It was found that the scientification of inventions (the number of neighbor papers for 
patent) increased over time, particularly for university/PRI patents and university industry 
collaboration patents over these 30 years. As for university/PRI patents, the institutional 
reforms for the science sector (government laboratory incorporation in 2001 and national 
university incorporation in 2004) affect the interactions between science and technology.

In contrast, the technology intensity of science (the number of neighbor patents by 
paper) decreased over time. It was also found that the technology intensity of science, 
having significant impact on subsequent innovations, such as life science, was rather low. 
However, there are some scientific fields where related technological developments affect 
their scientific progress. Therefore, while there is substantial heterogeneity by the technol-
ogy and science field, there is a presence of some two-way interaction between science and 
technology (innovation).

In Japan, major institutional reforms were conducted in the 2000s, such as national lab-
oratories becoming independent administrative agencies in 2001 and national universities 
becoming national university incorporations in 2004. It was evident that such institutional 
reforms increase the science intensity of inventions. However, there is little sign of science 
being influenced by such institutional reforms. After the reforms, central government labo-
ratories and national universities got involved in substantial technology commercialization 
activities, but there is little evidence of their research activities being biased toward appli-
cation orientation instead of basic science.

This study proposes a new methodology and science/innovation two-way interaction by 
using research paper and patent text information. However, there are some limitations in 
our research. First, we measure scientific findings by research papers, instead of controlling 
for the heterogeneity of their contents. For example, we found that the technology intensity 
of scientific papers in “energy” or “chemical engineering” is high, while that of “math-
ematics” or “genetics” is low. This observation could be interpreted by the type of research 
papers, an application-oriented paper or a basic science one. Here, further investigations 
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are needed based on some conceptual works related to the taxonomy of science/technology 
(e.g., Stokes, 1997).

Another limitation of our work is the methodology of document embedding. We chose 
a bag-of-words approach, where we obtained embeddings for single words and aggregated 
them by document. The most serious problem with this methodology is that the embedding 
vector for each word is consistent over time. In this regard, we need to consider the con-
text of the word used in each document. There has been tremendous progress in the meth-
odology of contextual word embedding, such as bidirectional encoder representation with 
transformation (BERT). Recently, BERT has been used for patent text analysis, and it has 
been found to work efficiently in distinguishing the difference between similar patents (Lee 
& Hsiang, 2020; Li et  al., 2017). In addition, all of such embedding techniques assume 
that the document content is represented as a point in certain vector space. However, sci-
ence and technology progress occurs in technology conversion of multiple technical com-
ponents. Taking into account mixed components for document content representation is 
necessary with this regard. It is another venue of potential future research.
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