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Abstract
Chance models of scientific creative productivity allow estimation of researcher capacity. 
One prominent such model is the Q model in which the impact of a scholarly work is mod-
eled as a multiplicative function of researcher capacity and a potential impact (i.e., luck) 
parameter. Previous work estimated researcher capacity based on an approximation of the 
Q parameter. In this work, however, I outline how the Q model can be estimated within the 
framework of generalized linear mixed models. This way estimates of researcher capacity 
(and all other parameters of the Q model) are readily available and obtained by standard 
statistical software packages. Usage of such software further allows comparing different 
distributional assumptions and calculation of reliability of the Q parameter (i.e., researcher 
capacity). This is illustrated for a large dataset of multidisciplinary scientists (N = 20,296). 
The Poisson Q model was found to have negligibly better predictive accuracy than the 
original normal Q model. Reliability estimates revealed excellent reliability of Q estimates 
with conditional reliability being mostly in acceptable ranges. Reliability of Q parameter 
estimates further depended heavily on the number of publications of a scientist with reli-
ability increasing with the number of papers. The future and limitations of the Q model in 
the context of researcher capacity estimation are thoroughly discussed.
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Introduction

Scientists must produce something to be recognized by their peers. Typically, scientists 
produce scholarly articles and then counting how often such articles are cited by research-
ers is used as a proxy for impact (i.e., more citations imply more impact in a field; Hartley, 
2017; Pan & Fortunato, 2014). But how are scientific productivity and the impact of the 
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produced works related to each other? Which role play luck and a researcher’s capability 
in a scientific career? Theoretical models that provide answers to such questions take into 
account randomness (i.e., luck) as well as individual differences (Simonton, 2004, 2010; 
Sinatra et al., 2016). For example, the Q model has been proposed to decompose variation 
in impact of scholarly publications into researcher capacity and luck (Sinatra et al., 2016). 
The Q model was theoretically developed and empirically tested to increase the under-
standing of the interplay between productivity (i.e., number of publications) and impact in 
scientific careers with the more distal goal that such an understanding is needed for more 
practical questions of research evaluation (Sinatra et al., 2016). In this work, I pick up this 
aim and investigate the Q model’s capability as a vehicle for research evaluation at the indi-
vidual level within a well-established statistical framework.

The Q model is a multiplicative model in which impact of a paper is predicted by the 
product of the researcher capacity parameter Q and the potential impact parameter pα. 
Both parameters are further examined in relation to researcher productivity. Statistical 
inference and estimation of related model parameters is based on a trivariate log-normal 
model. However, given that impact or other bibliometric indicators for the measurement of 
researcher capacity are count data, the current work embeds the Q model into the compre-
hensive statistical framework of Generalized Linear Mixed Models (GLMMs; e.g., Stroup, 
2013). GLMMs allow choices between several count data distributions with a mean param-
eterization that preserves the architecture of the Q model, but are expected to provide a 
much better fit to the data. Thus, alternative distributional assumptions for the Q model can 
be made and empirically tested. Importantly, conceptualizing the Q model within a GLMM 
framework comes along with several more advantages: (a) wide accessibility of the model 
because it can be estimated by means of well-known GLMM statistical packages, (b) 
direct estimates of the Q parameters (and other model parameters) can be obtained (i.e., 
no approximate formula is required), and c) overall and specific reliability estimates can be 
quantified.

The Q model

The impact Siα of paper α written by scientist i is modeled as a multiplicative function of 
researcher capacity parameter Qi and the potential impact pα. A paper’s impact is com-
monly approximated by citation counts with Siα ∊ ℕ0. However, citation counts might be 
replaced by rating counts of movies or books and play counts of songs when the Q model 
is estimated in other domains such as the movie, book, or music industries (Janosov et al., 
2020), yet still count data are used. In the context of the Q model, researcher capacity refers 
to the capability to utilize the existing knowledge base in a way that enhances the impact of 
a paper (Sinatra et al., 2016). Notably, other researchers have used a similar conceptualiza-
tion of individual differences in research performance (Mutz & Daniel, 2018, 2019). Later 
Janosov et al. (2020) tested the Q model across multiple domains (e.g., movies, music, and 
book writing) and referred more broadly to the ability to consistently produce high-impact 
work. However, for simplicity I will use the term researcher capacity throughout this work. 
Like the Qi parameter, the potential impact parameter pα is unobserved an represents the 
impact a paper might potentially have in the future. Hence, according to Sinatra et  al. 
(2016), a high-impact scholarly paper will most likely result when a researcher with high 
Qi works (by chance) on a paper project with high potential impact pα. Specifically, the Q 
model is then defined by the following equation (Janosov et al., 2020; Sinatra et al., 2016)
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The Q model implies further a log-linear model with additive components log
(

Qi

)

= Q̂i 
and log

(

p�
)

= p̂� . The additive nature of the Q model at the log-level facilitates to see 
that the luck component is actually a residual term that captures everything in a paper’s 
impact that cannot be explained by a person main effect. Thus, technically the luck com-
ponent comprises of paper main effects, researcher-paper interaction effects, random noise, 
as well as sampling error. However, given that scholarly papers are uniquely nested within 
researchers, these different effects on impact cannot be separated in the context of the Q 
model.

Within the Q model framework, a trivariate normal distribution for Q̂i , p̂� , and 
log

(

Ni

)

= N̂i (i.e., the log of the number of publications published by scientist i) is assumed 
with zero correlation between p̂� and both other parameters. In addition, also the correla-
tion between Q̂i and N̂i is proposed to be zero (Janosov et al., 2020; Sinatra et al., 2016). 
Based on these model properties the Q model can be understood as implying a “random 
impact rule”, i.e. the probability for the highest impact paper within a scientist’s career is 
uniform. The Q model was found to empirically fit data of scientists (Janosov et al., 2020; 
Sinatra et al., 2016), as well as data of movie directors, pop musicians, and book authors 
(Janosov et al., 2020).

Estimation of Q̂i parameters were obtained by means of a two-step approach in Sinatra 
et al. (2016). First, the means and the covariance matrix of their trivariate normal distribu-
tion formulation of the Q model were estimated by maximizing the corresponding log-
likelihood function. Specifically, they used the fmincon function from Matlab’s Optimiza-
tion package. The optimization function was run 100 times (ten times for each of the ten 
different starting conditions; cf. the supplemental material of Sinatra et al., 2016). The final 
estimates were the averages across all 100 runs of the fmincon function. Then, a maxi-
mum of the log-likelihood for exact calculation of the Q̂i estimates is obtained. The formula 
for approximate Q̂i as the average of a researchers log-impact across all papers was then 
derived based on this exact formula. In Janosov et al. (2020) a different algorithm (i.e., a 
covariance matrix adaptation evolution strategy algorithm) was used to find the param-
eters of the trivariate normal distribution. For calculation of individual Q̂i estimates, how-
ever, the approximation was used. Especially in comparison to the approach used in the 
first paper on the Q model by Sinatra et al. (2016) which involved running an optimization 
function for hundred times, it is expected that relying on proven estimation algorithms such 
as those implemented in widely used GLMM software will decrease the amount of compu-
tation time. I argue that this is one aspect of GLMM-based Q model estimation that has the 
potential to make the model more widely accessible for researchers.

The Q model as a GLMM

For the context of this work, the following formulation of the Q model will be used

with linear predictor �i� and an overall log-level intercept μ. It is further assumed that 
Q̂i ∼ N(0, �2

Q̂
) and p̂� ∼ N(0, �2

p̂
) . That is, both parameters are considered to be latent vari-

ables and explicitly treated as being uncorrelated, i.e. they are modeled as uncorrelated 
random effects. In addition, two different distributional assumptions are made in this work 

(1)Si� = Qip� .

(2)log
(

Si𝛼
)

= 𝜂i𝛼 = 𝜇 + Q̂i + p̂𝛼 ,



4756 Scientometrics (2023) 128:4753–4764

1 3

and empirically compared: (a) Si𝛼|Q̂i, p̂𝛼 ∼ N
(

exp
(

𝜂i𝛼

)

, 𝜎2
∈

)

 , and (b) 
Si�|Q̂i, p̂� ∼ Poi(exp(�i�)) . The normal Q model is well in accordance with previous work 
by Sinatra and colleagues (Janosov et al., 2020; Sinatra et al., 2016), whereas the Poisson 
Q model has not been implemented before. Indeed, using a genuine count distribution 
instead of approximating count data by a continuous distribution seems rather reasonable 
and has been done previously in related scientometric investigations (e.g., Mutz & Daniel, 
2019).

First, the residual variance �2
�
 is fixed to zero to identify the model based on the normal 

distribution (i.e., residual variance is forced into the random luck parameter), i.e., all vari-
ance is modeled at the latent level and observations of Si� are perfectly explained by Q̂i and 
p̂� . Furthermore, latent means for both latent variables would not be uniquely identified 
and hence only one overall log-level intercept μ is part of the Q model as a GLMM. This 
is different as compared to other estimation routines of the Q model (Janosov et al., 2020; 
Sinatra et  al., 2016) in which latent means for both parameters are estimated. However, 
these two estimates are expected to add up to the overall μ parameter estimated in this 
work. For example, Sinatra et al. (2016) found latent means of 0.92 and 0.93 for potential 
impact and researcher capacity, respectively. Thus, the Q model formulation in this work 
would be expected to result in μ = 1.85 for their data. Critically, estimation of researcher 
capacity or the potential impact parameter will not be influenced by this difference.

Quantifying measurement precision of Q̂i estimates

Obtaining Q̂i estimates can be useful for research and practical assessment contexts (e.g., 
research evaluation in the context of personnel selection). Yet, when using them research-
ers and stakeholders should be informed about the quality of these estimates. One aspect 
of the quality of Q̂i estimates is measurement precision. Given that Q̂i estimates can be 
obtained in GLMMs as maximum a posteriori estimates along with standard errors, it is 
possible to adopt the idea of empirical reliability from the psychometrics literature (Brown 
& Croudace, 2015; Green et al., 1984). Empirical (marginal) reliability is widely used in 
educational assessment (Forthmann et al., 2022; McNeish & Dumas, 2018) and has also 
been used in scientometric research (Forthmann & Doebler, 2021). Conceptually, empiri-
cal reliability estimates the squared correlation of the Q̂i estimates with their true values. 
A value of one implies perfect reliability (i.e., maximum measurement precision) which 
means unity correlation between Q̂i estimates and their true values, whereas a reliability of 
zero implies no shared variance between Q̂i estimates and their true values (i.e., complete 
lack of measurement precision). Empirical reliability can be estimated by the following 
formula

with s2
Q̂
 being the estimated variance of the researcher capacity distribution and SE

2

Q̂
 being 

the average squared standard error for the Q̂i estimates (Brown & Croudace, 2015). Impor-
tantly, in practical assessment contexts one is not only interested in a general estimate of 
reliability. Instead, reliability of individual Q̂i estimates would be of utmost importance. 
This is especially the case when the amount of available information—i.e., the number of 
papers for a researcher—is sparse. This is indeed not unlikely in personnel selection in 

(3)Rel
(

Q̂
)

= 1 −
SE

2

Q̂

s2
Q̂

,
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academia when the applicant pool includes early career researchers, for example. Quantify-
ing uncertainty of Q̂i estimates to better guide decision making is possible by means of 
conditional reliability estimates (i.e., reliability for a certain level of researcher capacity)

with SE2

Q̂i

 being the squared standard error of the researcher capacity estimate of the ith 
researcher. Finally, it should be noted that reliability of approximate Q̂i can be obtained by 
means of multilevel reliability (Snijders & Bosker, 2011) which is also often used in educa-
tional assessment contexts (Forthmann et al., 2022; Schatschneider et al., 2008).

Aim of the current study

The goal of this work is to fit Sinatra et al.’s (2016) Q model by means of standard GLMM 
software. This way the original normal Q model was evaluated against an alternative Pois-
son Q model. In addition, multiple questions related to researcher capacity as reflected by 
the Q̂i estimates were thoroughly investigated. First, the correlation between the Q̂i esti-
mates and the log of the number of publications was examined. Second, empirical reliabil-
ity estimates (Brown & Croudace, 2015) for the Q̂i and p̂� estimates were obtained. Third, 
conditional reliability at all estimated levels of researcher capacity Q̂i and its relationship 
with the number of publications was assessed. Fourth, the correlations between Q̂i esti-
mates based on different distributional assumptions were examined (the same was checked 
for p̂� estimates too). Fifth, I correlated the original Q parameter approximation (Janosov 
et al., 2020; Sinatra et al., 2016) on the log-level with the estimates obtained in this study 
(to apply the approximation I omitted the mean of the luck distribution which does not 
affect correlations here). Finally, I obtained Janosov et al.’s R index which is the percentage 
of variance attributable to the p̂� parameter (Janosov et al., 2020).

Method

Dataset

In this work I reanalyzed a dataset comprised of multi-disciplinary scientists (Liu et  al., 
2018). These data were made openly available by Liu et al. (2018) in a github repository: 
https:// lu- liu. github. io/ hotst reaks/. A total of N = 20,296 scientists was reanalyzed, yet as 
compared to the original paper  I did not restrict the data to the subset with at least fif-
teen publications and a career length of minimum 20 years. This way it was possible to 
investigate reliability of researcher capacity estimates with rather few papers, for example. 
The dataset includes for each scientist the respective papers and how often they were cited 
within a 10-year time window. For more details on how the dataset was constructed the 
original paper (Liu et  al., 2018) can be consulted. For the purpose of the current work, 
citation counts 10 years after publication were modeled as the dependent variable in the Q 
model. In addition, the (log-)number of each scientist’s publications was analyzed.

(4)Rel
(

Q̂i

)

= 1 −

SE2

Q̂i

s2
Q̂

,

https://lu-liu.github.io/hotstreaks/
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Data analysis

The models were estimated by means of the package glmmTMB (Brooks et  al., 2017) 
which allows flexible generalized linear modeling within the statistical software R (R Core 
Team, 2022). To prevent technical problems with the log-link combined with the normal 
distribution in case of zero citations, a value of one was added to the citation counts of 
each paper.1 Maximum a posteriori estimates and their standard errors of the Q̂i and p̂� 
parameters were obtained and used for further examination (e.g., calculation of empirical 
and conditional reliability).

Given that the normal Q model is based on a continuous distribution and the Poisson 
Q model on a discrete distribution, it is not possible to use likelihood-based information 
criteria such as the Akaike information criterion (Akaike, 1998) cannot be used. This is 
because the densities of both distributions are defined with respect to different measures 
(i.e., a Lebesgue measure for the continuous distribution and a counting measure for the 
discrete distribution; Commenges et  al., 2015; Proust-Lima et  al., 2012). Hence, I com-
pared both models based on the following cross-validation approach: the available data of 
each researcher were sampled into two equal halves (a training dataset and a test dataset), 
both Q model variants were estimated for the training dataset, finally the μ and Q̂i estimates 
were used to predict the log

(

Si�
)

 values in the test dataset. The predictive accuracy of both 
Q models was evaluated by means of root mean square error (RMSE), mean absolute error 
(MAE), and the Pearson correlation coefficient. Three researchers in the dataset had only 
one paper published and were excluded from the cross-validation. It should further be 
noted that any types of transformations imposed on the training data should also be part of 
the cross-validation. Hence, I subtracted a value of one from the predictions made based 
on the estimates obtained from the training dataset. The following R packages were used 
for the cross-validation analysis: tidyverse (Wickham et al., 2019) and caret (Kuhn, 2021).

Results

The parameter estimates of both models are depicted in Table 1. The estimated standard 
deviation of Q̂i was highly similar across both models, whereas the standard deviation 
for p̂� was clearly higher for the normal Q model (even the confidence intervals for the 
same estimated parameter obtained from both models did not overlap). Also, the general 
intercept parameter differed between both models with a higher estimate resulting for the 
Poisson Q model (again confidence intervals did not overlap; see Table  1). In addition, 
the correlation between the Q̂i estimates and the log-transformed number of publications 
was found to be small for both models. The correlations were significantly larger than zero 
which is strictly speaking a violation of the Q model. Yet, this slight deviation might be 
negligible (see Sinatra et al., 2016, for a similar argument).

Next, reliability of the latent variables was evaluated. Reliability of the Q̂i estimates 
was excellent regardless of the model (see Table 1). Thus, the Q̂i estimates obtained from 

1 The Poisson Q model did not require this transformation, yet for better comparability it was employed for 
both investigated Q model variants. Naturally, the Poisson distribution can handle zeros and even excessive 
occurrences of zeros can be modeled by zero-inflated Poisson models. This idea was brought up by one 
anonymous reviewer and complementary results exploring zero-inflation can be found in an online supple-
mentary file: https:// osf. io/ ga8wt/.

https://osf.io/ga8wt/
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both Q model variants were on average clearly reliable enough for high-stakes contexts of 
research assessment (Ferrando & Lorenzo-Seva, 2018), whereas multilevel  reliability of 
approximate Q̂i which was estimated to be 0.88 did not pass this cut-off. In addition, the 
random luck component was more reliably estimated with the normal Q model as com-
pared to the Poisson Q model. Conditional reliability (i.e., reliability of single Q̂i esti-
mates) was examined as a function of the number of papers for Q̂i estimates based on the 
normal Q model (see left in Fig. 1), and Q̂i estimates based on the Poisson Q model (see 
right in Fig. 1). Clearly, reliability of Q̂i estimates increases as a nonlinear function of the 

Table 1  Model estimates for both variants of the Q model

Normal model Poisson model

Estimate 95%-CI Estimate 95%-CI

s
Q̂

0.68 [0.67, 0.68] 0.68 [0.67, 0.69]
sp̂ 1.34 [1.33, 1.34] 1.24 [1.24, 1.24]
μ 2.26 [2.25, 2.27] 2.32 [2.31, 2.33]

Cor(Q̂i , N̂i) 0.13 [0.12, 0.15] 0.15 [0.14, 0.16]

Rel(Q̂i) 0.90 0.91

Rel(p̂�) 0.98 0.89
Janosov et al.’s R index 0.80 0.77
Cross-validation
 RMSE 96.09 95.67
 MAE 22.99 22.88
 Pearson r 0.22 [0.22, 0.22] 0.23 [0.22, 0.23]

Fig. 1  Relationship between a researcher’s number of publications (x axis) and reliability of the Q̂i estimate. 
Left: Q̂i estimates are based on the normal Q model. Right: Q̂i estimates are based on the Poisson Q model. 
Horizontal red lines refer to common reliability requirements (Ferrando & Lorenzo-Seva, 2018). Vertical 
dark green lines refer to the minimum number of papers needed to pass one of the two reliability cut-offs
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number of papers. Figure 1 further illustrates that reliability of Q̂i estimates was sufficient 
for research purposes (i.e., reliability > 0.64) when a researcher had at least seven (normal 
Q model) or six (Poisson Q model) papers published, whereas seventeen (normal Q model) 
or fifteen (Poisson Q model) published papers were needed for reaching reliability required 
for high-stakes research assessment contexts (i.e., reliability > 0.81).

In addition, a very strong correlation between Q̂i estimates obtained from both model 
variants was close to unity with r = 0.997, 95% CI [0.996, 0.997]. A comparably high cor-
relation was found for the p̂� estimates obtained from both models with r = 0.993, 95% CI 
[0.993, 0.993]. The correlation between Q̂i estimates as obtained by the normal Q model 
and approximate Q̂i was also close to unity with r = 0.998, 95% CI [0.998, 0.998] (same for 
the Poisson Q model: r = 0.995, 95% CI [0.994, 0.995]). This latter finding emphasizes the 
validity of Q model estimation within the GLMM framework. Finally, Janosov et al.’s R 
index (Janosov et al., 2020) was evaluated. The values obtained for both models were again 
highly comparable and they suggest that around 80% of the variation in log-transformed 
units are attributable to luck rather than researcher capacity.

Finally, the cross-validation revealed that the predictive accuracy of the Poisson Q 
model was negligibly better for RMSE, MAE, and Pearson r as compared to the normal 
Q model (see Table 1). The Q̂i estimates obtained from the training dataset correlated also 
close to unity with the approximate Q̂i from the test dataset (normal Q model: r = 0.96, 95% 
CI [0.96, 0.96]; Poisson Q model: r = 0.96, 95% CI [0.96, 0.96]).

Discussion

Sinatra et al.’s (2016) Q model is an influential theoretical model of scientific productiv-
ity that implies, for example, a random impact rule (cf.  Simonton, 2010). The Q model 
conceptualizes the impact of a scholarly paper as a multiplicative function of a researcher 
capacity parameter and a paper’s inherent potential (including luck). This suggests that the 
Q model might have merit for research assessment contexts, yet up to now no widely acces-
sible tools for estimating the parameters (in particular the Q̂i estimates) were known. Look-
ing at the model from the perspective of GLMMs (Stroup, 2013) as done in this work was 
aimed at filling this gap. As a GLMM the Q model parameters can be estimated with any 
statistical software that includes GLMM estimation functions. In this work, I relied on the 
R package glmmTMB (Brooks et al., 2017) which has a formula argument for the disper-
sion model. By means of this functionality it was possible to estimate the normal Q model 
with a residual variance of zero. This might hint interested researchers at functionalities 
needed, when one wishes to switch to a different software package. To further facilitate 
such endeavors, all code to reproduce the reported findings (https:// osf. io/ ga8wt/) and the 
dataset used (https:// lu- liu. github. io/ hotst reaks/) are openly available.

In addition, the current work extends previous findings by Sinatra et al. (2016) and Jano-
sov et al. (2020) in important ways: a) the Q model was evaluated and tested for a different 
dataset, b) the Q model was empirically tested against a highly competitive alternative dis-
tributional assumption, c) reliability as a critical assessment property was comprehensively 
evaluated, and d) evidence of validity for Q model estimation within a GLMM framework 
was provided. First, the Q model proposes that the Q̂i estimates and the log-transformed 
number of papers N̂i are uncorrelated. Sinatra et al. (2016) reported covariance estimates 
that imply a moderate correlation of r = 0.34 between Q̂i estimates and log(Ni), yet they 
interpreted this level of covariation as a “slight association” (Sinatra et al., 2016, p. 599). 

https://osf.io/ga8wt/
https://lu-liu.github.io/hotstreaks/
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In this work, however, the correlation was found to be much smaller and, hence, evidence 
for Q model fit to the data in this work was stronger as compared to previous work. Sec-
ond, given that the raw citation counts in the dataset were count data, it was expected that 
a genuine count data distribution such as the Poisson should be competitive for the origi-
nally formulated Q model based on the normal distribution. Indeed, the Poisson Q model 
had better predictive accuracy and displayed better reliability of the Q̂i estimates. Many 
findings, however, were highly comparable across both distributional assumptions and Q̂i 
estimates taken from both Q model variants correlated close to unity.

The fact that Q̂i estimates were found to be highly reliable in this work makes the Q 
model highly attractive for a variety of research assessment contexts. Regardless of the 
underlying distributional assumption used, reliability estimates clearly surpassed the 
required level for high-stakes assessment contexts. In this vein, the current work contrib-
utes to current discussions and evaluated approaches to researcher capacity estimation by 
means of item response theory (Alvarez & Pulgarín, 1996; Forthmann & Doebler, 2021; 
Mutz & Daniel, 2018), for example. Furthermore, it was clearly demonstrated that reli-
ability of individual researcher capacity estimates depends heavily and non-linearly on the 
number of published papers. Indeed, this relationship between published papers and meas-
urement precision is known for quite some time (Cronbach, 1941; Dennis, 1958), yet it 
has not yet been discussed in relation to the Q model. Only researchers who published 
already a certain number of papers may be accurately evaluated by means of the Q model. 
In the current work, six or seven papers would be needed for a reliability level required 
for research purposes while fifteen or seventeen papers would be needed for high-stakes 
assessment purposes. It is easy to imagine promising candidates for an academic position 
who have not yet published at least fifteen papers and evaluating their researcher capacity 
will be associated with greater uncertainty as compared to more productive candidates. 
Finally, it should be noted that reliability of approximate Q̂i values did not pass the typi-
cal cut-off for high-stakes evaluation, which emphasizes a somewhat better measurement 
quality of the maximum a posteriori estimates obtained from the GLMMs for practical pur-
poses. Admittedly, such cut-offs are always somewhat arbitrary and local committees may 
decide if the approximate values or estimates obtained from a fitted GLMM Q model are 
sufficiently reliable for a given assessment context. Still, such cut-offs have heuristic value 
and are helpful to communicate decisions and their associated uncertainty to stakehold-
ers. This is very important information if one wishes to transfer the Q model to practical 
assessment contexts.

Furthermore, it is notable that the estimates of researcher capacity based on the GLMM 
version of the Q model and the estimates obtained by Sinatra et al.’s (2016) approximation 
formula correlate close to unity. This emphasizes the validity of the estimation approach 
proposed and evaluated in the current work. To further validate the approach, one could 
think of simulation studies as a nice future endeavor. Such a simulation could, for exam-
ple, focus on much smaller sample sizes as studied here and in prior other work on the Q 
model (Janosov et al., 2020; Sinatra et al., 2016). This would greatly help to see how well 
the Q model might work in more practical assessment settings in which far less data points 
(e.g., the pool of applicants for an academic position) as compared to the current work are 
available.

I further tried to fit the Poisson Q model with additional zero-inflation parameter (as 
suggested by one anonymous reviewer) which did not converge for technical reasons. 
Hence, I re-estimated the Poisson model with only the researcher capacity parameter (i.e., 
the luck parameter was omitted; cf. Mutz & Daniel, 2019) and compared this with a model 
that additionally incorporated the probability for an excess zero. The latter model displayed 
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better fit and the probability for an excess zero was estimated as 16%. In addition, the cor-
relation of the Q̂i estimates from the zero-inflated Poisson model and the Q̂i approxima-
tion was r = 0.81. However, partially this comparably small correlation was also a result of 
leaving out the luck parameter. That is, Poisson models including only researcher capacity 
displayed a similar (yet somewhat stronger) correlation with the approximate Q̂i (r = 0.90). 
Thus, overall, it seems that omitting the luck parameter played a more important role in 
reducing the correlation (please note that the correlations between Q̂i estimates from the 
complete models and the approximate Q̂i were close to unity) and modeling of zero-infla-
tion seemed to have only a small effect here which decreased this correlation only slightly 
more. Clearly, more research is needed to reveal the potential of explicitly modeling zero-
inflation in the context of the Q model.

Finally, there are notable similarities between the Poisson Q model and Mutz and Dan-
iel’s multi-membership Poisson model (Mutz & Daniel, 2019). In fact, Mutz and Daniel 
develop their model based on a much simpler Poisson model that includes an intercept 
parameter and a researcher capacity random effect. Hence, their initial model is identical to 
the Poisson Q model in which the random luck parameter is omitted. They further extend 
their model by a reference value for field normalization and a weighting of the person ran-
dom effect. The weighting is chosen according to a specific scheme for fractional counting 
(e.g., all co-authors receive equal weight or the first author receives the highest weight for 
contributing to a scholarly paper). Based on this model individual differences in researcher 
capacity estimates are controlled for the expected citations in a field (i.e., comparisons of 
researchers across fields becomes possible in a fair manner). In addition, it is taken into 
account that scholarly papers often have more than one author with potentially unequal 
contributions by each author. It seems straightforward to simply add a luck parameter to 
their model for a field normalized multi-membership Poisson Q model (or a log-normal 
variant analogous to the original Q model formulation). Importantly, fitting this model 
would not be possible for the dataset used in this work as the publications of the authors 
were not coded by a unique identifier. Hence, a careful empirical investigation of such an 
extended Q model is a promising avenue for future research.

Overall, the reported findings look promising for the Q model to become a flexible 
tool for research and practice. While the current work has direct implications for practical 
research assessment (e.g., the Q parameter can be highly reliably estimated), there are more 
far reaching consequences for the Q model as well. For example, the GLMM perspective 
would easily allow to further integrate covariates on either the researcher or publication 
level to explain impact of scholarly work. In addition, one might think of a multidimen-
sional extension of the Q model that allows modeling of several quality dimensions at the 
same time. Future work is needed to explore these options for the Q model, but the path is 
well laid out from here onwards.
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