
Vol.:(0123456789)

Scientometrics (2024) 129:719–743
https://doi.org/10.1007/s11192-023-04712-7

1 3

A novel text representation which enables image classifiers
to also simultaneously classify text, applied to name
disambiguation

Stephen M. Petrie1 · T’Mir D. Julius1

Received: 1 May 2020 / Accepted: 19 April 2023 / Published online: 5 June 2023
© The Author(s) 2023

Abstract
We introduce a novel method for converting text data into abstract image representations,
which allows image-based processing techniques (e.g. image classification networks) to
be applied to text-based comparison problems. We apply the technique to entity disam-
biguation of inventor names in US patents, obtaining a list of IDs which identify individ-
ual inventors with high accuracy. The method involves converting text from each pairwise
comparison between two inventor name records into a 2D RGB (stacked) image represen-
tation. We then train an image classification neural network to discriminate between such
pairwise comparison images. The trained neural network then labels each pair of records
as either matched (same inventor) or non-matched (different inventors), producing highly
accurate results. Our new text-to-image representation method could also be used more
broadly for other text comparison problems, such as entity disambiguation of academic
publications, or for problems that require simultaneous classification of both text and
image datasets.

Keywords Entity disambiguation · Text classification · Convolutional neural networks ·
Simultaneous text and image processing

Introduction

Databases of patent applications and academic publications can be used to investigate the
process of research and innovation. For example, patent data can be used to identify prolific
inventors (Gay et al., 2008) or to investigate whether mobility increases inventor productivity
(Hoisl, 2009). However, the names of individuals in large bibliographic databases are rarely
distinct, hence individuals in such databases are not uniquely identifiable. For example, an
individual named “Chris Jean Smith” may have patents under slightly different names such
as “Chris Jean Smith”, “Chris J. Smith”, “C J Smith”, etc... There may also be one or more
other inventors with patents under the same or similar names, such as “Chris J. Smith”, “Chris

 * Stephen M. Petrie
 spetrie@swin.edu.au

1 Swinburne University of Technology, Hawthorn, Australia

http://orcid.org/0000-0002-8773-516X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11192-023-04712-7&domain=pdf

720 Scientometrics (2024) 129:719–743

1 3

Smith”, etc... Thus it is ambiguous which names (and hence patents) should be assigned to
which individuals. Resolving this ambiguity and assigning unique identifiers to individuals—a
process often referred to as named entity disambiguation—is important for research that relies
on such databases.

Machine learning algorithms have been used increasingly in recent years to perform auto-
mated disambiguation of inventor names in large bibliographic databases (e.g. (Li et al., 2014;
Ventura et al., 2015; Kim et al., 2016)). See Ventura et al. (2015) for a review of supervised,
semi-supervised, and unsupervised machine learning approaches to disambiguation. These
more recent machine learning approaches have often out-performed more traditional rule- and
threshold-based methods, but they have generally used feature vectors containing several pre-
selected measures of string similarity as input for their machine learning algorithms. That is,
the researcher generally pre-selects a number of string similarity measures which they believe
may be useful as input for the machine learning algorithm to make discrimination decisions.

Here we introduce a novel approach of representing text-based data, which enables
image classifiers to also simultaneously perform text classification. This new representation
enables a supervised machine learning algorithm to learn its own features from the data,
rather than selecting from a number of pre-defined string similarity measures chosen by
the researcher. To do this, we treat the name disambiguation problem primarily as a clas-
sification problem—i.e. we assess pairwise comparisons between records as either matched
(same inventor) or non-matched (different inventors) (Trajtenberg et al., 2006; Miguélez &
Gómez-Miguélez, 2011; Li et al., 2014; Ventura et al., 2015; Kim et al., 2016). Then, for a
given pairwise comparison between two inventor records, our text-to-image representation
method converts the associated text strings into a stacked 2D colour image (or, equiva-
lently, a 3D tensor) which represents the underlying text data.

We describe our text-to-image representation method in “Comparison-map images”
section (see Fig. 1 for an example of text-to-image conversion). We also test a number of
alternative representations in “Testing alternative string-maps” section. Our novel method
of representing text-based records as abstract images enables image processing algorithms
(e.g. image classification networks), to be applied to text-based natural language process-
ing (NLP) problems involving pairwise comparisons (e.g. named entity disambiguation).
We demonstrate this by combining our text-to-image conversion method with a commonly
used convolutional neural network (CNN) (Krizhevsky et al., 2012), obtaining highly accu-
rate results (F1 99.09%, precision 99.41%, recall 98.76%).

Related work

Inventor name disambiguation studies have often used measures of string similarity
in order to make automated discrimination decisions. For example, counts of n-grams
(sequences of n words or characters) can be used to vectorise text, with the cosine distance

Fig. 1 Constructing a string-map image. The first four images show each sub-map for the example word
“JEN”, which are summed to construct the final string-map image (right-most image)

721Scientometrics (2024) 129:719–743

1 3

between vectors providing a measure of string similarity (Raffo & Lhuillery, 2009; Pez-
zoni et al., 2014). Measures of edit distance consider the number of changes required to
transform one string to another, e.g. the number of additions, subtractions, or substitutions
used in the calculation of Levenshtein distance (1966), or of other operations such as trans-
positions (the switching of 2 letters) used to calculate Jaro–Winkler distance (Jaro, 1989;
Winkler, 1990). Phonetic algorithms, such as Soundex, recode strings according to pronun-
ciation, providing a phonetic measure of string similarity (Raffo & Lhuillery, 2009).

Measures of string similarity such as these have been used to guide rule- and thresh-
old-based name disambiguation algorithms (e.g. (Miguélez & Gómez-Miguélez, 2011)
and (Morrison et al., 2017)). They can also be used within feature vectors inputted into
machine learning algorithms. For example, Kim et al. (2016) use such string similarity
feature vectors to train a random forest to perform pairwise classification. Ventura et al.
(2015) reviewed several supervised, semi-supervised, and unsupervised machine learning
approaches to inventor name disambiguation, as well as implementing their own supervised
approach utilising selected string similarity features as input to a random forest model.

Two-dimensional CNNs have been used extensively in recent image processing applica-
tions (e.g. (Krizhevsky et al., 2012)), and one-dimensional (temporal) CNNs have been
used recently as character-level CNNs for text classification (e.g. (Zhang et al., 2015)).
Also, neural networks (usually CNNs) have been used previously to assess pairwise com-
parison decisions—e.g. in the case of pairs of: images (Koch et al., 2015), image patches
(Zbontar & LeCun, 2016; Zagoruyko & Komodakis, 2015), sentences (Yin et al., 2016),
images of signatures (Bromley et al., 1993), and images of faces (Hu et al., 2014). These
networks are generally constructed for multiple images to be provided simultaneously as
input, such as in the case of Siamese neural networks where two identical sub-networks are
connected at their output (Bromley et al., 1993; Koch et al., 2015).

In this work we generate a single 2-dimensional RGB (stacked) image for a given
pairwise record comparison. Thus any image classification network that processes sin-
gle images can be used (with minimal modification) to process our pairwise comparison
images, therefore enabling such neural networks to also simultaneously classify associated
text records. We demonstrate this using the seminal “AlexNet” image classification net-
work (Krizhevsky et al., 2012).

Data

We use a combination of two labelled datasets in this work to train the neural network and
assess its performance. Each dataset was derived by separate authors, from the US National
Bureau of Economics Research (NBER) Patent Citation Data File (Hall et al., 2001); i.e. a
labelled dataset of Israeli inventors (Trajtenberg et al., 2006) (the “IS” dataset), and a data-
set of patents filed by engineers and scientists (Ge et al., 2016) (the “E &S” dataset). These
datasets were combined with US Patent and Trademark Office (USPTO) patent data as part
of the PatentsView Inventor Disambiguation Workshop1 hosted by the American Institutes
for Research (AIR) in September 2015.

Each labelled dataset contains unique IDs (UIDs) that identify all inventor-name
records from different patents belonging to each unique inventor. We also extracted sev-
eral other variables from inventor-name records in the bulk USPTO patent data to use in
our disambiguation algorithm: first name, middle name, last name, city listed in address,

1 http:// www. paten tsview. org/ commu nity/ works hop- 2015.

http://www.patentsview.org/community/workshop-2015

722 Scientometrics (2024) 129:719–743

1 3

international patent classification (IPC) codes (i.e. subjects/fields covered by the patent),
assignees (i.e. associated companies/institutes), and co-inventor names on the same patent.

Disambiguation algorithm

Our novel inventor disambiguation algorithm involves the following main steps:

(1) Duplicate removal: remove duplicate inventor records.
(2) Blocking: block (or “bin”) all names by last name, and also by first name in some cases.
(3) Generate pairwise comparison-map images: convert text from each within-block

pairwise record comparison into a 2D RGB (stacked) image representation.
(4) Train neural network: use 2D comparison-map images generated from manually

labelled data to train a neural network to classify whether a given pairwise record
comparison is a match (same inventor) or non-match (different inventors).

(5) Classify pairwise comparison-map images: deploy the trained neural network to
classify pairwise comparison images generated from the bulk patent data, producing
a match probability for each record pair.

(6) Convert pairwise match probabilities into clusters: convert the pairwise match/
non-match probabilities generated by the neural net into inventor clusters—i.e. groups
of inventor-name records that each belong to a distinct individual inventor. Assigning a
UID to each of these groups then leads to a single set of disambiguated inventor names.

Note that the main purpose of the first two steps is to improve computational efficiency.
That is, rather than process all possible pairs of patent–inventor records (which has time
complexity O(n2) for n records), the records are first grouped into similar clusters, or
“blocks”, and pairwise comparisons are only made within those blocks. For further detail
regarding steps 1 and 2, see “Appendices 1 and 2”. Steps 3–6 are described in detail below.

Comparison‑map images

Our intent is to assess all possible within-block pairwise comparisons between pat-
ent–inventor records, classifying each comparison as either a match or non-match. To do
this, we introduce a new method of converting any string of text into an abstract image rep-
resentation of that text, which we refer to as a “comparison-map” image. Any image clas-
sification neural network can then be used to process these images and hence effectively
perform text classification.

To generate a comparison-map image, we firstly define a specific 2D character layout—
i.e. a grid of pixels specifying the positions of each letter. The layout of this “string-map”
is shown in Fig. 1 (identical in each of the five images).2 For a given word (e.g. “JEN”),
we then add a particular colour (e.g. red) to the pixels of each letter in the word, as well as
to any pixels in straight lines connecting those letters. In particular, we add colour to the
pixels of the first and last letters (Fig. 1, left-most image), and to all connecting pixels in

2 Note that any accented characters and other non-ASCII characters in the data are first converted to their
corresponding ASCII equivalent before being applied to the string-map (e.g. è is converted to e).

723Scientometrics (2024) 129:719–743

1 3

a line connecting each two-letter bi-gram3 (Fig. 1, second and third images, which corre-
spond to the two bi-grams in “JEN”; i.e. “JE” and “EN”). For repeated letters, the bi-gram
contains two of the same letter, so we add colour only to the pixel corresponding to that
letter (e.g., for the name “JENNY”, we would add colour for four different bi-grams: “JE”,
“EN”, “NN”, and “NY”).

To highlight the beginning of each string-map, we also repeat the process for the first
bi-gram only (“JE”) in blue, rather than red (Fig. 1, fourth image). The final string-map for
the word “JEN” is shown in Fig. 1 (right-most image). If we then add the string-map of any
other word to the green channel of the same RGB image (with the first bi-gram again high-
lighted in blue), the resulting image represents the pairwise comparison of the two words
(e.g. Fig. 2, right-most image).

For a given inventor name record, we generate string-maps for each variable in the
record—i.e. first name, middle name, last name, city, IPC codes, co-inventors, and assign-
ees.4 These string-maps are combined into a single image, arranged as shown in Fig. 3,
which we refer to as a “record-map”.

Since a given patent–inventor record can have multiple assignees and/or co-inven-
tors, we use a larger string-map for those variables (see Fig. 4, left image). This reduces

Fig. 2 Comparison of two strings. To compare the names “JEN” and “LINDA”, we add the string-map for
“JEN” (left image) to the string-map for “LINDA” (middle image) to generate the final comparison image
(right image)

Fig. 3 Record-map layout.
Shows the positioning of each
string-map within a given record-
map

3 Note that connecting pixels are selected using the Python Imaging Library (PIL) ImageDraw.Draw.line()
function, which produces a consistent selection for a given bi-gram.
4 Note that if any string-map contains more than one word, we add colour for each bi-gram composing each
word, including adding blue to the first bi-gram of each word. For example, if the middle name contained
the text “JEN LILY”, then colour would be added to pixels corresponding to the bi-grams “JE”, “EN”, “LI”,
“IL”, and “LY”, and blue would be added to the pixels corresponding to the first bi-gram of each word; i.e.
“JE” and “LI”.

724 Scientometrics (2024) 129:719–743

1 3

the possibility that pixels will become saturated in cases where many assignees (or co-
inventors) are overlayed onto the same string-map. We also add less colour to each pixel
in these larger string-maps, again to reduce the possibility of saturation. For co-inventors,
we include only the last names of each co-inventor on the patent (rather than including
first, middle and last names, which would increase the saturation of the co-inventor string-
maps). Co-inventor and assignee text often includes more than one word so, as was the
case with inventor names, we add the pixel colours for each word to the same string-map,
colouring pixels corresponding to all within-word bi-grams. Blue is used to colour the pix-
els of the first bi-gram of each word.

For IPC codes, which contain numbers as well as letters, we use a different string-map
shown in Fig. 4 (right image).

We compare any two inventor name records by stacking the two associated 2D record-
maps into the same RGB image, one as the red channel and the other as green (with the
beginning two-letter bi-gram of each record sharing the blue channel). We refer to the
resulting RGB image (or 3D tensor) representation as a “comparison-map” (Fig. 5).

Since red and green combined produce yellow in the RGB colour model, a comparison-
map image generated from two similar records should contain more yellow (e.g. Fig. 5,
left image), whereas a comparison-map image from two dissimilar records should contain
more red and green (e.g. Fig. 5, right image) due to less overlap between the two record-
maps. When training on labelled comparison-maps, we expect that the neural network
will learn to identify features such as these, which are useful for discriminating between
matched/non-matched records. That is, the neural network’s learned pattern recognition on
comparison-map images will essentially recognise underlying text patterns which are pre-
sent in the associated patent–inventor name records.

Note that we chose the particular layout of the letters in the string-map shown in Fig. 1
heuristically, such that vowels (which are less important than consonants when assess-
ing string similarity) are positioned towards the centre of the grid, where pixels are more
likely to saturate. We also grouped letters with similar phonetic interpretations, such as
“S” and “Z”, close to each other. We anticipated that this heuristic layout might make it
more straightforward for the network to learn which features are associated with matches/

Fig. 4 Larger string-map for assignees and co-inventors, and IPC-map. The larger string-map used to con-
vert a given list of assignees or co-inventors into an abstract image representation (left), and the IPC-map
used to convert a given list of IPC classes into an abstract image representation (right)

725Scientometrics (2024) 129:719–743

1 3

non-matches. However, we test how the heuristic layouts shown in Figs. 1, 2, 3, and 4 per-
form compared with alternative random layouts later in “Testing alternative string-maps”
section, and find similar performance regardless of the chosen layout.

Benefits of the comparison‑map image representation

Our method of converting text into a stacked 2D RGB bitmap for neural net-based image
classification has several benefits:

– The powerful classification capabilities of previous image classification networks can
be utilised for text-based record matching, with minimal modification.

– The neural network learns its own features from the data, rather than learning from a
feature vector of pre-defined string similarity measures chosen by the researcher.

– Minor spelling variations and errors do not alter the resulting string-map very much,
and the neural network can potentially learn that such minor features are unimportant
for discriminating between matches and non-matches.

– Matched records with differing word ordering (e.g. re-ordered co-inventor names on
different patents) are likely to be identified as matched, due to overlapping pixels.

– The neural net can potentially learn to ignore certain shapes of common words (e.g.
“Ltd”, “LLC”, “Inc”, etc...) which are not useful for discrimination decisions.

– Our novel disambiguation algorithm performs well under multiple different choices
of alternative string-maps other than those shown in Figs. 1, 2, 3, and 4 (see “Testing
alternative string-maps” section), suggesting that multiple alternatives of our compari-
son-map representations allow for robust pattern recognition and feature extraction.

Note that the above benefits of our text-to-image conversion method would also apply to
other text-based comparison problems (e.g. data linkage, or disambiguation of academic

Fig. 5 Comparison-map examples. Two examples of comparison-map images. The left comparison-map
image was generated using two matched records (Table 1, rows 1 and 2), and the right image from two non-
matched records (Table 1, rows 1 and 3)

726 Scientometrics (2024) 129:719–743

1 3

papers), or to problems that require simultaneous classification of both text and image
datasets.

Modifications to neural network architecture

To demonstrate that our text-to-image conversion method can be combined with an image
classifier to perform text-based classification, we apply the method to a commonly used
image classification neural network; i.e. the seminal “AlexNet” CNN (Krizhevsky et al.,
2012). AlexNet was originally designed to classify colour images (224 × 224× 3-pixel
bitmaps) amongst 1000 classes. We slightly modify the network architecture to enable
classification of pairwise comparison-map images (31 × 31× 3-pixel bitmaps) into two
classes (match/non-match), by altering four hyperparameters as shown in Table 2. We
use the NVIDIA Deep Learning GPU Training System5 (DIGITS) v2.0.0 implementation
of AlexNet, and use the Caffe backend (Jia et al., 2014). We use the default settings for
the DIGITS solver (stochastic gradient descent), batch size (100), and number of training
epochs (30). Rather than use the default learning rate (0.01), we use a sigmoid decay func-
tion to progressively decrease the learning rate from 0.01 to 0.001 over the course of the 30
training epochs, as testing indicated that this produced slightly higher accuracies. Instead of
the 1000-neuron softmax output layer in AlexNet, we use a 2-neuron softmax output layer,
which outputs a probability distribution across our two possible classes (match/non-match).

Note that the default settings of the DIGITS v2.0.0 implementation of AlexNet trans-
form the input data by: (1) altering input images to show the deviation from the mean of all
input images (by subtracting the mean image from each input image); (2) randomly mirror-
ing input images; and (3) taking a random square crop from the input image. The main pur-
pose of performing such transformations is to introduce variability into the training images
that are expected to be present in the unlabelled data, however we do not use any of those
transformations in this work because our images are much more self-consistent than those
in the ImageNet database.

Converting pairwise probabilities into inventor groups, and assigning UIDs

After running the trained neural network on bulk patent data, each within-block pairwise
comparison has an associated match probability. To assign UIDs to the bulk data, we

Table 1 Mock records of three patent–inventor name instances

Rows 1 and 2 are the same mock inventor, while row 3 is a different inventor

Name IPC codes City Co-inventors (last names) Assignees

Emmett Lathrop
Brown

A10C,
A10D

Hill Valley McFly, Clayton-Brown,
Sanchez

Science Solutions

Emmett L. Brown A11E Hill Valley Sanchez Science Solutions Pty. Ltd.
James T. Brock G03C Melbourne Edison, Da Vinci Swinburne University of

Technology, The University of
Melbourne

5 https:// devel oper. nvidia. com/ digits.

https://developer.nvidia.com/digits

727Scientometrics (2024) 129:719–743

1 3

convert these pairwise probabilities into linked (matched) “inventor groups” using a clus-
tering algorithm. Each inventor group is a linked cluster of inventor name records which
all refer to the same individual. Briefly, the clustering algorithm involves converting each
pairwise probability value to a binary value (match/non-match) using a pre-selected prob-
ability threshold (p̄) as a cut-off. Each matched record is then clustered into a larger inven-
tor group if the number of links (l) it has to the that group is ⩾ the number of nodes in the
group (n) times some threshold proportion value (̄l); i.e. if l ⩾ nl̄ . This removes weakly-
linked records from each group. For further detail on the clustering algorithm, see “Appen-
dix 3”. Note that choosing different p̄ and l̄ values generates different trade-offs between
precision and recall.

Once the clustering algorithm has been applied to each block, every patent–inventor
name instance has an associated unique inventor ID, and the disambiguation process is
complete.

Results

Here we firstly describe our procedure for dividing our labelled datasets into training and
test data. We then evaluate our inventor disambiguation algorithm, compare those results to
previous studies, and test alternative string-map layouts.

Labelled and bulk datasets

We use the IS and E &S labelled datasets to train the neural network to discriminate
between matched and non-matched pairwise comparisons. Each of the labelled datasets are
randomly separated into 80% training data (used to train the neural network) and 20% test
data (used to assess algorithm performance). We use 75% of the training data to train the
network, and the remaining 25% to perform validation assessments during training in order
to monitor potential overfitting.

Duplicate removal and blocking is then performed on the labelled data, and compari-
son-map images are generated for all possible pairwise record comparisons within each
block (723,178 comparison-maps for training and 144,552 comparison-maps for testing).

Table 2 Hyperparameters that differ between the two neural network architectures

See Krizhevsky et al. (2012) for more details on the network architecture

Hyperparameter AlexNet This work Rationale for modification

Number of neurons in input
layer

224 × 224 × 3 = 150, 528 31 × 31 × 3 = 2883 Smaller size of input images

Kernel size in first convolu-
tional layer

11 × 11 × 3 3 × 3 × 3 Smaller-scale features to learn

Stride length of kernels in
1st conv layer

4 1 Smaller kernel size

Number of neurons in output
layer

1000 2 Fewer classes

728 Scientometrics (2024) 129:719–743

1 3

We also perform duplicate removal and blocking on the bulk data, generating compar-
ison-maps for all possible pairwise within-block comparisons (stored as 3D numerical
arrays). The trained neural network is then deployed on the bulk patent data, generating
match/non-match probabilities for all pairwise within-block comparisons (112,068,838
comparison-maps). Prior to processing the bulk data, we experimented with multiple dif-
ferent values for the pairwise comparison probability threshold (p̄) and linking proportion
threshold (̄l), based on evaluating the trained neural network on the labelled test data. Dif-
ferent p̄ and l̄ values produce different trade-offs between precision and recall, and we use
values that produce an optimal trade-off (highest F1 score). We state each p̄ and l̄ value
whenever quoting results from a given run of our disambiguation algorithm.

Evaluation

To evaluate the performance of the disambiguation algorithm, we use the manually
labelled IS and E &S test data to estimate pairwise precision, recall, splitting, and lump-
ing based on numbers of true positive (tp), false positive (fp), true negative (tn), and
false negative (fn) pairwise links within the labelled test data, as follows (e.g. (Ventura
et al., 2015; Kim et al., 2016)):

Higher values are better for precision and recall, while lower values are better for lumping
and splitting errors. We also use the pairwise F1 score:

Since the F1 score accounts for the trade-off between precision and recall, it is the primary
measure we use to compare the performance of different disambiguation algorithms.

Disambiguation algorithm performance

The precision, recall, and F1 estimates for two example runs of our disambiguation
algorithm are shown in the bottom two rows of Table 3—first is the highest F1 result
obtained using the heuristic string-map character order (Figs. 1, 2, 3, 4), and second is
the highest F1 result obtained using a randomly-generated string-map character order

(1)Precision =
true pos. matches

all pos. matches
=

tp

tp + fp
,

(2)Recall =
true pos. matches

total true matches
=

tp

tp + fn
,

(3)Splitting =
false neg. non-matches

total true matches
=

fn

tp + fn
,

(4)Lumping =
false pos. matches

total true matches
=

fp

tp + fn
.

(5)
F1 = 2 × Precision ⋅ Recall

Precision + Recall.

729Scientometrics (2024) 129:719–743

1 3

(see “Testing alternative string-maps” section for details). Table 3 also shows the best
results (highest F1) obtained by previous studies which (1) disambiguate bulk USPTO
patent data, and (2) evaluate their results using the same labelled datasets we use in this
work (i.e. the IS and E &S datasets). Our inventor disambiguation algorithm performs
well compared with these other disambiguation studies (Table 3, bottom row), margin-
ally out-performing the previous state-of-the-art study of Kim et al. (2016) and obtain-
ing a much higher F1 score than Yang et al. (2017) when measured via the IS and E &S
datasets.

For completeness, we also compare our results to those of other studies which use
alternative labelled datasets to the IS and E &S datasets used in this work—i.e. Table 4
shows the best results obtained by each study, regardless of the evaluation dataset. Note
that Table 4 provides a less equitable comparison than Table 3, as there is generally
a small amount of variation in an algorithm’s F1 score when evaluated on different
labelled datasets. Nonetheless, we include Table 4 here for completeness and consist-
ency with previous inventor name disambiguation studies, which often include compari-
son to other studies with different evaluation datasets. Our disambiguation algorithm
is again competitive with the other state-of-the-art inventor name disambiguation algo-
rithms in Table 4, obtaining the highest F1 score compared with the other three studies
which quote F1 results (top four rows, highest F1 score in bold), and obtaining the low-
est splitting and lumping errors compared with the two studies which do not quote F1
results (bottom three rows, lowest splitting and lumping errors in bold).

Testing alternative string‑maps

Here we compare the performance of our heuristic string-map layouts (Figs. 1, 2, 3, 4)
to several alternative string-maps. The first alternative string-map we test has random
character order; i.e. we keep the pixel co-ordinates identical to the co-ordinates of the
associated heuristic layout, but randomise the order of each character (these randomised
string-maps are shown in “Appendix 4”, Fig. 7). We also test two alternative string-maps

Table 3 Performance of
two example runs of our
disambiguation algorithm
(bottom rows), compared with
other studies evaluated on the IS
or E &S labelled datasets

All values in %
†Calculated by averaging the IS and E &S results
*Note that this result was obtained using a randomly-generated string-
map character order (see “Testing alternative string-maps” section)

Method [p̄ ; l̄] Recall Precision F1

Kim et al. (2016); IS 98.13 99.89 99.00
Kim et al. (2016); E &S 98.10 99.95 99.02
Kim et al. (2016); Both† 98.12 99.92 99.01
Yang et al. (2017); IS 83.79 99.57 91.00
Yang et al. (2017); E &S 90.31 99.87 94.85
Yang et al. (2017); Both† 87.05 99.72 92.93
Ours; Both [0.02; 0.1] 98.67 99.48 99.07
Ours∗ ; Both [0.03; 0.05] 98.76 99.41 99.09

730 Scientometrics (2024) 129:719–743

1 3

in which we randomise both the pixel co-ordinate layout and character order (“Appen-
dix 4”, Fig. 8). One alternative uses the large string-map for co-inventors and assignees
(Fig. 8, right image). The other alternative uses the smaller 5 × 5 pixel string-map for
co-inventors and assignees (Fig. 8, left image), leading to a smaller comparison-map
(see “Appendix 4”, Fig. 9). We also investigate a string-map with random character
order in which we exclude the blue channel for leading bi-grams (Fig. 1, fourth image).

Estimates of precision, recall, and F1 for each of these alternative string-maps are
shown in Table 5. For each alternative string-map, we ran the algorithm multiple times
using different settings of the comparison probability threshold (p̄) and linking propor-
tion threshold (̄l), and only show results from the run which produced the highest F1
score. Results obtained from each of the alternative string-maps are quite similar to
those obtained using the heuristically-determined layout (F1 scores range from 98.99
to 99.09%). This suggests that our method of converting text into abstract image repre-
sentations facilitates robust feature learning for several alternative choices of string-map
structure, such as randomised string-map character order and/or layout, heuristic order
and/or layout, different string-map sizes, and the inclusion/exclusion of a blue channel
for leading bi-grams.

Examining lumping errors in large inventor groups

Labelled datasets such as the IS and E &S datasets contain far fewer records than the bulk
data. While such subsets of labelled data are useful for measuring several facets of algo-
rithm accuracy, they are not very useful for measuring lumping errors from very common
names that become relevant only when processing much larger amounts of data (such as
the full bulk dataset). This is because, although very common names are likely to be pre-
sent in relatively small subsets of labelled data, there are far fewer of them compared with
the full bulk dataset. When processing the bulk data, large numbers of common first names

Table 4 Performance of our disambiguation algorithm relative to other studies, regardless of evaluation
dataset

All values in %
†Ventura et al. (2015) also use an “optoelectronics” (OE) labelled dataset to evaluate (Li et al., 2014),
obtaining lower errors on the full OE dataset (splitting: 2.49%, lumping: 0.39%), but higher errors on a ran-
dom sample of OE data (splitting: 10.54%, lumping: 1.21%)

Method [p̄ ; l̄] Splitting Lumping Recall Precision F1

Kim et al. (2016) 98.48 99.60 99.04
Morrison et al. (2017) 92 98 95
Yang et al. (2017) 96.15 99.61 97.85
Ours [0.03; 0.05] 98.76 99.41 99.09
Li et al. (2014)† 3.26 2.34
Ventura et al. (2015) 2.31 1.64
Ours [0.03; 0.05] 1.24 0.58

731Scientometrics (2024) 129:719–743

1 3

can lead to a high degree of connectivity in large blocks of common last names, introduc-
ing lumping errors in large inventor name groups.

We can investigate the presence of these types of lumping errors by examining the larg-
est inventor groups. In “Appendix 5”, Tables 7 and 8 , we show the name variation for the
10 largest inventor groups obtained using string-maps with heuristic character order and
layout (i.e. the version of the disambiguation algorithm shown in the top row of Table 5).
In many of the groups, there are several variations of first name within the same inventor
group. Many of these look to be lumping errors, rather than different variations of the one
first name used by the same inventor. The lumping error issue also seems to be more preva-
lent for very common Japanese last names such as Takahashi, Nakamura, and Kobayashi.

We also represent the first name variation information in heatmap form in Fig. 6a, which
shows, for each of the top 50 largest inventor groups, the proportion that each nth variation
of the first name contributes to the group. Inventor groups with only one variation of the
first name will be plotted as a dark red (proportion = 1) square at the 0th position. Note
that we see quite a bit of variation in first names across the top 50 largest inventor groups
(Fig. 6a). We should also note that name variations are only indicative of potential lumping
errors—i.e. while variations in first names may represent inventor name records that belong
to different individuals, in some cases they may represent inventor name records that belong
to a single individual which has used different variations of their name on different patents.

To reduce the amount of lumping errors in large inventor groups when processing the
full bulk dataset, we can apply extra disambiguation steps of:

– separating pairwise matches with mismatched first names (as measured via a Damerau–
Levenshtein Distance of ⩾ 2)6 or mismatched middle initials, if those records do not
share any assignees,

– for large inventor groups (> 100 records), which are more likely to contain large-group
lumping errors due to very common names, using a more stringent criterion to identify
mismatched first names (i.e. a Damerau–Levenshtein Distance of ⩾ 1 , rather than ⩾ 2),
unless one first name is a sub-string of the other (i.e. to avoid splitting nickname varia-
tions such as Chris and Christopher).

Incorporating these extra changes into the disambiguation algorithm leads to a substantial
reduction in the number of lumping errors in large inventor groups (see Fig. 6b, c and

Table 5 Comparison of alternate string-map layouts

Each row shows the highest F1 result obtained for that string-map layout

String-map layout [p̄ ; l̄] Recall Precision F1

Heuristic character order and layout [0.02; 0.1] 98.67 99.48 99.07
Random order, heuristic layout [0.03; 0.05] 98.76 99.41 99.09
Random order and layout [0.05; 0.05] 98.77 99.29 99.03
Random order and layout, with small string-maps [0.05; 0.2] 98.46 99.52 98.99
Random order, heuristic layout, no blue channel [0.02; 0.05] 98.71 99.32 99.01

6 Note that we use Python’s Jellyfish module to calculate the Damerau–Levenshtein Distance.

732 Scientometrics (2024) 129:719–743

1 3

“Appendix” Tables 9 and 10) compared with in the absence of the changes (see Figure 6a
and “Appendix” Tables 7 and 8). For the two different augmented versions of the disam-
biguation algorithm—one without sub-string splitting applied to large inventor groups
(Fig. 6b), and one with sub-string splitting applied to large inventor groups (Fig. 6c)—
we see the greatest reduction in lumping errors when large inventor groups are separated
(Fig. 6c).

We also examine in Table 6 the degree to which the augmentation of the disambigua-
tion algorithm, with and without sub-string splitting applied to large groups, affects the
precision, recall, and F1 scores compared with the standard version of the algorithm. We
do this for the two string-map methods that produced the highest F1 scores in Table 5; i.e.
heuristic character order with heuristic layout, and random character order with heuristic
layout. Table 6 shows that the augmented versions of the disambiguation algorithm have
higher precision but lower recall and F1 scores, with sub-string splitting of large groups
enhancing the differences from baseline.

Given all of the above considerations, we suggest that if large inventor groups are to be
studied, then utilising the version of the disambiguation algorithm with sub-string splitting
applied to large inventor groups would produce the most useful disambiguated inventor
groups.

Conclusion

We introduced a new entity disambiguation algorithm and applied it to inventor names in
USPTO patent applications. The text-to-image representations in our entity disambiguation
algorithm provide a novel way of combining image processing with NLP, allowing image
classifiers to perform text classification. We demonstrated this with the seminal AlexNet
CNN, obtaining highly accurate results. We also analysed several variants of alternative
string-maps, and found that the accuracy of the disambiguation algorithm was highly
robust to such variation.

Since the core of our disambiguation algorithm is a classification method to determine
how similar two text records are, it should be adaptable to other NLP problems which
involve text matching of multiple strings, such as academic author name disambiguation,
assignee disambiguation, or record linkage problems. For example, for assignee disam-
biguation, comparison-maps could be generated for pairs of assignee mentions in differ-
ent patents, which would include string-maps for assignees and associated inventors. The
challenges of adapting the algorithm for assignee disambiguation would include identi-
fying a suitable labelled dataset of disambiguated assignees, identifying which fields to
include as string-maps in each pairwise comparison-map, and adapting the blocking proce-
dure for assignee data, however we believe these challenges would be solvable. The algo-
rithm could also be modified for less common applications, such as processing records that

Fig. 6 Variation of first names within largest inventor groups. Shows the degree of variation of first names
within each of the top 50 largest inventor groups. Results from three different versions of the disambigua-
tion algorithm (with heuristic string-map character order and layout) are shown: standard (a), augmented
without sub-string splitting applied to large groups (b), and augmented with sub-string splitting applied
to large groups (c). Colours show the proportion that each nth variation of the first name contributes to
the inventor group. Inventor groups with only one variation of the first name will be plotted as a dark red
(proportion = 1) square at the 0th position. Note that a has the most first name variations, while c has the
least. (Color figure online)

▸

733Scientometrics (2024) 129:719–743

1 3

734 Scientometrics (2024) 129:719–743

1 3

contain both text and image data. This could be done by combining each record’s associ-
ated image with the abstract image representation of the record’s text, in a single combined
comparison-map.

Appendix 1: Removal of duplicate records

It is sometimes obvious that two inventor name records likely belong to the same indi-
vidual, because the two records contain several fields that are identical. For example, if the
last name, first name, city, and IPCs of two different records are all exactly identical, it is
highly likely that the two records belong to the same individual. We remove such duplicate
records based on the following duplication keys:

For a given group of duplicate records sharing the same duplication key, all records except
for the first record to be processed are removed from the bulk data. The first record then
remains within the bulk data to be processed by the disambiguation algorithm, receiving a
unique inventor ID once the algorithm has completed its run. That same ID is then assigned
to each removed record in the corresponding group of duplicate records.

Appendix 2: Blocking

The blocking procedure broadly involves grouping together inventor name records into
“blocks” (or “bins”) using each inventor’s last name, and sometimes also their first name.
Latter parts of the algorithm will only assess pairwise comparisons within these blocks,
never across different blocks.

We firstly group patent–inventor name records together by the first three letters of the
last name (this first step is identical to the initial stage of the blocking procedure used by
Ventura et al. (2015)). However, some of the resulting blocks contain very large numbers

Table 6 Comparison of results with and without removal of lumping errors from large inventor groups

String-map layout [p̄ ; l̄] Disambiguation algorithm Recall Precision F1

Heuristic character order and
layout

[0.02; 0.1] Standard 98.67 99.48 99.07

Augmented, without sub-string
splitting

97.42 99.88 98.64

Augmented, with sub-string
splitting

96.89 99.88 98.36

Random order, heuristic layout [0.03; 0.05] Standard 98.76 99.41 99.09
Augmented, without sub-string

splitting
97.73 99.46 98.59

Augmented, with sub-string
splitting

96.89 99.89 98.37

735Scientometrics (2024) 129:719–743

1 3

of records, and hence large numbers of pairwise comparisons. To improve efficiency, we
further divide such large blocks into smaller blocks by progressively increasing the num-
ber of letters used for blocking. That is, if the number of records within a given block
(nb) is above some threshold number (̄nb), then the records within that block are separated
into smaller blocks according to the first four letters of the last name. We then continue
sub-dividing any blocks that still have nb > n̄b , according to the first five letters of the last
name, then six letters, and so on. If all letters of the last name have been used and any
blocks still have nb > n̄b , then we append a comma to the string and begin progressively
appending letters from the first name as well.

We use n̄b = 100 throughout this work, as initial testing indicated that it produced a
good balance between the following:

– computational efficiency i.e. smaller n̄b leads to more numerous, smaller bins (hence
fewer comparisons—which are O(n2

b
) for each bin—and less computation time),

– accuracy i.e. smaller n̄b reduces the number of unnecessary comparisons between
records (often non-matched records), which should reduce false positives,

– recall i.e. larger n̄b leads to fewer, larger bins, which decreases splitting errors (decreas-
ing false negatives).

Together with the deduplication procedure, this reduces the number of pairwise compari-
sons from ≈ 77 trillion before the blocking procedure to ≈ 112 million.

Note that since latter parts of the algorithm only assess within-block pairwise compari-
sons and some inventors’ sets of records may have been separated across two or more dif-
ferent blocks, there is a maximum limit to the possible recall attainable by the disambigua-
tion algorithm. After running the blocking procedure on the labelled dataset, we use known
pairwise matches in the labelled data to estimate this maximum limit to recall, obtaining
the following values: 99.47% (E &S training data), 99.98% (E &S test data), 99.83% (IS
training data), and 99.86% (IS test data).

Appendix 3: Clustering algorithm to assign inventor groups

Here we describe the clustering algorithm we use to convert pairwise match probabilities
into groups of records each belonging to a single unique inventor. We firstly convert each
pairwise probability between the ith and jth record (pij) into one of the binary classes (cij ;
either “match” or “non-match”) based on a threshold probability value (̄p) as follows:

The inventor group linking algorithm then primarily involves combining different sub-
groups together into the one group if they share enough links (pairwise matches). Within a
given block, the algorithm involves the following steps:

(1) Order all patent–inventor name records by the number of links they have to other
records (i.e. the number of asserted matches to other records), highest first.

(6)cij =

{

match, if pij ⩾ p̄,

non-match, otherwise.

736 Scientometrics (2024) 129:719–743

1 3

(2) Assign a UID to each isolated (non-matched) patent–inventor name.
(3) Assign records to inventor groups. That is, for a given record, the corresponding inven-

tor group initially comprises just the record itself and all records it is linked (matched)
to. Each of these linked records (nodes) are kept in the current inventor group only if
the number of links (l) it has to the current group is ⩾ the number of nodes in the group
(n) times some threshold proportion (̄l); i.e. if l ⩾ nl̄ . This removes the most weakly-
linked records from each group (i.e. the nodes with fewest links to their group), which
are more likely to be false positive matches. Any outside-group links—i.e. links to
nodes that are not within the current group—are also recorded during this step.

(4) Repeat Step 2, because some records may have become isolated (non-matched) follow-
ing Step 3.

(5) Combine inventor groups together if the number of links they share is greater than a
specified threshold. In particular, for an inventor group with nself records (nodes), we
combine it with any other group with nother nodes if the number of links to that other
group (l) satisfies both: l ⩾ l̄ nself , and: l ⩾ l̄ nother.

(6) For each resulting inventor group, assign an identical UID to all patent–inventor name
records in the group.

Appendix 4: Random string‑map layouts

Here we show the random string layouts analysed in “Testing alternative string-maps” sec-
tion. Figure 7 shows the string-maps we use for runs where characters are positioned using
an identical pixel co-ordinate layout to the heuristic layouts shown in Figs. 1 and 4 (main
text), but where the order of each character has been randomised.

Figure 8 shows the string-maps used for runs where both pixel co-ordinate layout and
character order are randomised.

The left image in Fig. 9 shows the comparison-map with random layout and character
order in which we use the smaller 5 × 5 pixel string-map (Fig. 8, left image) for co-inven-
tors and assignees, rather than the larger string-map (Fig. 8, right image). The right image
in Fig. 9 shows the associated record-map layout.

Fig. 7 Random character order. Here we show the smaller string-map (left), IPC-map (middle), and larger
string-map (right) we use for runs in which the character order has been randomised

737Scientometrics (2024) 129:719–743

1 3

Appendix 5: Name variations for largest inventor groups

Here we show name variations present in the top 10 largest inventor groups, for the
standard disambiguation algorithm with heuristic string-map character order and layout
(Tables 7, 8), as well as for two different augmented versions of the disambiguation

Fig. 8 Random character order and layout. Here we show the smaller string-map (left; identical to the left
string-map in Fig. 7), IPC-map (middle), and larger string-map (right) with both random character order
and random pixel co-ordinate layout

Fig. 9 Random character order and layout, with small string-maps. The left image shows the comparison-
map used for runs with smaller string-maps for co-inventors and assignees, as well as random character
order and random pixel co-ordinate layout. The right image shows the associated record-map layout

738 Scientometrics (2024) 129:719–743

1 3

Table 7 Name variations for largest inventor groups using the standard disambiguation algorithm (for
inventor groups 0–4)

Shows name variations for the first half of the top 10 largest inventor groups; i.e. groups 0–4. See Table 8
for groups 5–9. Note that while variations in first name may represent inventor name records that belong
to different individuals, in some cases they may represent inventor name records that belong to the same
inventor that has used different variations of their name on different patents. For a given inventor name
group, only the top 10 most frequest first names are shown (vertical ellipses denote absent records)

Group # Size (records) Last names % First names %

0 4692 Silverbrook 99.98 Kia 100.0
Silverbook 0.02

1 3813 Yamazaki 100.0 Shunpei 99.21
Shumpei 0.52
Shunepi 0.21
Shunnei 0.03
Shupei 0.03

2 1737 Kobayashi 100.0 Masaaki 10.88
Masato 8.92
Masaki 8.52
Masahiko 7.43
Masahiro 7.08
Masaru 6.16
Masayuki 5.93
Masakazu 5.93
Masanori 5.64
Masao 5.53
⋮ ⋮

3 1555 Yamamoto 100.0 Masayuki 17.04
Masahiro 15.43
Masaki 13.18
Masaya 8.36
Masanobu 6.50
Masashi 6.24
Masao 5.08
Masaaki 4.18
Masakazu 3.67
Masato 2.96
⋮ ⋮

4 1457 Kobayashi 99.79 Hiroshi 34.52
Kobayashi, legal representative 0.14 Hiroyuki 28.00
Kobayashi, deceased 0.07 Hiroaki 8.10

Hirokazu 6.79
Hiromichi 3.16
Hiroki 2.88
Hiroyoshi 2.26
Hirotada 2.26
Hiroo 2.13
Hiromi 1.99
⋮ ⋮

739Scientometrics (2024) 129:719–743

1 3

Table 8 Name variations for
largest inventor groups using
the standard disambiguation
algorithm (for inventor groups
5–9)

Group # Size (records) Last names % First names %

5 1407 Weder 100.0 Donald 100.0
6 1406 Nakamura 100.0 Masayuki 10.53

Masahiro 9.46
Masaru 9.32
Masao 7.82
Masato 6.90
Masaki 6.26
Masanori 6.12
Masahiko 5.97
Masashi 5.48
Masakazu 4.13
⋮ ⋮

7 1397 Takahashi 100.0 Hiroyuki 36.44
Hiroshi 35.79
Hiroaki 8.52
Hirokazu 6.80
Hiroki 6.16
Hiroyasu 1.65
Hiromi 1.43
Hirohisa 1.15
Hiroharu 0.72
Hiroko 0.50
⋮ ⋮

8 1334 Watanabe 100.0 Hiroshi 46.55
Hiroyuki 30.43
Hirofumi 5.92
Hiroaki 5.47
Hiroki 2.47
Hiroyoshi 2.10
Hiromi 1.95
Hiromu 1.57
Hirotaka 0.60
Hirosi 0.37
⋮ ⋮

9 1332 Kobayashi 100.0 Takashi 31.83
Takeshi 11.86
Takao 9.98
Takayuki 6.68
Takahiro 5.78
Takeo 5.78
Takehiro 2.78
Takumi 2.40
Takaichi 2.33
Takako 2.03
⋮ ⋮

Shows name variations for the second half of the top 10 largest inven-
tor groups; i.e. groups 5–9. See Table 7 for groups 0–4

740 Scientometrics (2024) 129:719–743

1 3

Table 9 Name variations for
largest inventor groups using
the augmented disambiguation
algorithm without sub-string
splitting applied to large groups

Group # Size (records) Last names % First names %

0 4692 Silverbrook 99.98 Kia 100.0
Silverbook 0.02

1 3783 Yamazaki 100.0 Shunpei 100.0
2 1555 Yamamoto 100.0 Masayuki 17.04

Masahiro 15.43
Masaki 13.18
Masaya 8.36
Masanobu 6.50
Masashi 6.24
Masao 5.08
Masaaki 4.18
Masakazu 3.67
Masato 2.96
⋮ ⋮

3 1407 Weder 100.0 Donald 100.0
4 1389 Nakamura 100.0 Masahiro 9.58

Masaru 9.43
Masayuki 9.43
Masao 7.92
Masato 6.98
Masaki 6.34
Masanori 6.19
Masahiko 6.05
Masashi 5.54
Masakazu 4.18
⋮ ⋮

5 1265 Lapstun 100.0 Paul 100.0
6 1179 Nakamura 100.0 Hiroshi 43.85

Hiroyuki 18.32
Hiroki 12.38
Hiroaki 12.13
Hirotake 6.79
Hirotaka 2.46
Hiromi 1.87
Hiroya 1.27
Hirochika 0.76
Hiro 0.17

7 1145 Sandhu 100.0 Gurtej 99.65
Gurtel 0.26
Gurtei 0.09

8 1079 Koyama 100.0 Jun 95.09
Junichi 2.87
Junji 1.48
Junichiro 0.56

9 1075 Forbes 100.0 Leonard 100.0

Same as Table 7, except for the top 10 largest inventor groups obtained
using the augmented version of the disambiguation algorithm without
sub-string splitting applied to large groups

741Scientometrics (2024) 129:719–743

1 3

algorithm; one without sub-string splitting applied to large inventor groups (Table 9)
and another with sub-string splitting applied to large inventor groups (Table 10).

Acknowledgements We thank Associate Professor Kai Qin and Professor Elizabeth Webster for their help-
ful comments on the manuscript. We also thank the reviewers of this manuscript for taking the time and
effort to provide comments and suggestions that helped improve the quality of this work.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions.

Table 10 Name variations for
largest inventor groups using
the augmented disambiguation
algorithm with sub-string
splitting applied to large groups

Same as Table 9, except for the top 10 largest inventor groups obtained
using the augmented version of the disambiguation algorithm with
sub-string splitting applied to large groups

Group # Size (records) Last names % First names %

0 4692 Silverbrook 99.98 Kia 100.0
Silverbook 0.02

1 3783 Yamazaki 100.0 Shunpei 100.0
2 1407 Weder 100.0 Donald 100.0
3 1389 Nakamura 100.0 Masahiro 9.58

Masaru 9.43
Masayuki 9.43
Masao 7.92
Masato 6.98
Masaki 6.34
Masanori 6.19
Masahiko 6.05
Masashi 5.54
Masakazu 4.18
⋮ ⋮

4 1265 Lapstun 100.0 Paul 100.0
5 1145 Sandhu 100.0 Gurtej 99.65

Gurtel 0.26
Gurtei 0.09

6 1075 Forbes 100.0 Leonard 100.0
7 1026 Koyama 100.0 Jun 100.0
8 930 Wood, Jr 98.49 Lowell 100.0

Wood 1.51
9 905 Takahashi 100.0 Kenji 51.82

Kenichi 23.87
Ken 19.01
Kenichiro 2.76
Kensuke 1.33
Kenichirou 0.44
Kenichiroh 0.44
Kenkichi 0.22
Kennichi 0.11

742 Scientometrics (2024) 129:719–743

1 3

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Bromley, J., Bentz, J. W., Bottou, L., Guyon, I., Lecun, Y., Moore, C., Säckinger, E., & Shah, R. (1993).
Signature verification using a “Siamese’’ time delay neural network. International Journal of Pat-
tern Recognition and Artificial Intelligence, 07(04), 669–688. https:// doi. org/ 10. 1142/ S0218 00149
30003 39

Gay, C., Latham, W., & Le Bas, C. (2008). Collective knowledge, prolific inventors and the value of
inventions: An empirical study of French, German and British patents in the US, 1975–1999. Eco-
nomics of Innovation and New Technology, 17(1–2), 5–22. https:// doi. org/ 10. 1080/ 10438 59070
12791 93

Ge, C., Huang, K., & Png, I. P. L. (2016). Engineer/scientist careers: Patents, online profiles, and misclas-
sification bias. Strategic Management Journal, 37, 232–253. https:// doi. org/ 10. 1002/ smj

Hall, B. H., Jaffe, A. B., & Trajtenberg, M. (2001). The NBER patent citation data file: Lessons, insights
and methodological tools. National Bureau of Economic Research Working Paper 8498. https:// doi.
org/ 10. 1186/ 1471- 2164- 12- 148.

Hoisl, K. (2009). Does mobility increase the productivity of inventors? Journal of Technology Transfer,
34(2), 212–225. https:// doi. org/ 10. 1007/ s10961- 007- 9068-5

Hu, J., Lu, J., & Tan, Y. P. (2014). Discriminative deep metric learning for face verification in the wild. In
Proceedings of the IEEE Computer Society conference on computer vision and pattern recognition,
2014 (pp. 1875–1882). https:// doi. org/ 10. 1109/ CVPR. 2014. 242.

Jaro, M. A. (1989). Advances in record-linkage methodology as applied to matching the 1985 Census of
Tampa, Florida. Journal of the American Statistical Association, 84(406), 414–420. https:// doi. org/ 10.
1080/ 01621 459. 1989. 10478 785

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., & Darrell, T.
(2014). Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM
international conference on Multimedia, 2014 (pp. 675–678). https:// doi. org/ 10. 1145/ 26478 68. 26548
89.

Kim, K., Khabsa, M., & Giles, C. L. (2016). Random Forest DBSCAN for USPTO inventor name disam-
biguation. https:// doi. org/ 10. 1145/ 29108 96. 29254 65.

Koch, G., Zemel, R., & Salakhutdinov, R. (2015). Siamese neural networks for one-shot image recognition.
In Proceedings of the 32nd international conference on machine learning, 2015 (Vol. 37). https:// doi.
org/ 10. 1017/ CBO97 81107 415324. 004.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neu-
ral networks. Advances in Neural Information Processing Systems, 25, 1097–1105.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and reversals. Soviet
Physics Doklady, 10(8), 707–710 (citeulike-article-id 311174).

Li, G. C., Lai, R., D’Amour, A., Doolin, D. M., Sun, Y., Torvik, V. I., Yu, A. Z., & Lee, F. (2014). Dis-
ambiguation and co-authorship networks of the U.S. patent inventor database (1975–2010). Research
Policy, 43(6), 941–955. https:// doi. org/ 10. 1016/j. respol. 2014. 01. 012

Miguélez, E., & Gómez-Miguélez, I. (2011). Singling out individual inventors from patent data. Research
Institute of Applied Economics Working Paper. https:// doi. org/ 10. 2139/ ssrn. 18568 75.

Morrison, G., Riccaboni, M., & Pammolli, F. (2017). Disambiguation of patent inventors and assignees
using high-resolution geolocation data. Scientific Data, 4, 1–21. https:// doi. org/ 10. 1038/ sdata. 2017. 64

Pezzoni, M., Lissoni, F., & Tarasconi, G. (2014). How to kill inventors: Testing the Massacrator© algo-
rithm for inventor disambiguation. Scientometrics, 101(1), 477–504. https:// doi. org/ 10. 1007/
s11192- 014- 1375-7

Raffo, J., & Lhuillery, S. (2009). How to play the “Names Game’’: Patent retrieval comparing different heu-
ristics. Research Policy, 38(10), 1617–1627. https:// doi. org/ 10. 1016/j. respol. 2009. 08. 001

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1142/S0218001493000339
https://doi.org/10.1142/S0218001493000339
https://doi.org/10.1080/10438590701279193
https://doi.org/10.1080/10438590701279193
https://doi.org/10.1002/smj
https://doi.org/10.1186/1471-2164-12-148
https://doi.org/10.1186/1471-2164-12-148
https://doi.org/10.1007/s10961-007-9068-5
https://doi.org/10.1109/CVPR.2014.242
https://doi.org/10.1080/01621459.1989.10478785
https://doi.org/10.1080/01621459.1989.10478785
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/2910896.2925465
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1016/j.respol.2014.01.012
https://doi.org/10.2139/ssrn.1856875
https://doi.org/10.1038/sdata.2017.64
https://doi.org/10.1007/s11192-014-1375-7
https://doi.org/10.1007/s11192-014-1375-7
https://doi.org/10.1016/j.respol.2009.08.001

743Scientometrics (2024) 129:719–743

1 3

Trajtenberg, M., Shiff, G., & Melamed, R. (2006). The “Names Game”: Harnessing inventors’ patent data
for economic research. National Bureau of Economic Research Working Paper 12479.

Ventura, S. L., Nugent, R., & Fuchs, E. R. H. (2015). Seeing the non-stars: (Some) sources of bias in past
disambiguation approaches and a new public tool leveraging labeled records. Research Policy, 44(9),
1672–1701. https:// doi. org/ 10. 1016/j. respol. 2014. 12. 010

Winkler, W. E. (1990). String comparator metrics and enhanced decision rules in the Fellegi–Sunter model
of record linkage. In Proceedings of the American Statistical Association Section on survey research
methods. https:// doi. org/ 10. 1016/ 0140- 7007(90) 90071-4.

Yang, G. C., Liang, C., Jing, Z., Wang, D. R., & Zhang, H. C. (2017). A mixture record linkage approach for
US patent inventor disambiguation. In Advanced multimedia and ubiquitous engineering. FutureTech
2017, MUE 2017, 2017. Lecture Notes in Electrical Engineering (Vol. 448, pp. 331–338). https:// doi.
org/ 10. 1007/ 978- 981- 10- 5041-1.

Yin, W., Schütze, H., Xiang, B., & Zhou, B. (2016). ABCNN: Attention-based convolutional neural net-
work for modeling sentence pairs. Transactions of the Association for Computational Linguistics, 4,
259–272. arXiv: 1512. 05193

Zagoruyko, S., & Komodakis, N. (2015). Learning to compare image patches via convolutional neural net-
works. In IEEE conference on computer vision and pattern recognition (CVPR), 2015. https:// doi. org/
10. 1109/ CVPR. 2015. 72990 64.

Zbontar, J., & LeCun, Y. (2016). Stereo matching by training a convolutional neural network to compare
image patches. Journal of Machine Learning Research, 17, 1–32. https:// doi. org/ 10. 1103/ PhysR evE.
93. 033307

Zhang, X., Zhao, J., & LeCun, Y. (2015). Character-level convolutional networks for text classification. In
Advances in neural information processing systems, 2015 (pp. 1–9). arXiv: 1502. 01710

https://doi.org/10.1016/j.respol.2014.12.010
https://doi.org/10.1016/0140-7007(90)90071-4
https://doi.org/10.1007/978-981-10-5041-1
https://doi.org/10.1007/978-981-10-5041-1
http://arxiv.org/abs/1512.05193
https://doi.org/10.1109/CVPR.2015.7299064
https://doi.org/10.1109/CVPR.2015.7299064
https://doi.org/10.1103/PhysRevE.93.033307
https://doi.org/10.1103/PhysRevE.93.033307
http://arxiv.org/abs/1502.01710

	A novel text representation which enables image classifiers to also simultaneously classify text, applied to name disambiguation
	Abstract
	Introduction
	Related work
	Data
	Disambiguation algorithm
	Comparison-map images
	Benefits of the comparison-map image representation
	Modifications to neural network architecture
	Converting pairwise probabilities into inventor groups, and assigning UIDs

	Results
	Labelled and bulk datasets
	Evaluation
	Disambiguation algorithm performance
	Testing alternative string-maps
	Examining lumping errors in large inventor groups

	Conclusion
	Appendix 1: Removal of duplicate records
	Appendix 2: Blocking
	Appendix 3: Clustering algorithm to assign inventor groups
	Appendix 4: Random string-map layouts
	Appendix 5: Name variations for largest inventor groups
	Acknowledgements
	References

