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Abstract
We introduce a novel method for converting text data into abstract image representations, 
which allows image-based processing techniques (e.g. image classification networks) to 
be applied to text-based comparison problems. We apply the technique to entity disam-
biguation of inventor names in US patents, obtaining a list of IDs which identify individ-
ual inventors with high accuracy. The method involves converting text from each pairwise 
comparison between two inventor name records into a 2D RGB (stacked) image represen-
tation. We then train an image classification neural network to discriminate between such 
pairwise comparison images. The trained neural network then labels each pair of records 
as either matched (same inventor) or non-matched (different inventors), producing highly 
accurate results. Our new text-to-image representation method could also be used more 
broadly for other text comparison problems, such as entity disambiguation of academic 
publications, or for problems that require simultaneous classification of both text and 
image datasets.

Keywords  Entity disambiguation · Text classification · Convolutional neural networks · 
Simultaneous text and image processing

Introduction

Databases of patent applications and academic publications can be used to investigate the 
process of research and innovation. For example, patent data can be used to identify prolific 
inventors (Gay et al., 2008) or to investigate whether mobility increases inventor productivity 
(Hoisl, 2009). However, the names of individuals in large bibliographic databases are rarely 
distinct, hence individuals in such databases are not uniquely identifiable. For example, an 
individual named “Chris Jean Smith” may have patents under slightly different names such 
as “Chris Jean Smith”, “Chris J. Smith”, “C J Smith”, etc... There may also be one or more 
other inventors with patents under the same or similar names, such as “Chris J. Smith”, “Chris 
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Smith”, etc... Thus it is ambiguous which names (and hence patents) should be assigned to 
which individuals. Resolving this ambiguity and assigning unique identifiers to individuals—a 
process often referred to as named entity disambiguation—is important for research that relies 
on such databases.

Machine learning algorithms have been used increasingly in recent years to perform auto-
mated disambiguation of inventor names in large bibliographic databases (e.g. (Li et al., 2014; 
Ventura et al., 2015; Kim et al., 2016)). See Ventura et al. (2015) for a review of supervised, 
semi-supervised, and unsupervised machine learning approaches to disambiguation. These 
more recent machine learning approaches have often out-performed more traditional rule- and 
threshold-based methods, but they have generally used feature vectors containing several pre-
selected measures of string similarity as input for their machine learning algorithms. That is, 
the researcher generally pre-selects a number of string similarity measures which they believe 
may be useful as input for the machine learning algorithm to make discrimination decisions.

Here we introduce a novel approach of representing text-based data, which enables 
image classifiers to also simultaneously perform text classification. This new representation 
enables a supervised machine learning algorithm to learn its own features from the data, 
rather than selecting from a number of pre-defined string similarity measures chosen by 
the researcher. To do this, we treat the name disambiguation problem primarily as a clas-
sification problem—i.e. we assess pairwise comparisons between records as either matched 
(same inventor) or non-matched (different inventors) (Trajtenberg et al., 2006; Miguélez & 
Gómez-Miguélez, 2011; Li et al., 2014; Ventura et al., 2015; Kim et al., 2016). Then, for a 
given pairwise comparison between two inventor records, our text-to-image representation 
method converts the associated text strings into a stacked 2D colour image (or, equiva-
lently, a 3D tensor) which represents the underlying text data.

We describe our text-to-image representation method in  “Comparison-map images” 
section (see Fig. 1 for an example of text-to-image conversion). We also test a number of 
alternative representations in “Testing alternative string-maps” section. Our novel method 
of representing text-based records as abstract images enables image processing algorithms 
(e.g. image classification networks), to be applied to text-based natural language process-
ing (NLP) problems involving pairwise comparisons (e.g. named entity disambiguation). 
We demonstrate this by combining our text-to-image conversion method with a commonly 
used convolutional neural network (CNN) (Krizhevsky et al., 2012), obtaining highly accu-
rate results (F1 99.09%, precision 99.41%, recall 98.76%).

Related work

Inventor name disambiguation studies have often used measures of string similarity 
in order to make automated discrimination decisions. For example, counts of n-grams 
(sequences of n words or characters) can be used to vectorise text, with the cosine distance 

Fig. 1   Constructing a string-map image. The first four images show each sub-map for the example word 
“JEN”, which are summed to construct the final string-map image (right-most image)
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between vectors providing a measure of string similarity (Raffo & Lhuillery, 2009; Pez-
zoni et al., 2014). Measures of edit distance consider the number of changes required to 
transform one string to another, e.g. the number of additions, subtractions, or substitutions 
used in the calculation of Levenshtein distance (1966), or of other operations such as trans-
positions (the switching of 2 letters) used to calculate Jaro–Winkler distance (Jaro, 1989; 
Winkler, 1990). Phonetic algorithms, such as Soundex, recode strings according to pronun-
ciation, providing a phonetic measure of string similarity (Raffo & Lhuillery, 2009).

Measures of string similarity such as these have been used to guide rule- and thresh-
old-based name disambiguation algorithms (e.g. (Miguélez & Gómez-Miguélez, 2011) 
and (Morrison et  al., 2017)). They can also be used within feature vectors inputted into 
machine learning algorithms. For example, Kim et  al. (2016) use such string similarity 
feature vectors to train a random forest to perform pairwise classification. Ventura et  al. 
(2015) reviewed several supervised, semi-supervised, and unsupervised machine learning 
approaches to inventor name disambiguation, as well as implementing their own supervised 
approach utilising selected string similarity features as input to a random forest model.

Two-dimensional CNNs have been used extensively in recent image processing applica-
tions (e.g. (Krizhevsky et  al., 2012)), and one-dimensional (temporal) CNNs have been 
used recently as character-level CNNs for text classification (e.g. (Zhang et  al., 2015)). 
Also, neural networks (usually CNNs) have been used previously to assess pairwise com-
parison decisions—e.g. in the case of pairs of: images (Koch et al., 2015), image patches 
(Zbontar & LeCun, 2016; Zagoruyko & Komodakis, 2015), sentences (Yin et al., 2016), 
images of signatures (Bromley et al., 1993), and images of faces (Hu et al., 2014). These 
networks are generally constructed for multiple images to be provided simultaneously as 
input, such as in the case of Siamese neural networks where two identical sub-networks are 
connected at their output (Bromley et al., 1993; Koch et al., 2015).

In this work we generate a single 2-dimensional RGB (stacked) image for a given 
pairwise record comparison. Thus any image classification network that processes sin-
gle images can be used (with minimal modification) to process our pairwise comparison 
images, therefore enabling such neural networks to also simultaneously classify associated 
text records. We demonstrate this using the seminal “AlexNet” image classification net-
work (Krizhevsky et al., 2012).

Data

We use a combination of two labelled datasets in this work to train the neural network and 
assess its performance. Each dataset was derived by separate authors, from the US National 
Bureau of Economics Research (NBER) Patent Citation Data File (Hall et al., 2001); i.e. a 
labelled dataset of Israeli inventors (Trajtenberg et al., 2006) (the “IS” dataset), and a data-
set of patents filed by engineers and scientists (Ge et al., 2016) (the “E &S” dataset). These 
datasets were combined with US Patent and Trademark Office (USPTO) patent data as part 
of the PatentsView Inventor Disambiguation Workshop1 hosted by the American Institutes 
for Research (AIR) in September 2015.

Each labelled dataset contains unique IDs (UIDs) that identify all inventor-name 
records from different patents belonging to each unique inventor. We also extracted sev-
eral other variables from inventor-name records in the bulk USPTO patent data to use in 
our disambiguation algorithm: first name, middle name, last name, city listed in address, 

1  http://​www.​paten​tsview.​org/​commu​nity/​works​hop-​2015.

http://www.patentsview.org/community/workshop-2015
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international patent classification (IPC) codes (i.e. subjects/fields covered by the patent), 
assignees (i.e. associated companies/institutes), and co-inventor names on the same patent.

Disambiguation algorithm

Our novel inventor disambiguation algorithm involves the following main steps: 

(1)	 Duplicate removal: remove duplicate inventor records.
(2)	 Blocking: block (or “bin”) all names by last name, and also by first name in some cases.
(3)	 Generate pairwise comparison-map images: convert text from each within-block 

pairwise record comparison into a 2D RGB (stacked) image representation.
(4)	 Train neural network: use 2D comparison-map images generated from manually 

labelled data to train a neural network to classify whether a given pairwise record 
comparison is a match (same inventor) or non-match (different inventors).

(5)	 Classify pairwise comparison-map images: deploy the trained neural network to 
classify pairwise comparison images generated from the bulk patent data, producing 
a match probability for each record pair.

(6)	 Convert pairwise match probabilities into clusters: convert the pairwise match/
non-match probabilities generated by the neural net into inventor clusters—i.e. groups 
of inventor-name records that each belong to a distinct individual inventor. Assigning a 
UID to each of these groups then leads to a single set of disambiguated inventor names.

Note that the main purpose of the first two steps is to improve computational efficiency. 
That is, rather than process all possible pairs of patent–inventor records (which has time 
complexity O(n2) for n records), the records are first grouped into similar clusters, or 
“blocks”, and pairwise comparisons are only made within those blocks. For further detail 
regarding steps 1 and 2, see “Appendices 1 and 2”. Steps 3–6 are described in detail below.

Comparison‑map images

Our intent is to assess all possible within-block pairwise comparisons between pat-
ent–inventor records, classifying each comparison as either a match or non-match. To do 
this, we introduce a new method of converting any string of text into an abstract image rep-
resentation of that text, which we refer to as a “comparison-map” image. Any image clas-
sification neural network can then be used to process these images and hence effectively 
perform text classification.

To generate a comparison-map image, we firstly define a specific 2D character layout—
i.e. a grid of pixels specifying the positions of each letter. The layout of this “string-map” 
is shown in Fig. 1 (identical in each of the five images).2 For a given word (e.g. “JEN”), 
we then add a particular colour (e.g. red) to the pixels of each letter in the word, as well as 
to any pixels in straight lines connecting those letters. In particular, we add colour to the 
pixels of the first and last letters (Fig. 1, left-most image), and to all connecting pixels in 

2  Note that any accented characters and other non-ASCII characters in the data are first converted to their 
corresponding ASCII equivalent before being applied to the string-map (e.g. è is converted to e).
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a line connecting each two-letter bi-gram3 (Fig. 1, second and third images, which corre-
spond to the two bi-grams in “JEN”; i.e. “JE” and “EN”). For repeated letters, the bi-gram 
contains two of the same letter, so we add colour only to the pixel corresponding to that 
letter (e.g., for the name “JENNY”, we would add colour for four different bi-grams: “JE”, 
“EN”, “NN”, and “NY”).

To highlight the beginning of each string-map, we also repeat the process for the first 
bi-gram only (“JE”) in blue, rather than red (Fig. 1, fourth image). The final string-map for 
the word “JEN” is shown in Fig. 1 (right-most image). If we then add the string-map of any 
other word to the green channel of the same RGB image (with the first bi-gram again high-
lighted in blue), the resulting image represents the pairwise comparison of the two words 
(e.g. Fig. 2, right-most image).

For a given inventor name record, we generate string-maps for each variable in the 
record—i.e. first name, middle name, last name, city, IPC codes, co-inventors, and assign-
ees.4 These string-maps are combined into a single image, arranged as shown in Fig.  3, 
which we refer to as a “record-map”.

Since a given patent–inventor record can have multiple assignees and/or co-inven-
tors, we use a larger string-map for those variables (see Fig. 4, left image). This reduces 

Fig. 2   Comparison of two strings. To compare the names “JEN” and “LINDA”, we add the string-map for 
“JEN” (left image) to the string-map for “LINDA” (middle image) to generate the final comparison image 
(right image)

Fig. 3   Record-map layout. 
Shows the positioning of each 
string-map within a given record-
map

3  Note that connecting pixels are selected using the Python Imaging Library (PIL) ImageDraw.Draw.line() 
function, which produces a consistent selection for a given bi-gram.
4  Note that if any string-map contains more than one word, we add colour for each bi-gram composing each 
word, including adding blue to the first bi-gram of each word. For example, if the middle name contained 
the text “JEN LILY”, then colour would be added to pixels corresponding to the bi-grams “JE”, “EN”, “LI”, 
“IL”, and “LY”, and blue would be added to the pixels corresponding to the first bi-gram of each word; i.e. 
“JE” and “LI”.
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the possibility that pixels will become saturated in cases where many assignees (or co-
inventors) are overlayed onto the same string-map. We also add less colour to each pixel 
in these larger string-maps, again to reduce the possibility of saturation. For co-inventors, 
we include only the last names of each co-inventor on the patent (rather than including 
first, middle and last names, which would increase the saturation of the co-inventor string-
maps). Co-inventor and assignee text often includes more than one word so, as was the 
case with inventor names, we add the pixel colours for each word to the same string-map, 
colouring pixels corresponding to all within-word bi-grams. Blue is used to colour the pix-
els of the first bi-gram of each word.

For IPC codes, which contain numbers as well as letters, we use a different string-map 
shown in Fig. 4 (right image).

We compare any two inventor name records by stacking the two associated 2D record-
maps into the same RGB image, one as the red channel and the other as green (with the 
beginning two-letter bi-gram of each record sharing the blue channel). We refer to the 
resulting RGB image (or 3D tensor) representation as a “comparison-map” (Fig. 5).

Since red and green combined produce yellow in the RGB colour model, a comparison-
map image generated from two similar records should contain more yellow (e.g. Fig. 5, 
left image), whereas a comparison-map image from two dissimilar records should contain 
more red and green (e.g. Fig. 5, right image) due to less overlap between the two record-
maps. When training on labelled comparison-maps, we expect that the neural network 
will learn to identify features such as these, which are useful for discriminating between 
matched/non-matched records. That is, the neural network’s learned pattern recognition on 
comparison-map images will essentially recognise underlying text patterns which are pre-
sent in the associated patent–inventor name records.

Note that we chose the particular layout of the letters in the string-map shown in Fig. 1 
heuristically, such that vowels (which are less important than consonants when assess-
ing string similarity) are positioned towards the centre of the grid, where pixels are more 
likely to saturate. We also grouped letters with similar phonetic interpretations, such as 
“S” and “Z”, close to each other. We anticipated that this heuristic layout might make it 
more straightforward for the network to learn which features are associated with matches/

Fig. 4   Larger string-map for assignees and co-inventors, and IPC-map. The larger string-map used to con-
vert a given list of assignees or co-inventors into an abstract image representation (left), and the IPC-map 
used to convert a given list of IPC classes into an abstract image representation (right)
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non-matches. However, we test how the heuristic layouts shown in Figs. 1, 2, 3, and 4 per-
form compared with alternative random layouts later in “Testing alternative string-maps” 
section, and find similar performance regardless of the chosen layout.

Benefits of the comparison‑map image representation

Our method of converting text into a stacked 2D RGB bitmap for neural net-based image 
classification has several benefits:

–	 The powerful classification capabilities of previous image classification networks can 
be utilised for text-based record matching, with minimal modification.

–	 The neural network learns its own features from the data, rather than learning from a 
feature vector of pre-defined string similarity measures chosen by the researcher.

–	 Minor spelling variations and errors do not alter the resulting string-map very much, 
and the neural network can potentially learn that such minor features are unimportant 
for discriminating between matches and non-matches.

–	 Matched records with differing word ordering (e.g. re-ordered co-inventor names on 
different patents) are likely to be identified as matched, due to overlapping pixels.

–	 The neural net can potentially learn to ignore certain shapes of common words (e.g. 
“Ltd”, “LLC”, “Inc”, etc...) which are not useful for discrimination decisions.

–	 Our novel disambiguation algorithm performs well under multiple different choices 
of alternative string-maps other than those shown in Figs. 1, 2, 3, and 4 (see “Testing 
alternative string-maps” section), suggesting that multiple alternatives of our compari-
son-map representations allow for robust pattern recognition and feature extraction.

Note that the above benefits of our text-to-image conversion method would also apply to 
other text-based comparison problems (e.g. data linkage, or disambiguation of academic 

Fig. 5   Comparison-map examples. Two examples of comparison-map images. The left comparison-map 
image was generated using two matched records (Table 1, rows 1 and 2), and the right image from two non-
matched records (Table 1, rows 1 and 3)
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papers), or to problems that require simultaneous classification of both text and image 
datasets.

Modifications to neural network architecture

To demonstrate that our text-to-image conversion method can be combined with an image 
classifier to perform text-based classification, we apply the method to a commonly used 
image classification neural network; i.e. the seminal “AlexNet” CNN (Krizhevsky et  al., 
2012). AlexNet was originally designed to classify colour images ( 224 × 224× 3-pixel 
bitmaps) amongst 1000 classes. We slightly modify the network architecture to enable 
classification of pairwise comparison-map images ( 31 × 31× 3-pixel bitmaps) into two 
classes (match/non-match), by altering four hyperparameters as shown in Table  2. We 
use the NVIDIA Deep Learning GPU Training System5 (DIGITS) v2.0.0 implementation 
of AlexNet, and use the Caffe backend (Jia et  al., 2014). We use the default settings for 
the DIGITS solver (stochastic gradient descent), batch size (100), and number of training 
epochs (30). Rather than use the default learning rate (0.01), we use a sigmoid decay func-
tion to progressively decrease the learning rate from 0.01 to 0.001 over the course of the 30 
training epochs, as testing indicated that this produced slightly higher accuracies. Instead of 
the 1000-neuron softmax output layer in AlexNet, we use a 2-neuron softmax output layer, 
which outputs a probability distribution across our two possible classes (match/non-match).

Note that the default settings of the DIGITS v2.0.0 implementation of AlexNet trans-
form the input data by: (1) altering input images to show the deviation from the mean of all 
input images (by subtracting the mean image from each input image); (2) randomly mirror-
ing input images; and (3) taking a random square crop from the input image. The main pur-
pose of performing such transformations is to introduce variability into the training images 
that are expected to be present in the unlabelled data, however we do not use any of those 
transformations in this work because our images are much more self-consistent than those 
in the ImageNet database.

Converting pairwise probabilities into inventor groups, and assigning UIDs

After running the trained neural network on bulk patent data, each within-block pairwise 
comparison has an associated match probability. To assign UIDs to the bulk data, we 

Table 1   Mock records of three patent–inventor name instances

Rows 1 and 2 are the same mock inventor, while row 3 is a different inventor

Name IPC codes City Co-inventors (last names) Assignees

Emmett Lathrop 
Brown

A10C, 
A10D

Hill Valley McFly, Clayton-Brown, 
Sanchez

Science Solutions

Emmett L. Brown A11E Hill Valley Sanchez Science Solutions Pty. Ltd.
James T. Brock G03C Melbourne Edison, Da Vinci Swinburne University of 

Technology, The University of 
Melbourne

5  https://​devel​oper.​nvidia.​com/​digits.

https://developer.nvidia.com/digits
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convert these pairwise probabilities into linked (matched) “inventor groups” using a clus-
tering algorithm. Each inventor group is a linked cluster of inventor name records which 
all refer to the same individual. Briefly, the clustering algorithm involves converting each 
pairwise probability value to a binary value (match/non-match) using a pre-selected prob-
ability threshold ( p̄ ) as a cut-off. Each matched record is then clustered into a larger inven-
tor group if the number of links (l) it has to the that group is ⩾ the number of nodes in the 
group (n) times some threshold proportion value ( ̄l ); i.e. if l ⩾ nl̄ . This removes weakly-
linked records from each group. For further detail on the clustering algorithm, see “Appen-
dix 3”. Note that choosing different p̄ and l̄ values generates different trade-offs between 
precision and recall.

Once the clustering algorithm has been applied to each block, every patent–inventor 
name instance has an associated unique inventor ID, and the disambiguation process is 
complete.

Results

Here we firstly describe our procedure for dividing our labelled datasets into training and 
test data. We then evaluate our inventor disambiguation algorithm, compare those results to 
previous studies, and test alternative string-map layouts.

Labelled and bulk datasets

We use the IS and E &S labelled datasets to train the neural network to discriminate 
between matched and non-matched pairwise comparisons. Each of the labelled datasets are 
randomly separated into 80% training data (used to train the neural network) and 20% test 
data (used to assess algorithm performance). We use 75% of the training data to train the 
network, and the remaining 25% to perform validation assessments during training in order 
to monitor potential overfitting.

Duplicate removal and blocking is then performed on the labelled data, and compari-
son-map images are generated for all possible pairwise record comparisons within each 
block (723,178 comparison-maps for training and 144,552 comparison-maps for testing).

Table 2   Hyperparameters that differ between the two neural network architectures

See Krizhevsky et al. (2012) for more details on the network architecture

Hyperparameter AlexNet This work Rationale for modification

Number of neurons in input 
layer

224 × 224 × 3 = 150, 528 31 × 31 × 3 = 2883 Smaller size of input images

Kernel size in first convolu-
tional layer

11 × 11 × 3 3 × 3 × 3 Smaller-scale features to learn

Stride length of kernels in 
1st conv layer

4 1 Smaller kernel size

Number of neurons in output 
layer

1000 2 Fewer classes
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We also perform duplicate removal and blocking on the bulk data, generating compar-
ison-maps for all possible pairwise within-block comparisons (stored as 3D numerical 
arrays). The trained neural network is then deployed on the bulk patent data, generating 
match/non-match probabilities for all pairwise within-block comparisons (112,068,838 
comparison-maps). Prior to processing the bulk data, we experimented with multiple dif-
ferent values for the pairwise comparison probability threshold ( p̄ ) and linking proportion 
threshold ( ̄l ), based on evaluating the trained neural network on the labelled test data. Dif-
ferent p̄ and l̄ values produce different trade-offs between precision and recall, and we use 
values that produce an optimal trade-off (highest F1 score). We state each p̄ and l̄ value 
whenever quoting results from a given run of our disambiguation algorithm.

Evaluation

To evaluate the performance of the disambiguation algorithm, we use the manually 
labelled IS and E &S test data to estimate pairwise precision, recall, splitting, and lump-
ing based on numbers of true positive (tp), false positive (fp), true negative (tn), and 
false negative (fn) pairwise links within the labelled test data, as follows (e.g. (Ventura 
et al., 2015; Kim et al., 2016)):

Higher values are better for precision and recall, while lower values are better for lumping 
and splitting errors. We also use the pairwise F1 score:

Since the F1 score accounts for the trade-off between precision and recall, it is the primary 
measure we use to compare the performance of different disambiguation algorithms.

Disambiguation algorithm performance

The precision, recall, and F1 estimates for two example runs of our disambiguation 
algorithm are shown in the bottom two rows of Table 3—first is the highest F1 result 
obtained using the heuristic string-map character order (Figs. 1, 2, 3, 4), and second is 
the highest F1 result obtained using a randomly-generated string-map character order 

(1)Precision =
true pos. matches

all pos. matches
=

tp

tp + fp
,

(2)Recall =
true pos. matches

total true matches
=

tp

tp + fn
,

(3)Splitting =
false neg. non-matches

total true matches
=

fn

tp + fn
,

(4)Lumping =
false pos. matches

total true matches
=

fp

tp + fn
.

(5)
F1 = 2 × Precision ⋅ Recall

Precision + Recall.
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(see “Testing alternative string-maps” section for details). Table 3 also shows the best 
results (highest F1) obtained by previous studies which (1) disambiguate bulk USPTO 
patent data, and (2) evaluate their results using the same labelled datasets we use in this 
work (i.e. the IS and E &S datasets). Our inventor disambiguation algorithm performs 
well compared with these other disambiguation studies (Table 3, bottom row), margin-
ally out-performing the previous state-of-the-art study of Kim et al. (2016) and obtain-
ing a much higher F1 score than Yang et al. (2017) when measured via the IS and E &S 
datasets.

For completeness, we also compare our results to those of other studies which use 
alternative labelled datasets to the IS and E &S datasets used in this work—i.e. Table 4 
shows the best results obtained by each study, regardless of the evaluation dataset. Note 
that Table  4 provides a less equitable comparison than Table  3, as there is generally 
a small amount of variation in an algorithm’s F1 score when evaluated on different 
labelled datasets. Nonetheless, we include Table 4 here for completeness and consist-
ency with previous inventor name disambiguation studies, which often include compari-
son to other studies with different evaluation datasets. Our disambiguation algorithm 
is again competitive with the other state-of-the-art inventor name disambiguation algo-
rithms in Table 4, obtaining the highest F1 score compared with the other three studies 
which quote F1 results (top four rows, highest F1 score in bold), and obtaining the low-
est splitting and lumping errors compared with the two studies which do not quote F1 
results (bottom three rows, lowest splitting and lumping errors in bold).

Testing alternative string‑maps

Here we compare the performance of our heuristic string-map layouts (Figs. 1, 2, 3, 4) 
to several alternative string-maps. The first alternative string-map we test has random 
character order; i.e. we keep the pixel co-ordinates identical to the co-ordinates of the 
associated heuristic layout, but randomise the order of each character (these randomised 
string-maps are shown in “Appendix 4”, Fig. 7). We also test two alternative string-maps 

Table 3   Performance of 
two example runs of our 
disambiguation algorithm 
(bottom rows), compared with 
other studies evaluated on the IS 
or E &S labelled datasets

All values in %
†Calculated by averaging the IS and E &S results
*Note that this result was obtained using a randomly-generated string-
map character order (see “Testing alternative string-maps” section)

Method [p̄ ; l̄] Recall Precision F1

Kim et al. (2016); IS 98.13 99.89 99.00
Kim et al. (2016); E &S 98.10 99.95 99.02
Kim et al. (2016); Both† 98.12 99.92 99.01
Yang et al. (2017); IS 83.79 99.57 91.00
Yang et al. (2017); E &S 90.31 99.87 94.85
Yang et al. (2017); Both† 87.05 99.72 92.93
Ours; Both [0.02; 0.1] 98.67 99.48 99.07
Ours∗ ; Both [0.03; 0.05] 98.76 99.41 99.09
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in which we randomise both the pixel co-ordinate layout and character order (“Appen-
dix 4”, Fig. 8). One alternative uses the large string-map for co-inventors and assignees 
(Fig. 8, right image). The other alternative uses the smaller 5 × 5 pixel string-map for 
co-inventors and assignees (Fig.  8, left image), leading to a smaller comparison-map 
(see “Appendix  4”, Fig.  9). We also investigate a string-map with random character 
order in which we exclude the blue channel for leading bi-grams (Fig. 1, fourth image).

Estimates of precision, recall, and F1 for each of these alternative string-maps are 
shown in Table 5. For each alternative string-map, we ran the algorithm multiple times 
using different settings of the comparison probability threshold ( p̄ ) and linking propor-
tion threshold ( ̄l ), and only show results from the run which produced the highest F1 
score. Results obtained from each of the alternative string-maps are quite similar to 
those obtained using the heuristically-determined layout (F1 scores range from 98.99 
to 99.09%). This suggests that our method of converting text into abstract image repre-
sentations facilitates robust feature learning for several alternative choices of string-map 
structure, such as randomised string-map character order and/or layout, heuristic order 
and/or layout, different string-map sizes, and the inclusion/exclusion of a blue channel 
for leading bi-grams.

Examining lumping errors in large inventor groups

Labelled datasets such as the IS and E &S datasets contain far fewer records than the bulk 
data. While such subsets of labelled data are useful for measuring several facets of algo-
rithm accuracy, they are not very useful for measuring lumping errors from very common 
names that become relevant only when processing much larger amounts of data (such as 
the full bulk dataset). This is because, although very common names are likely to be pre-
sent in relatively small subsets of labelled data, there are far fewer of them compared with 
the full bulk dataset. When processing the bulk data, large numbers of common first names 

Table 4   Performance of our disambiguation algorithm relative to other studies, regardless of evaluation 
dataset

All values in %
†Ventura et  al. (2015) also use an “optoelectronics” (OE) labelled dataset to evaluate (Li et  al., 2014), 
obtaining lower errors on the full OE dataset (splitting: 2.49%, lumping: 0.39%), but higher errors on a ran-
dom sample of OE data (splitting: 10.54%, lumping: 1.21%)

Method [p̄ ; l̄] Splitting Lumping Recall Precision F1

Kim et al. (2016) 98.48 99.60 99.04
Morrison et al. (2017) 92 98 95
Yang et al. (2017) 96.15 99.61 97.85
Ours [0.03; 0.05] 98.76 99.41 99.09
Li et al. (2014)† 3.26 2.34
Ventura et al. (2015) 2.31 1.64
Ours [0.03; 0.05] 1.24 0.58
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can lead to a high degree of connectivity in large blocks of common last names, introduc-
ing lumping errors in large inventor name groups.

We can investigate the presence of these types of lumping errors by examining the larg-
est inventor groups. In “Appendix 5”, Tables 7 and 8 , we show the name variation for the 
10 largest inventor groups obtained using string-maps with heuristic character order and 
layout (i.e. the version of the disambiguation algorithm shown in the top row of Table 5). 
In many of the groups, there are several variations of first name within the same inventor 
group. Many of these look to be lumping errors, rather than different variations of the one 
first name used by the same inventor. The lumping error issue also seems to be more preva-
lent for very common Japanese last names such as Takahashi, Nakamura, and Kobayashi.

We also represent the first name variation information in heatmap form in Fig. 6a, which 
shows, for each of the top 50 largest inventor groups, the proportion that each nth variation 
of the first name contributes to the group. Inventor groups with only one variation of the 
first name will be plotted as a dark red ( proportion = 1 ) square at the 0th position. Note 
that we see quite a bit of variation in first names across the top 50 largest inventor groups 
(Fig. 6a). We should also note that name variations are only indicative of potential lumping 
errors—i.e. while variations in first names may represent inventor name records that belong 
to different individuals, in some cases they may represent inventor name records that belong 
to a single individual which has used different variations of their name on different patents.

To reduce the amount of lumping errors in large inventor groups when processing the 
full bulk dataset, we can apply extra disambiguation steps of:

–	 separating pairwise matches with mismatched first names (as measured via a Damerau–
Levenshtein Distance of ⩾ 2)6 or mismatched middle initials, if those records do not 
share any assignees,

–	 for large inventor groups ( > 100 records), which are more likely to contain large-group 
lumping errors due to very common names, using a more stringent criterion to identify 
mismatched first names (i.e. a Damerau–Levenshtein Distance of ⩾ 1 , rather than ⩾ 2 ), 
unless one first name is a sub-string of the other (i.e. to avoid splitting nickname varia-
tions such as Chris and Christopher).

Incorporating these extra changes into the disambiguation algorithm leads to a substantial 
reduction in the number of lumping errors in large inventor groups (see Fig.  6b, c and 

Table 5   Comparison of alternate string-map layouts

Each row shows the highest F1 result obtained for that string-map layout

String-map layout [p̄ ; l̄] Recall Precision F1

Heuristic character order and layout [0.02; 0.1] 98.67 99.48 99.07
Random order, heuristic layout [0.03; 0.05] 98.76 99.41 99.09
Random order and layout [0.05; 0.05] 98.77 99.29 99.03
Random order and layout, with small string-maps [0.05; 0.2] 98.46 99.52 98.99
Random order, heuristic layout, no blue channel [0.02; 0.05] 98.71 99.32 99.01

6  Note that we use Python’s Jellyfish module to calculate the Damerau–Levenshtein Distance.
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“Appendix” Tables 9 and 10) compared with in the absence of the changes (see Figure 6a 
and “Appendix” Tables 7 and 8). For the two different augmented versions of the disam-
biguation algorithm—one without sub-string splitting applied to large inventor groups 
(Fig.  6b), and one with sub-string splitting applied to large inventor groups (Fig.  6c)—
we see the greatest reduction in lumping errors when large inventor groups are separated 
(Fig. 6c).

We also examine in Table 6 the degree to which the augmentation of the disambigua-
tion algorithm, with and without sub-string splitting applied to large groups, affects the 
precision, recall, and F1 scores compared with the standard version of the algorithm. We 
do this for the two string-map methods that produced the highest F1 scores in Table 5; i.e. 
heuristic character order with heuristic layout, and random character order with heuristic 
layout. Table 6 shows that the augmented versions of the disambiguation algorithm have 
higher precision but lower recall and F1 scores, with sub-string splitting of large groups 
enhancing the differences from baseline.

Given all of the above considerations, we suggest that if large inventor groups are to be 
studied, then utilising the version of the disambiguation algorithm with sub-string splitting 
applied to large inventor groups would produce the most useful disambiguated inventor 
groups.

Conclusion

We introduced a new entity disambiguation algorithm and applied it to inventor names in 
USPTO patent applications. The text-to-image representations in our entity disambiguation 
algorithm provide a novel way of combining image processing with NLP, allowing image 
classifiers to perform text classification. We demonstrated this with the seminal AlexNet 
CNN, obtaining highly accurate results. We also analysed several variants of alternative 
string-maps, and found that the accuracy of the disambiguation algorithm was highly 
robust to such variation.

Since the core of our disambiguation algorithm is a classification method to determine 
how similar two text records are, it should be adaptable to other NLP problems which 
involve text matching of multiple strings, such as academic author name disambiguation, 
assignee disambiguation, or record linkage problems. For example, for assignee disam-
biguation, comparison-maps could be generated for pairs of assignee mentions in differ-
ent patents, which would include string-maps for assignees and associated inventors. The 
challenges of adapting the algorithm for assignee disambiguation would include identi-
fying a suitable labelled dataset of disambiguated assignees, identifying which fields to 
include as string-maps in each pairwise comparison-map, and adapting the blocking proce-
dure for assignee data, however we believe these challenges would be solvable. The algo-
rithm could also be modified for less common applications, such as processing records that 

Fig. 6   Variation of first names within largest inventor groups. Shows the degree of variation of first names 
within each of the top 50 largest inventor groups. Results from three different versions of the disambigua-
tion algorithm (with heuristic string-map character order and layout) are shown: standard (a), augmented 
without sub-string splitting applied to large groups (b), and augmented with sub-string splitting applied 
to large groups (c). Colours show the proportion that each nth variation of the first name contributes to 
the inventor group. Inventor groups with only one variation of the first name will be plotted as a dark red 
( proportion = 1 ) square at the 0th position. Note that a has the most first name variations, while c has the 
least. (Color figure online)

▸
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contain both text and image data. This could be done by combining each record’s associ-
ated image with the abstract image representation of the record’s text, in a single combined 
comparison-map.

Appendix 1: Removal of duplicate records

It is sometimes obvious that two inventor name records likely belong to the same indi-
vidual, because the two records contain several fields that are identical. For example, if the 
last name, first name, city, and IPCs of two different records are all exactly identical, it is 
highly likely that the two records belong to the same individual. We remove such duplicate 
records based on the following duplication keys:

For a given group of duplicate records sharing the same duplication key, all records except 
for the first record to be processed are removed from the bulk data. The first record then 
remains within the bulk data to be processed by the disambiguation algorithm, receiving a 
unique inventor ID once the algorithm has completed its run. That same ID is then assigned 
to each removed record in the corresponding group of duplicate records.

Appendix 2: Blocking

The blocking procedure broadly involves grouping together inventor name records into 
“blocks” (or “bins”) using each inventor’s last name, and sometimes also their first name. 
Latter parts of the algorithm will only assess pairwise comparisons within these blocks, 
never across different blocks.

We firstly group patent–inventor name records together by the first three letters of the 
last name (this first step is identical to the initial stage of the blocking procedure used by 
Ventura et al. (2015)). However, some of the resulting blocks contain very large numbers 

Table 6   Comparison of results with and without removal of lumping errors from large inventor groups

String-map layout [p̄ ; l̄] Disambiguation algorithm Recall Precision F1

Heuristic character order and 
layout

[0.02; 0.1] Standard 98.67 99.48 99.07

Augmented, without sub-string 
splitting

97.42 99.88 98.64

Augmented, with sub-string 
splitting

96.89 99.88 98.36

Random order, heuristic layout [0.03; 0.05] Standard 98.76 99.41 99.09
Augmented, without sub-string 

splitting
97.73 99.46 98.59

Augmented, with sub-string 
splitting

96.89 99.89 98.37
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of records, and hence large numbers of pairwise comparisons. To improve efficiency, we 
further divide such large blocks into smaller blocks by progressively increasing the num-
ber of letters used for blocking. That is, if the number of records within a given block 
( nb ) is above some threshold number ( ̄nb ), then the records within that block are separated 
into smaller blocks according to the first four letters of the last name. We then continue 
sub-dividing any blocks that still have nb > n̄b , according to the first five letters of the last 
name, then six letters, and so on. If all letters of the last name have been used and any 
blocks still have nb > n̄b , then we append a comma to the string and begin progressively 
appending letters from the first name as well.

We use n̄b = 100 throughout this work, as initial testing indicated that it produced a 
good balance between the following:

–	 computational efficiency i.e. smaller n̄b leads to more numerous, smaller bins (hence 
fewer comparisons—which are O(n2

b
) for each bin—and less computation time),

–	 accuracy i.e. smaller n̄b reduces the number of unnecessary comparisons between 
records (often non-matched records), which should reduce false positives,

–	 recall i.e. larger n̄b leads to fewer, larger bins, which decreases splitting errors (decreas-
ing false negatives).

Together with the deduplication procedure, this reduces the number of pairwise compari-
sons from ≈ 77 trillion before the blocking procedure to ≈ 112 million.

Note that since latter parts of the algorithm only assess within-block pairwise compari-
sons and some inventors’ sets of records may have been separated across two or more dif-
ferent blocks, there is a maximum limit to the possible recall attainable by the disambigua-
tion algorithm. After running the blocking procedure on the labelled dataset, we use known 
pairwise matches in the labelled data to estimate this maximum limit to recall, obtaining 
the following values: 99.47% (E &S training data), 99.98% (E &S test data), 99.83% (IS 
training data), and 99.86% (IS test data).

Appendix 3: Clustering algorithm to assign inventor groups

Here we describe the clustering algorithm we use to convert pairwise match probabilities 
into groups of records each belonging to a single unique inventor. We firstly convert each 
pairwise probability between the ith and jth record ( pij ) into one of the binary classes ( cij ; 
either “match” or “non-match”) based on a threshold probability value ( ̄p ) as follows:

The inventor group linking algorithm then primarily involves combining different sub-
groups together into the one group if they share enough links (pairwise matches). Within a 
given block, the algorithm involves the following steps: 

(1)	 Order all patent–inventor name records by the number of links they have to other 
records (i.e. the number of asserted matches to other records), highest first.

(6)cij =

{

match, if pij ⩾ p̄,

non-match, otherwise.
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(2)	 Assign a UID to each isolated (non-matched) patent–inventor name.
(3)	 Assign records to inventor groups. That is, for a given record, the corresponding inven-

tor group initially comprises just the record itself and all records it is linked (matched) 
to. Each of these linked records (nodes) are kept in the current inventor group only if 
the number of links (l) it has to the current group is ⩾ the number of nodes in the group 
(n) times some threshold proportion ( ̄l ); i.e. if l ⩾ nl̄ . This removes the most weakly-
linked records from each group (i.e. the nodes with fewest links to their group), which 
are more likely to be false positive matches. Any outside-group links—i.e. links to 
nodes that are not within the current group—are also recorded during this step.

(4)	 Repeat Step 2, because some records may have become isolated (non-matched) follow-
ing Step 3.

(5)	 Combine inventor groups together if the number of links they share is greater than a 
specified threshold. In particular, for an inventor group with nself records (nodes), we 
combine it with any other group with nother nodes if the number of links to that other 
group (l) satisfies both: l ⩾ l̄ nself , and: l ⩾ l̄ nother.

(6)	 For each resulting inventor group, assign an identical UID to all patent–inventor name 
records in the group.

Appendix 4: Random string‑map layouts

Here we show the random string layouts analysed in  “Testing alternative string-maps” sec-
tion. Figure 7 shows the string-maps we use for runs where characters are positioned using 
an identical pixel co-ordinate layout to the heuristic layouts shown in Figs. 1 and 4 (main 
text), but where the order of each character has been randomised.

Figure 8 shows the string-maps used for runs where both pixel co-ordinate layout and 
character order are randomised.

The left image in Fig. 9 shows the comparison-map with random layout and character 
order in which we use the smaller 5 × 5 pixel string-map (Fig. 8, left image) for co-inven-
tors and assignees, rather than the larger string-map (Fig. 8, right image). The right image 
in Fig. 9 shows the associated record-map layout.

Fig. 7   Random character order. Here we show the smaller string-map (left), IPC-map (middle), and larger 
string-map (right) we use for runs in which the character order has been randomised
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Appendix 5: Name variations for largest inventor groups

Here we show name variations present in the top 10 largest inventor groups, for the 
standard disambiguation algorithm with heuristic string-map character order and layout 
(Tables  7, 8), as well as for two different augmented versions of the disambiguation 

Fig. 8   Random character order and layout. Here we show the smaller string-map (left; identical to the left 
string-map in Fig. 7), IPC-map (middle), and larger string-map (right) with both random character order 
and random pixel co-ordinate layout

Fig. 9   Random character order and layout, with small string-maps. The left image shows the comparison-
map used for runs with smaller string-maps for co-inventors and assignees, as well as random character 
order and random pixel co-ordinate layout. The right image shows the associated record-map layout
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Table 7   Name variations for largest inventor groups using the standard disambiguation algorithm (for 
inventor groups 0–4)

Shows name variations for the first half of the top 10 largest inventor groups; i.e. groups 0–4. See Table 8 
for groups 5–9. Note that while variations in first name may represent inventor name records that belong 
to different individuals, in some cases they may represent inventor name records that belong to the same 
inventor that has used different variations of their name on different patents. For a given inventor name 
group, only the top 10 most frequest first names are shown (vertical ellipses denote absent records)

Group # Size (records) Last names % First names %

0 4692 Silverbrook 99.98 Kia 100.0
Silverbook 0.02

1 3813 Yamazaki 100.0 Shunpei 99.21
Shumpei 0.52
Shunepi 0.21
Shunnei 0.03
Shupei 0.03

2 1737 Kobayashi 100.0 Masaaki 10.88
Masato 8.92
Masaki 8.52
Masahiko 7.43
Masahiro 7.08
Masaru 6.16
Masayuki 5.93
Masakazu 5.93
Masanori 5.64
Masao 5.53
⋮ ⋮

3 1555 Yamamoto 100.0 Masayuki 17.04
Masahiro 15.43
Masaki 13.18
Masaya 8.36
Masanobu 6.50
Masashi 6.24
Masao 5.08
Masaaki 4.18
Masakazu 3.67
Masato 2.96
⋮ ⋮

4 1457 Kobayashi 99.79 Hiroshi 34.52
Kobayashi, legal representative 0.14 Hiroyuki 28.00
Kobayashi, deceased 0.07 Hiroaki 8.10

Hirokazu 6.79
Hiromichi 3.16
Hiroki 2.88
Hiroyoshi 2.26
Hirotada 2.26
Hiroo 2.13
Hiromi 1.99
⋮ ⋮
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Table 8   Name variations for 
largest inventor groups using 
the standard disambiguation 
algorithm (for inventor groups 
5–9)

Group # Size (records) Last names % First names %

5 1407 Weder 100.0 Donald 100.0
6 1406 Nakamura 100.0 Masayuki 10.53

Masahiro 9.46
Masaru 9.32
Masao 7.82
Masato 6.90
Masaki 6.26
Masanori 6.12
Masahiko 5.97
Masashi 5.48
Masakazu 4.13
⋮ ⋮

7 1397 Takahashi 100.0 Hiroyuki 36.44
Hiroshi 35.79
Hiroaki 8.52
Hirokazu 6.80
Hiroki 6.16
Hiroyasu 1.65
Hiromi 1.43
Hirohisa 1.15
Hiroharu 0.72
Hiroko 0.50
⋮ ⋮

8 1334 Watanabe 100.0 Hiroshi 46.55
Hiroyuki 30.43
Hirofumi 5.92
Hiroaki 5.47
Hiroki 2.47
Hiroyoshi 2.10
Hiromi 1.95
Hiromu 1.57
Hirotaka 0.60
Hirosi 0.37
⋮ ⋮

9 1332 Kobayashi 100.0 Takashi 31.83
Takeshi 11.86
Takao 9.98
Takayuki 6.68
Takahiro 5.78
Takeo 5.78
Takehiro 2.78
Takumi 2.40
Takaichi 2.33
Takako 2.03
⋮ ⋮

Shows name variations for the second half of the top 10 largest inven-
tor groups; i.e. groups 5–9. See Table 7 for groups 0–4
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Table 9   Name variations for 
largest inventor groups using 
the augmented disambiguation 
algorithm without sub-string 
splitting applied to large groups

Group # Size (records) Last names % First names %

0 4692 Silverbrook 99.98 Kia 100.0
Silverbook 0.02

1 3783 Yamazaki 100.0 Shunpei 100.0
2 1555 Yamamoto 100.0 Masayuki 17.04

Masahiro 15.43
Masaki 13.18
Masaya 8.36
Masanobu 6.50
Masashi 6.24
Masao 5.08
Masaaki 4.18
Masakazu 3.67
Masato 2.96
⋮ ⋮

3 1407 Weder 100.0 Donald 100.0
4 1389 Nakamura 100.0 Masahiro 9.58

Masaru 9.43
Masayuki 9.43
Masao 7.92
Masato 6.98
Masaki 6.34
Masanori 6.19
Masahiko 6.05
Masashi 5.54
Masakazu 4.18
⋮ ⋮

5 1265 Lapstun 100.0 Paul 100.0
6 1179 Nakamura 100.0 Hiroshi 43.85

Hiroyuki 18.32
Hiroki 12.38
Hiroaki 12.13
Hirotake 6.79
Hirotaka 2.46
Hiromi 1.87
Hiroya 1.27
Hirochika 0.76
Hiro 0.17

7 1145 Sandhu 100.0 Gurtej 99.65
Gurtel 0.26
Gurtei 0.09

8 1079 Koyama 100.0 Jun 95.09
Junichi 2.87
Junji 1.48
Junichiro 0.56

9 1075 Forbes 100.0 Leonard 100.0

Same as Table 7, except for the top 10 largest inventor groups obtained 
using the augmented version of the disambiguation algorithm without 
sub-string splitting applied to large groups
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algorithm; one without sub-string splitting applied to large inventor groups (Table  9) 
and another with sub-string splitting applied to large inventor groups (Table 10).
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Table 10   Name variations for 
largest inventor groups using 
the augmented disambiguation 
algorithm with sub-string 
splitting applied to large groups

Same as Table 9, except for the top 10 largest inventor groups obtained 
using the augmented version of the disambiguation algorithm with 
sub-string splitting applied to large groups

Group # Size (records) Last names % First names %

0 4692 Silverbrook 99.98 Kia 100.0
Silverbook 0.02

1 3783 Yamazaki 100.0 Shunpei 100.0
2 1407 Weder 100.0 Donald 100.0
3 1389 Nakamura 100.0 Masahiro 9.58

Masaru 9.43
Masayuki 9.43
Masao 7.92
Masato 6.98
Masaki 6.34
Masanori 6.19
Masahiko 6.05
Masashi 5.54
Masakazu 4.18
⋮ ⋮

4 1265 Lapstun 100.0 Paul 100.0
5 1145 Sandhu 100.0 Gurtej 99.65

Gurtel 0.26
Gurtei 0.09

6 1075 Forbes 100.0 Leonard 100.0
7 1026 Koyama 100.0 Jun 100.0
8 930 Wood, Jr 98.49 Lowell 100.0

Wood 1.51
9 905 Takahashi 100.0 Kenji 51.82

Kenichi 23.87
Ken 19.01
Kenichiro 2.76
Kensuke 1.33
Kenichirou 0.44
Kenichiroh 0.44
Kenkichi 0.22
Kennichi 0.11
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