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Abstract
This study investigates the impact of government R&D spending on promoting technology 
convergence. We test the hypotheses that a government funding program positively affects 
technology convergence, and that the effects vary depending on the participant (i.e., aca-
demic and industrial inventors). We used the Advanced Sequencing Technology Program 
(ASTP) as an example to investigate this issue. We develop a novel dataset by linking the 
ASTP grantee information with the PATSTAT patent database. On this basis, we develop 
inventor-level characteristics for propensity score matching, selecting a control group of 
inventors from among those enrolled in the ASTP. Then, we employ difference-in-differ-
ence models to assess the program’s impact on the matched sample. The results support the 
program’s role as a driving force of technology convergence. The findings also indicate that 
the program has a greater influence on industry inventors than on academic counterparts. 
Furthermore, we conceptualize the program’s “leverage effect” and demonstrate that it can 
attract more external industrial inventors than academic inventors. The work advances our 
understanding of the role of a government-funded program in encouraging convergence 
and has implications for developing convergence-related R&D programs in the future.
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Introduction

Technology convergence refers to the emergence of overlapping trends in at least two 
technological fields. Following Kodama’s (1995) seminal perspective, which states 
that combining existing technologies can spawn novel ones, technology convergence is 
considered a source of innovation. Notably, given the complementary nature of con-
temporary general-purpose technologies (GPTs) (e.g., nanotechnology and information 
technology, IT), new technologies are expected to be developed through the form of 
convergence. The concept of innovation-as-combination can be traced back to Schum-
peter’s (1939) notion: “… innovation combines factors in a new way, or that it consists 
in carrying out new combinations.” By emphasizing innovation as the sine qua non of 
economic development and firms as a carrier of implementing innovation, Schumpeter 
(1939) metaphorized firms as human beings that are constantly being born and destined 
to die. In the case of firms, they die as they cannot keep up with the pace at which 
they innovate and are eventually overtaken by others. Hence, policymakers and corpo-
rate management (e.g., entrepreneurs) need to keep an eye on technology convergence 
as one of the roots of innovation to promote economic growth and stay ahead of the 
competition.

Several researchers laid the theoretical groundwork for technological convergence and 
taxonomies (Curran & Leker, 2011; Karvonen & Kässi, 2013), whereas others contributed 
to methodological development for understanding historical patterns or forecasting future 
convergence opportunities (Eilers et al., 2019; Kim & Lee, 2017; Kim & Sohn, 2020; Kim 
et  al., 2014, 2019a, 2019b; Ko et  al., 2014; Lee et  al., 2020; Passing & Moehrle, 2015; 
Preschitschek et  al., 2013; Zhou et  al., 2019). One of the primary goals of understand-
ing technology convergence is to assist business entities in detecting and exploiting new 
opportunities, organizing research and development (R&D), and surviving in the current 
dynamic business environment. From another perspective, the convergence processes, as 
a source of innovation, can give birth to innovation that can either create untapped niche 
markets or drastically transform people’s lives.

The perceived importance of technology convergence and academic efforts to conceptu-
alize and quantify it may point to a more fundamental and pivotal question of what drives 
technology convergence (Jeong & Lee, 2015; Sick & Bröring, 2021). Drawing on Cur-
ran and Leker’s (2011) four-stage sequential process (i.e., science, technology, market, and 
industry), growing cross-disciplinary research collaborations will erode the boundary and 
reduce the distance between science areas, eventually leading to technology convergence. 
The framework implies that convergence can be driven by both scientific push and market 
pull. Song et al. (2017) classified convergence drivers into four categories: technological 
advancement, regulation and policy, market expectations, and changes in the social envi-
ronment. Although these works provide a starting point for investigating the drivers of con-
vergence, only a few studies provided empirical evidence and explanations for what trig-
gers the convergence (Caviggioli, 2016; Jeong & Lee, 2015). Moreover, previous research 
on this topic yielded only broad conclusions, stating that convergence can be driven by 
closely related technological fields, a lower level of technological readiness, and a longer 
R&D time horizon.

Indeed, endogenous growth economists believe that the R&D sectors can steer tech-
nological innovation by leveraging human capital and the existing stock of knowledge, 
resulting in sustainable and pervasive economic growth (Romer, 1986; Aghion et  al., 
1998). The non-rivalry nature of technological knowledge as a driver of macroeconomic 



3037Scientometrics (2023) 128:3035–3065 

1 3

growth necessitates government support for R&D to increase the private return on R&D 
investment to a societal-wide level. Because technology convergence facilitates technology 
spillovers at the societal level, understanding the impacts of the government support pro-
gram on convergence technology, not only on program participants but also on society as a 
whole, is crucial. To this end, we attempt to uncover the underlying mechanism by which 
a government-funded program affects the behavior of industrial and academic inventors, 
who are the primary players in the convergence process.

The program we explore in this study is the Advanced Sequencing Technology Pro-
gram (ASTP) (or the Advanced Sequencing Technology awards), which is funded by the 
US National Human Genome Research Institute (NHGRI). Although the program has been 
credited with its contribution to reducing the costs of genome sequencing, it is also rec-
ognized as an endeavor that constantly accentuates multidisciplinary collaborations and 
guides public–private partnerships (Hayden, 2014). Several programs’ distinctive features, 
such as mandatory grantee meetings, benefit knowledge transfer across the sectors and pro-
mote information dissemination to external entities. In these ways, ASTP is a better fit for 
our goal of examining the effects of government R&D investment on promoting techno-
logical convergence.

The government-funded R&D program has been identified as one of the drivers of tech-
nology convergence (Jeong & Lee, 2015); however, its mechanism remains under-inves-
tigated. To that end, this study contributes to a better understanding of how government 
programs can drive convergence by examining the various roles of universities and private 
firms in developing and disseminating converged technologies to society. We conduct an 
empirical analysis using the ASTP as a target example because the program has success-
fully promoted the development of Next-generation sequencing (NGS) technology (con-
vergence of IT and BT) by emphasizing multidisciplinary team participation and univer-
sity–industry (U–I) collaborations (Hayden, 2014; Nature, 2014). The results suggest that 
the program would (1) encourage industrial firms to produce more convergent outputs than 
academic counterparts and (2) entice more industrial players to participate than academic 
scholars. The study’s findings are expected to serve as a foundation for justifying the role 
of government funding in promoting convergence.

The remainder of this paper is structured as follows. Sect. "Literature review" reviews 
the literature on technology convergence and its drivers and the study’s hypotheses. 
Sects. "Data" and "Methodology" present an overview of the program under study and an 
illustration of the process for constructing the dataset and models for analyzing the ASTP. 
Sect. "Methodology" shows the empirical results and an analysis of the impact and impli-
cations of government R&D spending. Finally, Sect. "Results" summarizes and discusses 
the findings of the study.

Literature review

Technology convergence and its drivers

Although the definition of technology convergence differs depending on the managerial 
scope (Hacklin, 2008), we refer to it in this study as a combination of existing technolo-
gies. Spillovers between fields eventually lead to convergence when different technological 
boundaries erode. One classic example of technological convergence is the birth of digital 
photography, which uses an electronic sensor to replicate the traditional chemical-based 



3038 Scientometrics (2023) 128:3035–3065

1 3

film process, revolutionizing the film industry (e.g., the rise and fall of Kodak). Unlike the 
traditional approach, which seeks breakthroughs through a linear R&D pattern, the con-
vergence approach focuses on emerging new technologies by combining disparate ones. 
Hence, this approach is more complementary and collaborative (Kodama, 1992). Addition-
ally, Schumpeter (1934) maintained in his seminal work, The Theory of Economic Devel-
opment, that innovation is a combination of existing resources. As a result, technology con-
vergence could be viewed as an instance of the combinatorial process in this context by 
explicitly emphasizing the hybridization of technologies. The demise of the adage “one 
technology, one industry” clearly demonstrates the increasing exposure of the convergence 
phenomenon (Kodama, 1992).

Sick and Bröring (2021) thoroughly reviewed the literature on technology and innova-
tion management convergence. Prior works on technological convergence have made sig-
nificant efforts in methodological development to identify historical convergence patterns 
or anticipate future convergence possibilities through patent analysis (Eilers et al., 2019; 
Karvonen & Kässi, 2013; Ko et al., 2014; Preschitschek et al., 2013). Acknowledging their 
great implications for enterprises and policymakers, we must return to the central topic 
in convergence research, namely, which drivers promote the convergence process. From 
the evolutionary perspective, Hacklin (2008) conceptualized the convergence process into 
four phases: knowledge, technological, applicational, and industrial convergence. Curran 
et al. (2010) then presented a four-stage model that depicted the sequential order of sci-
ence, technology, market, and industry convergence. The model suggests that technological 
convergence may be fueled by science/technology push and market pull, which Mowery 
and Rosenberg (1979) have identified as an innovation driver. Song et al. (2017) proposed a 
taxonomy of four groups to account for the numerous factors contributing to convergence: 
technological progress, regulation and policy, market expectation, and social change. In 
terms of technological advancement, the rapid growth of the information and communica-
tions technology (ICT) industry can be viewed as the primary source and driver of conver-
gence, as evidenced by the recent digital transformation (Han & Sohn, 2016). Furthermore, 
other GPTs, such as IT and nanotechnology, may serve as a vital knowledge provider to 
various fields (Appio et al., 2017) due to their high technological generality (Gambardella 
& Giarratana, 2013). Meanwhile, market expectations emphasize demand-side conver-
gence. Dowling et  al. (1998) asserted that increased purchasing power could result in a 
significant market demand for products with integrated functions, motivating firms to 
adopt and coordinate a variety of technologies. Regarding social change, convergence is 
propelled by the challenges and needs that society faces. For example, the recent expansion 
of green technology necessitates the convergence of various GPTs.1

Policy and technology convergence

The policy can be designed to eliminate both artificial and technological barriers between 
various technological fields. One example of removing artificial barriers would be the 
Telecommunications Act of 1996, which unlocked the restriction between the telephone 
sector and the IT industry. In this case, policymaking may be more closely aligned with 
deregulation. Another definition of technological barriers is the distance between distinct 

1 OCED: https:// www. innov ation polic yplat form. org/ www. innov ation polic yplat form. org/ conte nt/ bio- nano- 
and- conve rging- techn ologi es- green- innov ation/ index. html.

https://www.innovationpolicyplatform.org/www.innovationpolicyplatform.org/content/bio-nano-and-converging-technologies-green-innovation/index.html
https://www.innovationpolicyplatform.org/www.innovationpolicyplatform.org/content/bio-nano-and-converging-technologies-green-innovation/index.html
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technological domains and the costs of combining them. Discipline-specific terminology, 
theories, and cognitive differences can result in significant transaction costs when attempt-
ing to achieve convergence in a multidisciplinary setting (Nordmann, 2004). Furthermore, 
Jeong et al. (2011) asserted that even within the same organization, researchers are hesi-
tant to collaborate with colleagues from different backgrounds when technology readiness 
is high. The government can encourage technological convergence through public R&D 
funding or a multidisciplinary incentive program. According to Littler and Coombs (1988), 
government-supported programs typically cover a broader range of technical fields than 
private-sector projects but are developed with a modest speed. Metzger and Zare (1999) 
questioned the efficacy of such programs in promoting technological convergence. How-
ever, Jeong and Lee (2015) empirically demonstrated that government-funded R&D ini-
tiatives with a longer time horizon or a lower budget positively impacted convergence. 
Moreover, Kim et al. (2017) showed that standards can drive technology convergence by 
directing technological trajectories.

In addition to these two barriers, the uncertainties and costs associated with conver-
gence should be considered. Ambiguity in the market and technological scope are two 
types of uncertainty frequently highlighted. Technological uncertainty refers to the inca-
pacity to fathom some facets of technological environments (Song & Montoya-Weiss, 
2001). This is a common occurrence in the context because convergence has the potential 
to connect previously unrelated fields (Hacklin et  al., 2013). Another source of concern 
is market uncertainty, which occurs when extremely innovative products initially attract 
only the least profitable customers (Bores et al., 2003). Furthermore, realizing convergence 
potential necessitates a significant initial investment, which may cause enterprises to real-
locate resources to other endeavors (e.g., more promising near-term product development). 
Companies may suspend or even discontinue these initiatives to avoid potential market fail-
ure, resulting in underinvestment in knowledge creation through convergence. From this 
perspective, government-supported programs featured with U–I knowledge exchange can 
aid in reducing R&D market failures and ensure investments’ benefits (Martin & Scott, 
2000). Jeong (2014) showed that firms are more likely to develop converging technologies 
when collaborating with public organizations such as universities and government research 
institutes. The peer-review process adopted by government agencies, such as the National 
Science Foundation (NSF) and the National Institutes of Health (NIH), has also been cited 
as a critical factor in success (Metzger & Zare, 1999). Empirical evidence suggests that 
NIH review panels can effectively access the most outstanding impact projects; that is, the 
higher the review scores, the better the quality, and the higher the productivity (Li & Agha, 
2015; Park et al., 2015).

In summary, the existing literature on the impact of government policy on technology 
convergence provided a hint that deregulations and public funding programs may be a 
driver of convergence. However, we found that related empirical works on this topic are 
still scarce, which motivated us to devote efforts to this field.

Hypotheses

According to the literature review presented in Sect. "Policy and technology convergence", 
scholars have investigated the relationship between government funding programs and 
technological convergence. Multidisciplinary cooperation, which provides a knowledge 
foundation for convergence, is one of the most critical characteristics of technology con-
vergence. The participation of specialists from various backgrounds may spark novel ideas 



3040 Scientometrics (2023) 128:3035–3065

1 3

and inspirations while collaborating. However, a multidisciplinary configuration implies 
that developing convergence-related projects will be more hazardous and time-consuming 
(Schmoch et al., 1994). That is, participants require more time to become acquainted with 
people from diverse backgrounds and more cycles of testing and failure to identify suit-
able solutions. Veugelers and Wang (2019) argue that novel combinatorial invention has 
a high-risk/high return nature by demonstrating that novel research combining atypical 
knowledge sources is more likely to have a greater technological impact. However, it also 
faces a high level of failure because it scouts for uncharted waters. Uncertainty and risks 
would be less of an issue if the capital market functioned flawlessly, allowing industrial 
firms and investors to accurately assess and allocate funds to convergence projects with 
high expected returns (Arrow, 1962; Greenhalgh & Rogers, 2010). However, it is difficult 
for the private sector to finance convergence projects in the real world. For starters, the 
complexities of developing converging technologies may result in significant information 
asymmetry between investors and innovators (Tuncalp & Ercek, 2014). In other words, 
investors would have to rely heavily on the judgment of the innovator’s team because they 
are the only ones who understand the project. Second, if the costs of developing converg-
ing technology (fixed costs) are disproportionate to the marginal costs of producing it (var-
iable costs), competitive market pricing becomes irrelevant (Greenhalgh & Rogers, 2010). 
Under this situation, it is difficult for firms even to reach a break-even point when demand 
for this new technology is flat. With these threats, industrial firms are more likely to shift 
their focus to short-term and insured endeavors, resulting in an underinvestment of conver-
gence. In this regard, government funding programs that provide longer-than-usual grant 
durations can allow innovators to conduct in-depth studies rather than focusing on quick 
success. In the early decades of the twenty-first century, government-supported initiatives 
(e.g., those held by the NSF, NIH, and others) that incorporated a multidisciplinary setup 
(primarily focusing on the convergence of nanotechnology, biotechnology, BT, and IT), 
typically provided a long-term funding plan (Roco & Bainbridge, 2002).

Furthermore, because technological convergence is primarily commercial, it necessi-
tates the commercial potential and feasibility of interdisciplinary knowledge. In this light, 
the experience of the US government’s innovation programs can be learned, which fostered 
commercial applications and attracted nonfederal investment in R&D by promoting U–I 
collaborations or directly sponsoring industrial enterprises (Roessner, 1989). The inclusion 
of industrial entities emphasizes the commercial viability of developed projects, thereby 
encouraging technological advancement. Furthermore, U–I collaborations improve knowl-
edge diffusion between academia and industry. This influence could be bidirectional. On 
the one hand, firms can stay abreast of cutting-edge academic research findings and recruit 
highly competent and well-matched personnel. On the other hand, academic scholars can 
gain insight into what is happening in the industry sector, understanding the potential 
applications of their work. Moreover, this case may allow some academics to transition 
from pure scientific exploration to technological research. Hence, we propose the following 
hypothesis:

H1 A government-funded R&D program has a positive impact on promoting technology 
convergence.

Second, university and industry are regarded as two of the most critical pillars of tech-
nological progress. As a result, we want to break down the analysis further to investi-
gate the roles of academic and industrial inventors in the convergence process. Typically, 
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government-funded R&D programs include an explicit goal of knowledge creation. How-
ever, their management practices (e.g., reciprocal information-sharing mechanisms) could 
facilitate mutual learning across disciplines and sectors, thereby potentially reducing the 
cognitive distance between academic and industrial participants. Local search routines (the 
preferential attachment effect) frequently constrain firms, causing them to search in a uni-
dimensional space close to their business field and knowledge base (Katila & Ahuja, 2002; 
Kim et al., 2019a, 2019b). In this sense, the shortened cognitive distance will enable com-
panies to gain higher absorptive capacity and go beyond their knowledge domains, quickly 
acquiring new value or knowledge and translating it into innovation (Cohen & Levinthal, 
1990). Furthermore, unlike science-based knowledge, which is sufficiently codifiable, firm-
based knowledge is more implicit, making dissemination more challenging (Kani & Moto-
hashi, 2020; Kogut, 1988). According to Jeong and Lee (2015), convergence is more likely 
to occur at the basic science stage than at the application stage. A higher technology readi-
ness level (TRL) indicates greater technological complexity and diversity, resulting in high 
transaction costs when recombining distinct technological knowledge (Brousseau, 1993). 
Furthermore, unlike scientific knowledge, which is considered a public good, technologies 
are frequently protected by intellectual property laws, adding to the transmission difficulty. 
In this regard, a government-supported R&D program with a clear convergence focus could 
encourage industrial inventors to develop relevant development plans at an early stage.

Another consideration is that the efficacy of reduced cognitive distance to university 
scholars may be hampered in several ways. Several initiatives have been launched to pro-
mote multidisciplinary collaboration in universities. However, current assessment mech-
anisms continue to place a premium on individual achievement, disincentivizing faculty 
and departments to work across fields (Klein & Falk-Krzesinski, 2017; Pfirman & Martin, 
2017). Arnold et  al. (2021) noted that tenure/promotion committees in a unidisciplinary 
setting may assess an academic worker more objectively than in a multidisciplinary setting 
by comparing the productivity and impact of scholarly work to that of colleagues within a 
discipline. In addition, jumping into an unfamiliar field is risky for an academic researcher. 
Furthermore, unlike scientific knowledge, which is generally considered a public good, 
technology is frequently protected by various tools (e.g., patents and trade secrets) to 
achieve commercial value. Hence, as a source of new technologies, technological conver-
gence inherently bears a part of commercial purposes. In this sense, university research-
ers frequently place a high value on publishing activity because it carries a higher level 
of prestige than commercialization (Sauermann & Stephan, 2013). However, companies 
typically prioritize the technology’s commercialization potential. Moreover, programs that 
encourage industrial forms for convergence-related projects would encourage businesses to 
shift from short-run to long-run convergence innovation activities. Firms were previously 
less likely to engage in such long-term activities due to the risks and high initial investment 
(Feldman & Kelley, 2006). Therefore, firms are more compelled to engage in technology 
development and patenting activities. This notion leads us to our second hypothesis:

H2 Among the funded inventors, a government-funded R&D program has a greater impact 
on industrial inventors than university inventors.

H2 aims to describe the behaviors of the funded inventors. We then want to study how a 
program influences the behavior of inventors outside of the program, which can be divided 
into university and industry groups. Existing research has shown that, from a resource 
standpoint, industrial firms are more likely to engage in new technology development after 
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perceiving diverse external knowledge (Gittelman & Kogut, 2003; Wirsich et  al., 2016). 
However, such knowledge is not appropriable unless someone can accurately evaluate its 
commercial viability (Poyago-Theotoky et al., 2002). According to Rikkiev and Mäkinen 
(2013), business managers are hesitant to take on convergence projects if they lack market-
side perception. In this case, an R&D program that funds not only academic researchers 
but also companies could send a signal to external parties (Long, 2002). Involving indus-
trial players would highlight the commercial feasibility of developed projects, increas-
ing the likelihood of attracting outside firms’ attention. In addition, even if new markets 
and demands created by converged technologies appeal to firms (Park, 2017), skeptics in 
the private sector may be hesitant to accept convergence ideas at this early stage due to 
high uncertainty. In this regard, a program’s scholarly peer-review process may increase 
the authority of concepts, reducing information asymmetry between insiders and outsiders 
(Greenhalgh & Rogers, 2010). Moreover, the program itself can serve as a conduit for the 
external audience to see and obtain reassurance about related results and accomplishments, 
shifting their mindset from risk-averse to risk-neutral.

We further conceptualize the attractive force to external players as “leverage effects.” 
That is, the government takes the initiative to invest in convergence ideas and then dis-
closes internal progress and conclusions to pique external parties’ interest. Given the enor-
mous costs of developing technologies through convergence, government spending may be 
a drop in the bucket. However, the government can use a funding program to increase the 
input force (government R&D spending) to provide a larger output force (potential private 
investors, industrial and academic participants), resulting in social benefits. Because of the 
commercial nature of technology convergence, external industrial inventors are expected 
to see greater leverage effects than university inventors. Finally, we propose the following 
hypothesis:

H3 Government R&D spending has a more significant impact on attracting external indus-
trial inventors than academic inventors. In other words, the program’s leverage effects are 
more effective/visible to external industrial inventors than to university inventors.

Conceptualization

Figure 1 depicts the positions of the three hypotheses. Although convergence can gen-
erate new technologies, it is frequently accompanied by barriers, uncertainties, and 
substantial initial investments. H1 maintains that a government-funded R&D program 
could drive technological convergence. In this regard, we argue that the program’s 
implementation of several mechanisms (e.g., multidisciplinary teams, U–I collabora-
tions) may help mitigate the aforementioned uncertainties and costs. Subsequently, 
we examine how the program affects the behaviors of internal and external partici-
pants in the convergence scenario, as illustrated by H2 and H3. H2 states that the pro-
gram will encourage academic and industrial inventors to participate in convergence 
activities, fostering technological development and research. Then, H3 is concerned 
with the external participants, declaring that the program as a whole could be a criti-
cal channel for disseminating internal knowledge and assuring authorities of conver-
gence concepts, thereby motivating external participants to participate. We believe 
it will significantly impact external industrial players but will be limited to exter-
nal academic researchers. Accordingly, we further conceptualize these as a “leverage 
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effect” for industry and an “eye-catching effect” for academia. Table  1 summarizes 
how public funding influences a specific innovator’s behavior to promote technologi-
cal convergence.

Fig. 1  Conceptualization of the role of government R&D spending in promoting technology convergence 
and the position of each hypothesis

Table 1  Behavioral conceptualization of the role of specific innovators in promoting convergence

A government-supported R&D program featured with multidisciplinary setup and U–I participation

Inventor type Behavioral conceptualization

Internal academic researchers Interacting with industrial inventors may induce academic 
researchers to start technological research rather than 
pure scientific research

Receiving guaranteed funding makes them more willing 
to join in multidisciplinary projects, which are generally 
riskier than single-field projects

Internal industrial researchers and practitioners Multidisciplinary setup and interaction with academic 
researchers help industrial inventors escape local search 
constraints, enabling them to go beyond their knowledge 
domains and gain higher absorptive capacity

Receiving guaranteed funding allows them to shift from 
short-term product development to long-term conver-
gence projects

External academic researchers Some external academic researchers may try to explore 
the achievements produced by the program. However, 
most of them may only witness convergence due to high 
risk and huge costs

External industrial researchers and practitioners The achievements generated by the program may prove 
the converged technologies’ feasibility

Some Industrial pioneers would actively join in develop-
ing converged technologies, enabling them to establish 
strong positions in the field before other entrants to the 
market (first mover advantage)
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Data

Our empirical test is based on the ASTP at the NIH. The following section presents the 
context of ASTP, which is considered a potential convergence driver in this study.

Advanced sequencing technology program from 2004 to 2014

The Human Genome Project (HGP) cost approximately $3 billion when it was completed 
in April 2003. In the same year, the US National Human Genome Research Institute 
(NHGRI), an institute of NIH, announced two broad visions for future genomics research: 
“elucidating the structure and function of genomes” and “translating genome-based knowl-
edge into health benefits.” This event highlighted the potential for transforming biomedical 
and clinical practice if sequencing costs can be significantly reduced (Collins et al., 2003). 
Subsequently, in 2004, the NHGRI launched a funding program to reduce costs by two 
to four orders of magnitude. The ASTP program consists of two requests for applications 
(RFAs): “Near-Term Technology Development for Genome Sequencing” (the $100,000 
genome2) and “Revolutionary Genome Sequencing Technologies” (the $1000 genome3). 
The NHGRI emphasized multidisciplinary team collaborations and encouraged the forma-
tion of teams with a wide range of expertise, including biochemistry, chemistry, physics, 
mathematical modeling, software development, and others, to achieve its goal of sequenc-
ing cost reduction. Furthermore, the program used unusually aggressive grant mechanisms, 
providing substantial grants for longer periods. For example, R01 and P01 grants under the 
program were allowed to request up to 2 million dollars per year (with a maximum duration 
of 5 years), whereas a typical NIH R01s only provided a total amount of up to $600,000.4 
Besides, unlike traditional funding programs exclusively awarded to academia, the ASTP 
offered grants to academic, industry, and foreign investigators. Most grants were allocated 
to academic researchers and small companies, but several research projects within large 
companies (e.g., Intel and IBM) were also eligible. To manage the risks, NHGRI staff 
evaluated progress through quantifiable milestones, timelines, and annual meetings. Grants 
could be shortened but not usually terminated if milestones are not met. Notably, NHGRI’s 
annual grantee meetings were regarded as a major feature of the program, with entities 
sponsored by ASTP being required to share their findings. Researchers could receive feed-
back from peers more quickly without waiting for the lengthy publication process, resulting 
in a shorter development cycle. Meanwhile, industrial representatives could gain access to 
interact with scholars to test proof-of-concept data on ongoing scientific research, thereby 
cultivating the commercial viability of early-stage research projects (Schloss et al., 2020). 
Participants were later expanded to include people outside the program, such as investiga-
tors, investors, and others. This event served as a link in the knowledge transfer process 
between academic and industry investigators.

2 https:// grants. nih. gov/ grants/ guide/ rfa- files/ RFA- HG- 04- 002. html.
3 https:// grants. nih. gov/ grants/ guide/ rfa- files/ RFA- HG- 04- 003. html.
4 https:// report. nih. gov/ nihda tabook/ report/ 158.

https://grants.nih.gov/grants/guide/rfa-files/RFA-HG-04-002.html
https://grants.nih.gov/grants/guide/rfa-files/RFA-HG-04-003.html
https://report.nih.gov/nihdatabook/report/158
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Next‑generation Sequencing

The Sanger-based sequencing approach (i.e., capillary array electrophoresis, CAE) was 
employed for the HGP, which was heavily dependent on the field of biochemistry and is 
also known as First-Generation Sequencing (Schloss, 2008). Although the Sanger CAE 
method produced high-quality results, electrophoresis only allowed for a limited amount of 
parallelization, resulting in low efficiency and high sequencing costs. Compared with tradi-
tional Sanger sequencing, NGS, which employs massively parallel techniques (also known 
as cyclic-array strategies), significantly increases data throughput, scalability, and effi-
ciency (Shendure & Ji, 2008). The success of NGS implementation depends on a synergy 
of biochemistry, IT, and nanotechnology. For example, IT is involved in library prepara-
tion, which is typically the first stage of a sequencing operation (van Dijk et al., 2014). Fur-
thermore, the growing volume of NGS data presents bioinformatics with new challenges in 
sequence quality assessment, alignment (i.e., re-sequencing), assembly, and data analysis. 
In this regard, the evolution of NGS could be referred to as a “convergence age.”

Data and measures

In studies of technology convergence, patent data, which indicate knowledge accumulation 
and development in a specific technical field, are frequently used as a proxy for monitoring 
convergence (Karvonen & Kässi, 2013). Regarding methodology, patent co-classification, 
content analysis, and citation are three major approaches to measuring technology conver-
gence. The co-classification method is based on well-defined patent classification systems 
(e.g., the international patent classification), with convergence visible as an increase in the 
co-occurrence of different IPC codes in patents (Han & Sohn, 2016; He et al., 2022; Jeong 
et al., 2015). Text-mining techniques and deep learning models have been widely used in 
patent content analysis to identify convergence from growing semantic overlaps between 
different technological domains (Eilers et  al., 2019; Zhu & Motohashi, 2022). Finally, 
researchers working on citation-based methods have investigated convergence patterns 
by quantifying interfield citations among various technical fields (Ko et  al., 2014). The 

Fig. 2  Data collection and 
processing
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citation-based method is used to measure technology convergence in this study because it 
can better depict knowledge flows across fields and fits nicely into our subsequent regres-
sion setups. We specifically collect interfield citations between IT and BT, the two primary 
technologies NGS uses. We extract the IT and BT patent data and citation information 
from the PATSTAT 2020 Autumn version, keeping in mind that the US Patent and Trade-
mark Office publish all patents collected. We define the boundary of IT and BT patents 
using WIPO’s technology classification concepts. The time window of the data is set from 
1996 to 2019 to collect enough information to build patent indicators. The grant lists for 
the ASTP data are crawled from the NHGRI’s websites, which provided detailed records 
for the ASTP awards from 2004 to 2014. We manually disambiguate the ASTP inventors 
and link them to the PATSTAT database. Figure 2 depicts the data collection process. We 
collected 64 ASTP inventors and 1,037,658 patent applications in total.

Methodology

Reduction of selection bias using propensity score matching

The first hypothesis of the causality effects of government R&D spending on promoting 
technology convergence can be seen in inventors enrolled in the program becoming more 
likely to form interfield backward and forward citations. Before testing this hypothesis, we 
must remove the bias introduced by the selection process of ASTP review offices. Appli-
cants for the ASTP had to go through a peer-review process in which they were evaluated 
by review panels based on five criteria: Significance, Approach, Innovation, Investigator, 
and Environment.5 The first three criteria are relevant to the project outlined in the RFA, 
whereas the remaining two are specific to the investigator (i.e., their level of experience) 
and their surrounding community (i.e., the collaborativeness of the surrounding environ-
ment). We select and design variables based on these criteria and apply propensity score 
matching to the dependent variable ASTP (1 if a given individual is enrolled in the pro-
gram and 0 if otherwise). The selected covariates can be divided into three categories: pat-
ent portfolio, inventor, and environment. The following are the descriptions for each group 
of variables.

Patent portfolio-level variables are relevant to the first three criteria. For example, in 
terms of Innovation, the following questions are “Does the project employ novel concepts, 
approaches, or methods?” and “Are the goals unique and innovative?” These are evalu-
ated based on the project outline in the RFA. However, we cannot rate the project’s quality 
based on these criteria, and the data for the reviewing results is also not disclosed. More 
importantly, such information is unavailable to those who have never applied for the pro-
gram. Therefore, we assume that some metrics can be found in one’s previous works. For 
example, we estimate an inventor’s innovativeness by aggregating (i.e., averaging) the 
innovative scores across his or her past patent portfolio. Based on this, four variables are 
created: originality, radicalness, number of coinventors, and number of institutions. Tra-
jtenberg et al. (1997) developed an indicator to assess patent originality by arguing that an 
invention that relies on diverse knowledge sources (i.e., a wide range of technology fields) 
is more likely to be original. Shane (2001) proposed the radicalness index, which states 

5 These criteria are the same for the abovementioned two RFAs.
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that the more radical an innovation is, the more it is based on paradigms other than the one 
to which it is applied. For the variable number of coinventors, we set up a list of ASTP 
inventors coinventors, and the number of coinventors will be measured in terms of this 
list. The idea is that if someone coauthored with the coinventors of the ASTP inventors, 
he or she may share similar characteristics with the ASTP inventors. Meanwhile, the case 
is similar to coinventors for the variable number of institutions, but we consider the ASTP 
inventors’ institutions associated with the patent assignee information. Notably, these vari-
ables will be examined first at the patent level before being aggregated to the personal level 
based on one’s patent portfolio.

Inventor-level variables are related to the Investigator criterion. Six variables are cre-
ated in this group: experience, degree centrality, betweenness centrality, PageRank, local 
betweenness centrality, and local PageRank. The variable experience denotes the num-
ber of patents published up to the specified timestamp. The remaining five variables are 
network statistics derived from an undirected coinventor network.. Specifically, degree 
centrality (number of collaborators), betweenness centrality (role as a bridge), and Pag-
eRank (importance of an inventor) are referred to as global measures. The global coinven-
tor network provides these variables. Such network can be further subdivided into several 
interconnected components known as local networks or communities. Then, from these 
connected components, local betweenness centrality (role as a bridge within his/her com-
munity) and local PageRank (importance of an inventor (node) within his/her community) 
are computed. Global and local network statistics are developed to account for the situation 
in which one may have a low PageRank (global importance) but actively serves as a bridge 
in his or her community (large value of local betweenness centrality).

Environment-level or community-level variables are related to the Environment crite-
rion. The network statistics presented in the preceding section are calculated for each node. 
This section will create environment-level variables based on network statistics for a con-
nected component (community). Then, we propose four variables: diameter (community 
size), average clustering coefficient (the likelihood that an inventor’s two neighbors are also 
connected within the community), efficiency (how efficiently an inventor can reach oth-
ers within the community), and community diversity. The first three are common network 
statistics, while the fourth was inspired by Aggarwal et al (2020). Aggarwal et al. (2020) 
demonstrated a method for measuring knowledge diversity within and across teams. In our 
case, each inventor in a community would be represented by a characteristic vector first. 
Each element demonstrates his or her experience in each subgroup of the International Pat-
ent Classification. The cosine diversity score is then computed to determine the level of 
diversity in a community (as described in further detail later in the “Appendix”). Because 
all of the variables in this group are network-level statistics, inventors in the same commu-
nity will have the same values.

The program had multiple application receipt dates from 2004 to 2014. Hence, the 
matching process must be implemented for each year separately. Note that an inventor may 
receive the ASTP award more than once. In this case, we only count the earliest time for 
each inventor being enrolled in the ASTP. For each application year, we recompute the 
matching variables based on the information prior to that timestamp. We use the R pack-
age “MatchIt” to implement an optimal pair-matching strategy in which the sum of the 
pairwise distances in the matched sample is minimized. Each treated observation would be 
paired with two controls. Finally, we combine the matched samples from each year into a 
single dataset.
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Matching results

After estimating the propensity scores, one treated observation is matched with two control 
observations for each year. In some cases, a nontreated observation is matched multiple 
times to treated observations in different years. Hence, we only keep unique individuals in 
the final combining process by removing the repeated nontreated observations. In addition, 
there are exceptional cases where two ASTP inventors are matched into control groups 
before enrolling in the program. For these two cases, we simply delete them from the con-
trol group. In total, we obtained 54 observations in the treatment group (ASTP inventors) 
and 70 in the control group (matched inventors). Table 2 reports the results before and after 
matching for the first year (2004), where propensity scores differ substantially between 
treated and nontreated inventors before the matching. After matching, the gap in propen-
sity scores between treated and untreated units is well alleviated, which can also be seen 
from other variables. Figure 3 shows the distribution of propensity scores after matching 
(number 0 stands for the control group, and number 1 stands for the treated group), which 
also evidently proves matching quality. In particular, the mean values for the treatment and 
control groups before matching reveal some characteristics of the selected ASTP inventors 
in that year. In terms of the past patent portfolio, the ASTP inventors, on average, have rel-
atively lower originality and radicalness values than inventors outside the program. Moreo-
ver, ASTP inventors are more likely to act as a “bridge” than others from the larger values 
of betweenness centrality (normalized) and local betweenness centrality. Finally, in terms 
of the community environment, Table 2 shows that ASTP inventors are in a more extensive 
and diversified community than external inventors on average.

Fig. 3  Distribution of propensity scores after matching
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Regression models

We expect that a government R&D program will promote technology convergence, as 
observed by the increasing number of interfield citations after enrollment. We further 
categorize interfield citations as backward and forward citations. The backward citations 
demonstrate the participation in interfield innovation activities, while the forward citations 
demonstrate their impact on the external environment. As the ASTP had multiple applica-
tion receipt dates, we adopted a difference-in-differences (DiD) specification with multiple 
periods to estimate the relation between the ASTP and the interfield citation counts. The 
regression setup is as follows:

where i = 1,… , 124;t = 2000,… , 2019 . In Eq. 1, Yit is a measure of convergence activity 
intensity of person i in year t , which can be either interfield backward or forward citation 
counts. Backward and forward citations are counted at the patent level first, then aggre-
gated to the inventor level by taking the sum over one’s patent portfolio. We use a fixed 
window to normalize patent citation counts when dealing with forward citations (count 
forward citation accrued to the patent of interest from the patent application date to 5 years 
thereafter). �t and �i are the year and individual fixed effects, respectively, and �it is the 
error term. The variable of interest is Dit , a dummy variable that equals 1 if years after 
the person was first enrolled in the ASTP and 0 if otherwise. The coefficient, � , therefore 
indicates the impact of the ASTP on technology convergence. Xit is a set of time-varying 
person-level control variables, and the variable � ’s are coefficient of the control variables. 
Control variables are used to ensure a reliable estimate of ASTP’s impact on enrolled 
inventors. The variables are chosen to control three aspects: an inventor’s patent quality, an 
inventor’s characteristics in the global and local networks, and an inventor’s surrounding 
network characteristics. Most variables are chosen from those used for matching. Further-
more, we must account for the increase in total citation counts. To control the effects of 
citing scientific papers, we also include variable science, which represents the number of 
backward citations of nonpatent literature (NPL). Karvonen and Kässi (2013) suggested 
that the count of NPL evaluates the proximity between technological innovation and sci-
entific research, and can thus be used to measure the science-technology linkage to some 
extent. However, applicants may include NPL to intentionally broaden patent coverage or 
because of the examiners’ standard practices (Meyer, 2000). Table 3 displays the predic-
tors’ correlation matrix. No critical multi-collinearity is observed as the absolute values of 
the correlations are less than 0.7.

Results

Empirical results

Our first analysis examines the effects of a government funding program on promoting 
technological convergence. Tables  4 and 5 show the impact of the ASTP on changes in 
interfield citations. When considering interfield backward citations, models 1–5 show that 
the coefficients of the treated variable Dit are positive and statistically significant at the 5% 
significance level. As a result, we found evidence that enrollment encouraged inventors 
to engage in multidisciplinary innovation activities. The variable science has statistically 

(1)log
(

1 + Yit
)

= � + �Dit + �Xit + �i + �t + �it,
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significant positive coefficients in models 2 and 5, indicating that inventors who cite more 
NPL are more likely to form interfield backward citations. In terms of interfield forward 
citations, we found that the coefficient of Dit is statistically significant in models 6, 8, 9, 
and 10, but becomes insignificant when patent quality is controlled. Furthermore, the vari-
able science is significant (at the 1% level) and positive, implying that inventors who cite 
more NPL are more likely to receive interfield forward citations as well. However, commu-
nity efficiency and diversity show negative coefficients when considering forward citations. 
This result suggests that living in a diverse community may not be able to attract more 
forward citations. In sum, we found strong evidence that the program encouraged inventors 
to engage in multidisciplinary innovation activities, but relatively weak evidence that the 
program influenced inventors outside the program.

Dynamics of enrollment

In this section, we examine the causality effects of the program by incorporating a series of 
dummy variables to trace the year-by-year effects of enrollment. This is accomplished by 
fitting the following regression model:

(2)log
(

1 + Yit
)

= � + �1D
−3
it

+ �1D
−2
it

+⋯ + �1D
+15
it

+�i + �t + �it,

Fig. 4  The dynamic impact of 
enrollment on interfield back-
ward citation counts

Fig. 5  The dynamic impact of 
enrollment on interfield forward 
citation counts
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where the dummy variable D−j equals 1 for persons in the j th year before enrollment, 
whereas D+j equals 1 for persons in the j th year after enrollment; otherwise, the value is 0. 
We exclude the first year (2000); thus, the dynamic effects of enrollment, the D’s, are esti-
mated with respect to the first year. Figures 4 and 5 presented the estimated results and the 
95% confidence intervals for interfield backward and forward citations, respectively.

Figure 4 reveals two critical findings. First, the estimated confidence intervals do not 
deviate significantly from zero in the three years preceding enrollment in ASTP. Hence, we 
rule out the reverse causality that enrolled inventors already engaged in multidisciplinary 
research prior to entering the program. Second, the ASTP has a rapid impact, as evidenced 
by the estimated coefficients and corresponding confidence intervals rapidly shifting from 
zero. The quick responses are probably driven by the stringent milestone system of the 
National Advisory Council for Human Genome Research. The strict milestone system has 
been an effective tool for NHGRI staff to plan and monitor progress, which was also incor-
porated as a condition of the award. In addition, this award could be attributed to NHGRI’s 
“Mandatory Annual Grantee Meetings,” where ASTP inventors were required to report and 
share their progress regularly.

In contrast, the estimated coefficients for the interfield forward citations in Fig. 5 show 
no effect in the three years preceding enrollment in ASTP. Even after two years of par-
ticipation in the program, the coefficients do not significantly differ from zero (confidence 
intervals contain zero). However, beginning in the third year of enrollment, we can see 
gradually increasing effects on the number of interfield forward citations (confidence inter-
vals shift from zero). The program’s lag effects on the external environment are most likely 
due to external players needing time to sense and assess the ASTP inventors’ work. In addi-
tion, the gradual increase in estimated coefficients demonstrated its impact on external 
multidisciplinary innovation activities. The annual grantee meetings, a distinct and inno-
vative feature of ASTP, could be a critical factor that propels and fosters the process. The 
meeting was limited to the ASTP inventors and a small group of selected participants dur-
ing the first few years. However, this was then extended to a large group of people, rang-
ing from representatives of large companies to young scholars and students. The collegial 
nature of the meetings may facilitate knowledge sharing and serve as a channel for attract-
ing experts from various fields, thereby amplifying their impact on cultivating multidisci-
plinary collaborations.

Impact of government R&D spending

The ASTP assisted both academic and industrial inventors. The remaining two hypotheses 
are tested in this section. To test the second hypothesis, we divided our dataset’s ASTP 
inventors into university and industry categories. For testing the third one, we classified the 
backward and forward citations accrued to the ASTP inventors using the attribute psn_sec-
tor provided by PATSTAT.6

6 In PATSATA, each applicant has been assigned to one or more sectors, including individual, company, 
unknown, government, nonprofit organization, university, and hospital. In our sample, the applicants of 
backward and forward citations are mainly from the sectors of company, university, and individual. In the 
following analyses, we will focus on the sectors of company and university and use “industry” as an inter-
changeable word for company.
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Direct influences on the internal inventors

To determine the program’s heterogeneous impact on enrolled academic and industrial 
groups, we conducted the DiD estimations on these two groups, respectively, with the year 
(Year FE) and individual fixed effects (Individual FE). In this case, we are only interested 
in backward citations because they show how ASTP influenced the behaviors of enrolled 
inventors. The regression results for the two groups are summarized in Table 6. The coef-
ficients of the treated variable are positive and statistically significant for almost all scenar-
ios, indicating that the program encouraged both parties to develop converging technolo-
gies. However, we found that the coefficients for industrial groups are greater than those for 
academic groups, regardless of the inclusion of controlled variables. This finding suggests 
that the program has a greater impact on industrial inventors than on university inventors. 
Therefore, the results support the second hypothesis.

Furthermore, because backward citations depict knowledge flows, we can track the 
sources of knowledge for these ASTP inventors. In particular, we examine four channels 
through which knowledge flows to program inventors, denoted by four arrows in Fig. 6. 
Each arrow’s color and line type correspond to the lines in Fig.  8. From Figs.  6 and 8, 

Table 6  DiD estimation results for the ASTP university and industry inventors

Standard errors in parentheses
ASTP Advanced Sequencing Technology Program
*p < 0.10, **p < 0.05, ***p < 0.01

Panel A: ASTP university inventors Panel B: ASTP industrial inventors

log(#InterBWD + 1) log(#InterBWD + 1) log(#InterBWD + 1) log(#InterBWD + 1)

Treated 0.4603** (0.2007) 0.1457 (0.1101) 1.0401*** (0.2312) 0.2926** (0.1182)
Constant 0.0813 (0.0793)  − 0.0245 (0.0711) 0.1086 (0.0829)  − 0.0009 (0.0646)
Control Yes Yes
Year FE Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes
Observations 1900 1900 1980 1980
Adj-R2 0.3401 0.7439 0.4287 0.7812
AIC 3700 1900 4100 2200
BIC 3800 2100 4200 2400

Fig. 6  Channels for inflow 
knowledge (directions for back-
ward citations)
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we can observe that the industrial firms cited significantly more interfield citations than 
university scholars, indicating their dominant roles in leveraging multidisciplinary knowl-
edge. This can be explained by companies shifting resources from near-term product devel-
opment to innovative early-stage projects after receiving ASTP funding. Figure 8 shows 
that, despite citing fewer interfield citations than their industrial counterparts, the aver-
age number of interfield citations made by ASTP university inventors continues to rise 
after enrollment. This could be explained by the program’s encouragement of academic 
researchers to reconsider some applied science and technology projects, which were 

Fig. 7  Channels for outflow 
knowledge (directions for for-
ward citations)

Fig. 8  Decomposition of citation counts
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viewed as non-hypothesis-driven and massive data-gathering exercises and were frequently 
overlooked in the laboratory (Schloss et al., 2020). Furthermore, when we examined the 
knowledge sources of the ASTP university inventors, we found that they cited a compara-
ble number of industry patents. This result is somewhat intriguing because the university 
has always been regarded as one of the industry’s primary knowledge sources. The reverse 
relationship in this case suggests that government intervention can advance technological 
research. Furthermore, the phenomenon could be interpreted as a result of grantee meet-
ings that facilitated knowledge diffusion between industrial and academic groups. In turn, 
this case enables university research to perceive knowledge in the industry sector.

Influences on the external inventors

For the third hypothesis, we argue that the program has a more significant impact on 
attracting external industrial inventors than academic inventors, as evidenced by the 
ASTP inventors’ forward citations. Figure  7 depicts the four channels through which 
knowledge flows from ASTP inventors to inventors outside the program. The thickness 
of each arrow is proportional to the forward citation counts shown in Fig. 8. Figures 7 
and 8 show that external firms make the majority of forward citations. Because forward 
citations are a good proxy for tracing the trajectory of knowledge outflows, the results 
suggest that the external industrial players are the primary audience for the program. 
Table 7 presents the statistical comparison of the forward citations made by the exter-
nal university and industry players. The results confirm that forward citation made by 
external industrial inventors are significantly greater than those of external university 
inventors on average.

As previously stated, the program’s “leverage effects” can be viewed as an attractive 
force to external inventors. The results suggest that “leverage effects” are more effective 
for external industrial inventors. This finding suggests that the program can be viewed 

Table 7  Forward citations made 
by the external university and 
industry players

Standard errors in parentheses
*p < 0.10, **p < 0.05, ***p < 0.01

(a)
MeanCitedByUni

(b)
MeanCitedByInd

(c)
Diff (b) − (a)

RelYear-4 0.1207 1.1034 0.9828
RelYear-3 0.1379 1.2759 1.1379
RelYear-2 0.1724 1.5000 1.3276
RelYear-1 0.2069 2.1034 1.8966**
RelYear 0 0.2241 2.4310 2.2069**
RelYear 1 0.2241 2.5862 2.3621**
RelYear 2 0.2414 3.0517 2.8103***
RelYear 3 0.2586 3.6379 3.3793***
RelYear 4 0.3621 4.2069 3.8448***
RelYear 5 0.4138 4.9655 4.5517***
RelYear 6 0.4211 5.6842 5.2632***
RelYear 7 0.4182 6.6182 6.2000***
RelYear 8 0.4800 7.7200 7.2400***
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as a “lever” for attracting other industrial players (e.g., investors), bringing in additional 
resources for further development and commercialization. By contrast, the limited “lev-
erage effect” is observed for external academic inventors. This can be explained by 
the fact that academic and industrial players in the national innovation system oper-
ate differently: firms have more incentives to respond to market opportunities, whereas 
universities focus on nurturing basic scientific and technological results (Goto, 2000). 
Moreover, from the standpoint of TRLs, since the technological complexity of results 
disclosed at the R&D stage is not exceedingly high, external firms would have opportu-
nities to develop capabilities to catch up (Jeong & Lee, 2015).

Conclusion and discussion

This study investigated the impact of a government funding program (i.e., ASTP) on 
promoting technological convergence. We hypothesized that a government-supported 
program would positively promote technological convergence, and that the program 
would have a greater impact on industrial inventors than university inventors. Further-
more, we conceptualized the program’s “leverage effect,” which is more effective for 
external industrial inventors than academic counterparts. We developed a new dataset 
to investigate this by linking the ASTP grantee information provided by NHGRI with 
the PATSTAT patent database. Based on this, we developed inventor-level character-
istics for propensity score matching, resulting in a control group of inventors compa-
rable to those enrolled in the ASTP. We then used the DiD models to assess the impact 
of the ASTP on the matched sample. Our results showed that the ASTP encouraged 
both enrolled and external inventors to engage in multidisciplinary innovation activities. 
The program’s diverse effects on different groups of grantees were then depicted. The 
results supported our second hypothesis that the program has a more significant impact 
on industrial inventors than on university inventors. Finally, we demonstrated that the 
program’s “leverage effects” are more effective for external companies than academic 
institutions.

Some of the results of this study are consistent with previous theoretical and empiri-
cal studies (e.g., Karvonen & Kässi, 2013; Hacklin, 2008). The regression table suggested 
that the number of nonpatent citations is positively related to the formation of interfield 
backward and forward citations. This idea is consistent with previous research (e.g., Cur-
ran & Leker, 2011), which claims that scientific research provides a knowledge foundation 
for convergence. However, Caviggioli (2016) demonstrated that new convergence is more 
likely to occur in less anchored fields of scientific research. More research is needed to 
explore the relationship between scientific knowledge and convergence. Furthermore, in 
the case of the forward citations, the treatment effects became insignificant when patent 
quality was controlled, suggesting that future research should include this factor.

Government R&D spending as a driver of convergence

In contrast to a conventionally linear R&D activity, which drives technological advance-
ment by deepening research in a single area, convergence generates novel technologies by 
combining knowledge from multiple domains. Because of its inherent multidisciplinary 
nature, convergence necessitates long-term development and is frequently associated with 
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uncertainties and risks, which can deter potential private investors. As innovation and man-
agement scholars have discussed, government-supported programs with distinct features 
help remove barriers, reduce R&D market failures, and ensure the benefits of investments 
(Jeong & Lee, 2015; Littler & Coombs, 1988; Martin & Scott, 2000). The multidiscipli-
nary configuration, in particular, establishes a knowledge foundation for convergence. 
Furthermore, the longer-than-usual grant durations enable (1) industrial players to return 
to guaranteed near-term product development and (2) academic researchers to conduct in-
depth research rather than “muddle through” the problem. The program’s direct impact, 
which propels participants to engage in convergence activities, may only cause a few initial 
sparks in the existing technological space. However, its ripple effects could start a prairie 
fire, attracting more investors and firms to participate (or even induce social bubbles). The 
combined force has the potential to change the technological landscape (e.g., converged 
technologies become mainstream, for example, NGS in this work).

Implications and contributions

Technology convergence is critical for improving firms’ overall innovation performance 
(Curran et al., 2010; Kim et al., 2019a, 2019b); however, the associated uncertainty and 
risks may deter firms from venturing outside of their technological comfort zones. Jeong 
(2014) demonstrated that when industrial firms collaborate with public research institutes, 
they are more likely to develop converging technologies because they gain access to diverse 
scientific knowledge and a low-cost labor force. Hence, a large-scale convergence-oriented 
R&D program is needed to explicitly encourage innovation through the channel of technol-
ogy convergence (Jeong & Lee, 2015). This study empirically demonstrates the underlying 
mechanism of how a government-funded program affects industrial and academic inven-
tors in such a scenario to better understand how government-supported R&D programs 
drive technology convergence. The empirical results suggest that industrial inventors par-
ticipating in such a program are more actively engaged in convergence activities than their 
academic counterparts. Furthermore, we show that the involvement of industrial firms 
emphasizes the projects’ commercial viability and motivates university scholars to pursue 
technological research rather than pure scientific exploration. As concerns have been raised 
about project failures caused by a lack of market-side considerations (Rikkiev & Mäkinen, 
2013), this case suggests that policymakers should consider the effects of including indus-
trial entities when designing technology convergence-oriented R&D programs.

In addition, scholars have cast doubts that the impact of such programs (Jeong & Lee, 
2015; Metzger & Zare, 1999) may only be marginal. Our research demonstrates that a 
government R&D program can serve as a channel for disclosing and publicizing internal 
findings and assuring authorities of emerging and risky convergence concepts, resulting in 
“leverage effects” that entice outside private investors and industrial players to participate. 
Such “leverage effects” are, however, limited to academic players. Finally, there is growing 
concern that the current funding system favors certain and safe research over high-risk/
high-gain projects (Wang et al., 2018). With the predictable risk and uncertainty associ-
ated with technological convergence, private companies and investors are hesitant to join, 
whereas academic researchers put these ideas on hold. In this case, an “entrepreneurial” 
funding program is required to pave the way.
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Limitations

The current study has some limitations that we hope to leverage to inspire further research. 
First, we use the ASTP as an example of how a government-supported R&D program can 
promote technological convergence; however, whether this can be generalized to other 
R&D programs remains unclear. To this end, the study encourages validation by other inno-
vation programs. Second, the study mentioned that several program settings and manage-
ment practices (e.g., U–I cooperation, multidisciplinary setup, and seminar disclosure) may 
positively contribute to the occurrence of convergence. However, the prominence of these 
features may require further investigation in future studies. Finally, the present work ana-
lyzed technology convergence using patent data; however, the program also discloses paper 
information that can be used to investigate scientific convergence. This opens the possibil-
ity of understanding the relationship between technological and scientific convergence.

Appendix

See Table 8.
Based on their patents in each class, inventor i’s characteristic vector is formed, which 

can be represented by xi . And then the degree of diversity for a community is given as

where function s is the cosine similarity. The degree of diversity for the given two exam-
ples is 0.059 for community I and 0.251 for community II.

1 −
1

n(n − 1)

[

∑

i,j

s
(

xi, xj
)

− n

]

,

Table 8  Measuring the degree of diversity in a community

Class (IPC Sub-
group)

Number of patents in each class

Community I

Inventor 1 Inventor 2 Inventor 3 Inventor 4

A 3 4 1 3
B 0 0 1 0
C 5 5 6 4

Number of patents in each class

Community II

Class (IPC Sub-
group)

Inventor 5 Inventor 6 Inventor 7 Inventor 8

A 3 2 4 3
B 0 1 2 0
C 5 5 1 1
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