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Abstract
Video communication has been rapidly increasing over the past decade, with YouTube pro-
viding a medium where users can post, discover, share, and react to videos. There has also 
been an increase in the number of videos citing research articles, especially since it has 
become relatively commonplace for academic conferences to require video submissions. 
However, the relationship between research articles and YouTube videos is not clear, and 
the purpose of the present paper is to address this issue. We created new datasets using 
YouTube videos and mentions of research articles on various online platforms. We found 
that most of the articles cited in the videos are related to medicine and biochemistry. We 
analyzed these datasets through statistical techniques and visualization, and built machine 
learning models to predict (1) whether a research article is cited in videos, (2) whether a 
research article cited in a video achieves a level of popularity, and (3) whether a video cit-
ing a research article becomes popular. The best models achieved F1 scores between 80% 
and 94%. According to our results, research articles mentioned in more tweets and news 
coverage have a higher chance of receiving video citations. We also found that video views 
are important for predicting citations and increasing research articles’ popularity and pub-
lic engagement with science.

Keywords Social media · YouTube · Societal impact · Research impact · Science of 
science · MetaScience · Machine learning · Altmetrics · Scientometrics · Scholarly 
communication

Introduction

Social media platforms have seen tremendous growth and changed communication para-
digms in the past decade, with information posted online within seconds and shared 
through multiple channels worldwide almost instantaneously. Immensely popular 
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platforms such as Twitter, Facebook, and YouTube have shifted information-sharing on 
the internet from a largely one-way process of posting information to a proprietary web-
site to one in which information becomes available rapidly through many websites and 
user accounts and in many forms and iterations, and in which responses to original con-
tent can be voiced and shared broadly based on a few manual clicks or via a preset auto-
mated process. This shift has seen trillions of posts, tweets, and video uploads on multi-
ple platforms, which have had a far-reaching impact on most, if not all, areas of human 
endeavor-including scholarly research. Video communication has rapidly increased on 
social media sites such as YouTube, Instagram, Twitter, and Facebook. Launched in 
2005, YouTube, in particular, has played a vital role in increasing video communication. 
In regard to scholarly work, research outcomes from this venue are increasingly being 
shared on several social media platforms. Further, it is by no means unusual for You-
Tube video descriptions to include citations of research articles, which could play an 
important role in disseminating research. In this paper, we analyze those video citations 
to better understand how research is being disseminated through such a new way of cita-
tion and the implications of this kind of sharing.

In addition to the traditional citation-based analysis, it is necessary to track web-driven 
scholarly interactions and measure the impact of research beyond scholarly communities. 
Altmetrics or alternative metrics (Sugimoto et al., 2017) specifically track scholarly men-
tions on online platforms to analyze and measure the impact of scholarly products. Altmet-
rics track many different metrics, including, for example, users who have read or shared 
an article, even though those users may not formally cite it. Altmetrics could be used to 
measure the broader impact of a research article through many channels and even measure 
scholarly impact by predicting citations (Thelwall & Nevill, 2018; Akella et al., 2021). As 
a result, there is a movement toward digital libraries and publishers providing altmetrics on 
their websites. Several researchers have analyzed altmetrics and their potential for measur-
ing societal impact. For example, Bornmann et al. (2019) used altmetrics data from the UK 
Research Excellence Framework (REF) in a case study designed to assess the validity of 
altmetrics and found that they have the potential to capture societal impact in relation to 
several distinct perspectives. In the present paper, we demonstrate our use of these social 
media metrics and features from altmetrics gathered from different platforms to further 
understand the role of YouTube video citations in the dissemination and societal impact of 
research.

Social media has become the primary source for real-time updates of various kinds of 
news worldwide, and YouTube is the principal site for video sharing (Susarla et al., 2012). 
Snelson et al. (2012) found that although YouTube is the most prolific online video-shar-
ing platform, it is also the most under-researched social media platform. Every minute, 
more than 500 hours of video are uploaded to YouTube, which gets billions of views all 
over the world (YouTube, 2021). This popularity has resulted in YouTube ranking as the 
second most viewed website globally, outranked only by Google (Alexa, 2021). The plat-
form’s usability and functionality allow a wide range of videos to be shared by users of all 
skill levels worldwide, who can then interact with others who like, dislike, and/or com-
ment on the videos. Those posting content create a channel on YouTube as an organizing 
principle and showcase their video content, and others can choose to subscribe in order to 
receive updates when new videos are posted. Diverse fields of videos disseminating real-
time information related to entertainment, health, music, sports, education, and news are 
uploaded by different channels. Recently, there has been an increase in the use of YouTube 
due to the dissemination of information related to the recent global pandemic, COVID-19 
(Suciu, 2021; Rodriguez, 2021).
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The global COVID-19 pandemic has disrupted the lives of most people, requiring sig-
nificant changes in many everyday practices. Social and professional activities worldwide 
have adapted new methods and processes to meet the challenges associated with these 
changes. In the academic world, as in other realms, annual conferences and society meet-
ings are hosting events virtually (Falk & Hagsten, 2021) in order to continue the exchanges 
that foster research progress in those venues. This unique experience has provided unex-
pected opportunities for the research community to reach wider audiences and improve 
diversity, equity, and novelty (Price, 2020; Liu et al., 2022; Kousha et al., 2022). Beehler 
and Griffiths (2020) hosted the 20th annual meeting of Interdisciplinary Nineteenth-Cen-
tury Studies (INCS) online and shared the steps they took and the challenges they faced 
in hosting the conference in that context. Among many important points, the researchers 
asked the hosts to record the conference events and post the videos online to continue the 
discussion after the event. They also encouraged the presenters and other attendees to cir-
culate appropriate hashtags on social media, share discussions, and broadcast the event’s 
news. Similarly, Bonifati et al. (2020) shared their experience of hosting a joint conference 
online and provided a number of suggestions for doing so successfully, including imple-
menting the practice of making videos of the presentations available to the public by post-
ing them online after the conference. In such contexts, videos were mostly uploaded to the 
conference’s YouTube channel and often cited one or more articles in their description. 
In addition, many conferences require a video submission (CHI, 2021; AAO, 2021), and 
given that this is the case, there is a need to analyze and understand the characteristics and 
impact of these video citations within and beyond the scholarly community now that they 
are also available to the public.

The idea of YouTube videos citing research literature is relatively new and has enor-
mous potential to improve the visibility and dissemination of research, leading to greater 
societal and scholarly impact in the long term. However, there are far fewer studies on the 
relationship between research articles and scientific YouTube videos compared to the rela-
tionship between such articles and other social media platforms. To understand and analyze 
this impact, we consider the following research questions: 

RQ1 What is the relationship between scientific YouTube videos and research articles? 
And what video categories and scientific subjects are most popular on YouTube?

RQ2 Can we build machine learning models to predict the societal and scholarly impact 
related to YouTube videos? If so, what are the important features and characteris-
tics?

To answer these questions, we analyzed the citations of research articles in videos on You-
Tube. We collected datasets from YouTube and Altmetric.com and used statistical and 
visualization techniques to understand the trends and discover patterns in the datasets. We 
combined the collected datasets and built machine learning models to predict three tar-
get variables. First, we built classification models to predict whether a research article has 
received a YouTube video citation. These video citations may influence the popularity of 
the research article, so it is vital to identify the features that are most important for con-
tributing to the prediction of video mentions of research articles. Second, the prediction of 
citations of a research article is essential to assessing its scholarly impact. To understand 
the contribution of videos to this impact, we built our second machine learning model to 
predict citations of a research article using social media mentions and features from vid-
eos citing the article on YouTube. Third, the number of views of a video indicates the 
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popularity of its content. To identify the social media features that are most important in 
attracting these views, we built our third machine learning model, which draws on social 
media features to predict the number of views for a video citing a research article on You-
Tube. In summary, our contributions include: 

1. One of the first studies that examines the relationship between scientific YouTube videos 
and research articles.

2. An investigation of the societal and scholarly impact, characteristics, and popularity 
of YouTube videos through visualization, statistical techniques, and machine learning 
models.

3. A novel dataset of research articles and YouTube videos that researchers can use to study 
the effects of scientific YouTube videos on the scientific community and the public.

Related work

Users’ social interactions in the online world generate new forms of data that can be 
extracted and analyzed by developing new models to find undiscovered patterns benefi-
cial to advances in research. The traditional analytical approach through scholarly citations 
limits measuring the impact within these scholarly boundaries. In contrast, altmetrics (Sud 
& Thelwall, 2014; Bornmann, 2014; Shaikh & Alhoori, 2019) can measure the impact of 
research in a more diverse way across multiple platforms and can help us to understand the 
direct and indirect impact of scholarly research. On this point, according to Weller et al. 
(2015), the proper use of altmetrics can help disseminate new scientific innovations to the 
public. Researchers have recently employed social media metrics to gauge public reaction 
to scientific findings (Freeman et al., 2019, 2020; Shahzad & Alhoori, 2022; Shahzad et al., 
2022).

Now a feature of many people’s daily lives, YouTube has undeniably changed informa-
tion-sharing worldwide. Since YouTube’s launch, researchers have studied the platform’s 
relationship with and impact on many aspects of daily life. For example, in a review of 
articles related to YouTube and health care, Madathil et al. (2015) found that health infor-
mation is increasingly conveyed through YouTube, given that the platform offers a setting 
for users worldwide to upload, view, and communicate health information. Further, as an 
educational tool in nursing education (Agazio & Buckley, 2009; Johnston et al., 2018), the 
platform has been used to stimulate active learning on the part of students and enhance 
health care learning. Chtouki et  al. (2012) found that YouTube videos can be a useful 
source of free educational content that improves student performance. In a study designed 
to assess the effectiveness of YouTube videos on a given anatomy problem, Jaffar (2012) 
found that 98% of the 91 medical students used YouTube extensively, and 92% agreed it 
helped them learn about anatomy. June et al. (2014) conducted research with a sample of 
50 students to assess their critical-thinking skills and interactive activities while using vid-
eos on YouTube. According to the results, YouTube has vast potential as a learning tool 
because it enhances the students’ experience and improves their critical-thinking skills.

Due to the massive quantity of content on YouTube, it is generally difficult for most 
contributors to reach a vast audience. Therefore, there is no guarantee that posting con-
tent will create an impact. For this reason, the relative popularity of videos has become 
a research focus with the goal of determining the features that are principally responsible 
for a video achieving a high level of popularity. According to Susarla et al. (2012), older 
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YouTube accounts with more videos posted have a greater chance of having an impact than 
do newer accounts with fewer videos. In an assessment of the effect of content-agnostic 
factors on video popularity, Borghol et al. (2012) found that views of videos shared previ-
ously by the uploader and video age are critical factors in determining video popularity. 
Figueiredo et al. (2014) used Amazon Mechanical Turk to evaluate YouTube videos and 
found that high-quality content resulted in tremendous popularity. To analyze the factors 
affecting the popularity of videos focused on science communication on YouTube, Wel-
bourne and Grant (2016) studied 390 videos of this kind uploaded to 39 channels on the 
platform and extracted popularity metrics such as view count, comment count, subscriber 
count, share count, and rating. They found that user-generated content was more popu-
lar than professionally generated content. Brodersen et al. (2012) examined more than 20 
million YouTube videos to determine the relationship between video popularity and geo-
graphic locality by analyzing the views from a spatial locality instead of a global locality. 
They found that the videos have a strong geographic interest, and around 50% of the videos 
had gained more than 70% of their views from a single region. Khan and Vong (2014) ana-
lyzed top viral videos by building an empirical model to understand how videos achieve 
virality and the relationship between different aspects such as social and non-social capital. 
They found that along with view count, offline social capital and network dynamics are the 
strongest contributors to virality.

Several models have been proposed to predict the popularity of videos on YouTube. 
Pinto et  al. (2013) proposed two regression models to predict the popularity of videos 
using two YouTube video datasets. They found that variables such as the number of com-
ments, ratings, and users who favorited the video are usually positively correlated with the 
number of views and do not help the regression model. Instead, information related to the 
user who posted the video and the subscriber count proved most useful. Hovden (2013) 
conducted an early study that investigated the productivity and impact of the top video 
channels on YouTube by applying h-index and g-index bibliometrics. Music video-based 
channels had a high impact appearing in the g-index rankings, whereas video blogs and 
mini-shows ranked top in the h-index rankings. They found that these metrics were best 
if used to compare channels of a related field. Yu et al. (2015) collected 172,000 videos 
from YouTube and proposed popularity phases to describe a YouTube video’s lifecycle. 
They found multiple stages of popularity with increases and decreases over several months 
for most videos, with phases related to content and popularity. Ma et al. (2017) proposed 
a Lifetime Aware Regression Model (LARM) to predict long-term video popularity using 
early accessible features such as views, likes, dislikes, comments, and video categories. 
They used two YouTube datasets to validate their model and found that it outperformed 
other baselines by up to 20% in terms of the prediction error reduction rate. Trzciński and 
Rokita (2017) proposed a Support Vector Regression model with Gaussian radial basis 
functions to predict the popularity of videos on YouTube and Facebook. They found that 
social features are more strongly associated with video popularity predictions than visual 
features.

Most of the previous research on YouTube focuses on the potential use of the platform 
as a tool for communicating information on health, politics, or science and as a means 
for providing education for students to facilitate learning. Researchers have built models 
to predict the popularity of videos on YouTube through metadata about the videos, and 
they have conducted surveys and performed literature reviews to understand users’ behav-
ior. Most research to date has not explored the connection between YouTube videos and 
research outcomes. Based on our research, the present paper is one of the first in which the 



938 Scientometrics (2023) 128:933–955

1 3

relationship between research articles and YouTube videos is analyzed through a range of 
social media features.

Methodology

Data collection and preprocessing

The data for this study came from two sources: Altmetric.com and YouTube. We analyzed 
these datasets individually and then combined them to form final datasets consisting of sev-
eral features, which consist of social media mentions of the research articles and the meta-
data of the YouTube videos citing the research articles, as shown in Table 1 and Table 2. 

Fig. 1  Data collection process
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Table 1  Altmetric features of datasets A1 and A2

Feature Feature description

Altmetric ID Unique ID for each research article
Title Title of a research article
Publication date Publication date of a research article
Mendeley readers Number of times a reference to a research article is archived on Mendeley
Scopus subjects Subjects of the research article
News Number of times a research article is mentioned in news contexts
Twitter Number of times an article has been tweeted on Twitter
Facebook Number of times an article is shared on Facebook
Policy Number of times an article is shared in policy documents
GooglePlus Number of times an article is shared on Google Plus
Reddit Number of times an article is mentioned on Reddit
Blogs Number of times an article is mentioned or featured in blogs
Patent Number of times an article is mentioned or featured in patents
Wikipedia Number of times an article is cited on Wikipedia
Video citations Number of times an article is mentioned in the description of videos (i.e., cited) on 

YouTube
Citation Number of times a research article is cited based on Dimensions.ai
YouTube links List of YouTube video links citing the publication (dataset A2)
YouTube citation Binary variable indicating whether or not the publication is cited on YouTube. This is 

the target variable for Model 1 and is used in dataset A1
Scholarly citation Binary variable indicating whether the publication has more citations than the median 

number of citations, which is 27 for all publications in dataset A2. This is the target 
variable for Model 2 and is used in dataset A2

Table 2  Features from YouTube

Feature Feature description

Link YouTube unique link or ID of video
Cited ID Altmetric IDs of cited research articles
Title Title of YouTube video
Views Total views of a YouTube video
Likes Total likes of a YouTube video
Dislikes Total dislikes of a YouTube video
SubNo Total subscriber count of the channel posting the video
Pubdate Publication date of the video
Description Description of the video as provided by the channel
Video Category Category of the video as stated by the uploader
Comments Number of comments posted on the YouTube video
Video Views Binary variable indicating whether or not the video 

has more than the median number of views, which 
is 1,139 for all the videos in dataset B. This is the 
target variable for Model 3.
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Using these datasets, we applied visualization techniques and statistical models for analysis 
and built machine learning models to predict important features in the dataset.

The data collection process for this research is shown in Figure 1. We extracted 500,000 
random research articles from the Altmetric API, which includes metadata of the research 
articles and mentions of research outputs on various social media networks. We named this 
dataset A1; it includes research articles cited in videos as well as research articles not cited in 
videos. Descriptions of the features in this dataset are presented in Table 1.

The Altmetric dataset provided the number of videos in which an article was cited with 
links to those videos. We checked all those links and verified they belonged to the YouTube 
platform. Each video on YouTube cited research articles through the description of the video 
uploaded to the channel. If the value of the feature Video was greater than 0, then we set the 
target variable to 1. Otherwise, we set the target variable to 0. We named this binary feature, 
which served as a target variable, “YouTube Citation.”

To further explore articles cited in videos, we selected all the research articles in altmetric.
com that are cited by at least one video on YouTube. Using the Altmetric API, we collected 
research articles cited by video along with the list of video links citing the publication. We 
found a total of 160,283 research articles cited in videos on YouTube. We extracted these arti-
cles and created dataset A2, which comprises Altmetric IDs (a unique ID for each research 
article), metadata of those research articles, and post counts from various social media plat-
forms, as shown in Table 1. The features are the same for both datasets with the exception of 
the target variable, which is “YouTube Citation” for A1 and “Scholarly Citation” for A2. Of 
the original 160,283 research articles in dataset A2, 9,659 records did not have valid video 
links. We, therefore, removed these records, resulting in a final count of 150,624. The Scopus 
subjects of the research articles were split to include only the major subjects, and the sub-sub-
jects were removed. A total of 22 unique major subjects were analyzed further, as described 
in Sect. 3.4. For 21,905 research articles, no major subject or sub-subject was defined. We, 
therefore, converted these empty values to “Other” subjects.

We then created dataset B through the video links collected in dataset A2 under “You-
Tube Links” by extracting the videos’ metadata through the YouTube API. There were 94,130 
unique video links in dataset B, of which 199 video links were unavailable, leaving 93,931 
videos with available links and containing the YouTube video ID or link, the title of the video, 
views, likes, dislikes, description, the number of comment counts, and cited IDs of Altmetric 
articles. It is important to note that an article could be cited in more than one video and that 
one video could cite more than one article. Dataset B contains only the metadata of videos cit-
ing research articles, as shown in Table 2.

In dataset B, of the 93,931 videos, 11,710 had no “Likes” values, and 2,553 had null values 
in the Likes feature, which both were converted to 0 “Likes .” Similarly, 42,673 videos had 
no “Dislikes,” and 2,554 null values in the Dislike feature were converted to 0 “Dislikes.” In 
addition, 64 videos had no “Views” in the Views feature and were converted to 0 “Views.” 
The channel subscriber count is presented in a textual form such as “1.2M” or “330K” and 
was converted appropriately to integer values. Features such as “Views,” “Likes,” “Dislikes,” 
“Subno,” and “Comments” were converted into integers from strings. For the feature “Pub-
date,” there were 4 null values and 2,823 values that included “Premiered on Date,” which 
were changed to a date format from a string. We checked the “Category” feature of videos 
and found 15 categories out of the 29 major categories on YouTube TechPostPlus (2019). 
There were 2,126 “Category” values different from the 15 categories, which we changed to 
the “Undefined” category.
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Approach

In our approach to answering RQ1, we use dataset A1 to build our first machine learning 
model to predict video citation. Analyzing the important features of the first model helped 
us further explore the relationship between videos and articles and is also an indirect indi-
cator of popularity. The analysis of dataset A1 revealed a class-imbalance problem while 
building the machine learning model, as 84% of research articles were not cited in videos. 
This shows that the majority of articles are not cited in videos, but popular articles might 
be cited in videos. For the binary feature “YouTube Citation,” the class 0 value denoting a 
research article not cited in videos contained 419,886 records, whereas class 1 indicating a 
research article cited in videos had 80,114 records.

In a real-world classification of any given dataset, the classes have a high chance of 
imbalance. Thus, the classes are not relatively equal in number, i.e., one of the class val-
ues is higher than the others. However, there are several techniques to resolve this issue. 
A class-imbalance problem can be resolved by either oversampling the minority class or 
undersampling the majority class. The goal was to process the imbalanced data before 
feeding it into the classifier and, in this way, overcome the fact that the classifier is more 
sensitive to the majority class and less sensitive to the minority class, resulting in the pre-
diction of the majority class. A limitation of oversampling a minority class in an imbal-
anced dataset is that it could lead to overfitting, as the existing values are copied in this 
technique. The concern with undersampling is that essential data can be missed.

We applied a hybrid method to dataset A1, combining random oversampling and under-
sampling techniques. In the case of oversampling applied to the dataset, the minority class 
samples were increased to equal 0.5 of the majority class samples. After oversampling the 
dataset, we applied undersampling in which the majority class samples were downsam-
pled to equal 0.8 of the minority class samples. The class label counts from the dataset 
that resulted from applying the hybrid method were as follows: 262,428 for class 0, which 
denotes a research article not cited in videos, and 209,943 for class 1, which denotes a 
research article. This reduced the effect of the class-imbalance problem for dataset A1. We 
then applied all the classification models to the resulting dataset A1 to determine which 
model performed best.

To answer RQ2, we combined dataset B with dataset A2 to create datasets C1 and C2, 
our final datasets, which we used in building models to predict article citations and video 
views, respectively. The second model used dataset C1 and the features utilized are shown 
in Table 4. The feature “Scholarly Citation" described in Table 1 is the target variable for 
the second model, which represents article citations. Citation analysis of articles is one of 
the indicators of scholarly impact and can help identify the important features related to 
scholarly impact through videos on YouTube. The final model is built using dataset C2 
and the features utilized are shown in Table 4. The feature “Video views" is the target fea-
ture for the third model described in Table 2. Views of a YouTube video are associated 
with popularity and are a potential indicator of societal impact. Important features of the 
model can help in examining features related to societal impact through views of videos. A 
description of all the datasets and available features is shown in Table 3.

To determine the importance of video citations for popularity or increasing the citations 
of a research article, we combined datasets A2 and B to form dataset C1, which consists 
of all the research articles cited by a video on YouTube with the links to the videos and 
the metadata of those videos citing that research article. Dataset C1 was created by add-
ing video metadata from dataset B to its link present in the Video links of dataset A2. The 
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final dataset C1 comprises 150,624 research articles cited by 93,931 unique video links. 
The features of the videos in dataset C1 have multiple values, as each research article had 
video citations ranging from 1 to 814 videos. Numerous videos can cite an article, and each 
video has different values for its features. Therefore, in building our models, we averaged 
the values of all the features of the YouTube videos citing a research article. For example, 
for a research article cited by three videos with respective view counts of 35634, 2733, and 
1, we determined a single average value of 12,794.34.

To further analyze the YouTube videos citing research articles, we combined datasets 
B and A2 to create dataset C2, which consists of 93,931 YouTube videos citing 150,624 
research articles, along with the metadata of the videos and the altmetric information of the 
research articles cited in the video descriptions. Dataset C2 was created by adding altmet-
ric data from dataset A2 to its altmetric ID present in the feature for the cited ID in dataset 
B. The altmetrics features in dataset C2 have multiple values, as each YouTube video cited 
numerous research articles ranging from 1 to 82. Therefore, we averaged the numerical fea-
tures for the research articles. For example, if a video cites five research articles and those 
articles had Twitter mentions such as 80, 63, 31, 27, 15, they were averaged to a single 
value of 43.2. It is important to note that in dataset C1, an article could be cited by mul-
tiple videos, whereas in dataset C2, a single video could cite numerous articles. For data 
exploration, we used datasets A1, A2, B, and C1, whereas in building the machine learning 
models, we used only datasets A1, C1, and C2. The resulting datasets are publicly available 
as a comma-separated-value file (CSV)1.

The datasets used in building the models differ from one another and are presented in 
Table 4, along with features utilized in each model and the target variable. Given its cor-
relation with Mendeley Readers, we removed Citations from dataset A1. For Model 3, in 
dataset C2, Citations and Blogs were removed as they are correlated with other features. 
For each model, we used Scikit-learn (Pedregosa et al., 2011) to implement classification 
models such as Bernoulli Naive Bayes, Random Forest, Decision Tree, and K-Nearest 
Neighbors (KNN). For the machine learning models, we applied k-fold cross-validation 
to the dataset and average evaluation metrics over 20 folds. To evaluate each model, we 
used the metrics precision, recall, F1-score, and accuracy. The four models are described 
along with the evaluation metrics. We report the essential features in building all the mod-
els to identify the importance of those attributes in relation to the target variables and our 
research questions.

Results

We report the results of our work in two parts. The first part describes the exploration of 
the dataset, which helps answer RQ1. The second part deals with building machine learn-
ing models to predict different metrics for answering RQ2. We provide an analysis of the 
datasets through visualization and statistical techniques in the first part and then build clas-
sification models for the second part.

1 https:// zenodo. org/ record/ 46919 41.

https://zenodo.org/record/4691941
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Data exploration

To explore the second part of RQ1 and identify the popular subjects of articles cited 
in videos, we analyzed the research articles in dataset A2 and found that an increasing 
number of research articles have been cited in videos in the last two decades (Figure 2). 
The articles most cited in videos each year were the “Medical and Health Sciences” 
Scopus subject. As the data was collected at the end of 2020, we can see a drop in 
the number of research articles cited in videos in 2019 and 2020 compared to previous 

Fig. 2  Number of records of Scopus subjects by year in dataset A2

Fig. 3  Number of video mentions for Scopus subjects in dataset A2
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years. This could mean that articles tend not to be cited in videos shortly after publi-
cation, with citations of this kind taking time to accrue. We also found that research 
articles with the Scopus subjects Medical and Health Sciences, Biological Sciences, 
and Psychology and Cognitive Sciences had the highest number of video mentions in 
comparison to other subjects (Figure 3). This indicates that most of the research articles 

Fig. 4  Number of YouTube videos in each category per year

Fig. 5  Video views of YouTube categories
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cited in the videos were related to medicine and biochemistry. The citation count for 
these subjects was also higher than for other subjects.

The popular video categories on YouTube citing research articles can be seen in Fig-
ure 4. We can see that an increasing number of videos have cited research articles in the 
last decade. The majority of the videos citing research articles are categorized as Educa-
tion, Science & Technology, or People & Blogs. It is also worth noting that People & Blogs 
was the third-highest category of videos to cite research articles, even though most of the 
research articles cited belong to Medicine & Biochemistry. Figure 5 shows the number of 
views of YouTube videos in dataset B based on the video category. The most-viewed vid-
eos citing research articles are categorized as Science & Technology and Education due to 
the high number of these videos in the dataset. Even though fewer videos were categorized 
as Entertainment in dataset B, this category garnered the fourth-highest view count.

To explore the relationship between articles and video features, we plotted a correla-
tion matrix between the features to answer RQ1. Based on the correlation matrix of the 
features in dataset C1, we can observe that Likes and Dislikes are highly correlated with 
Views (Figure 6). To reduce complexity while building our machine learning models, we 
removed highly correlated features, i.e., features with a correlation greater than 0.5. Thus, 
we removed Likes and Dislikes as they had a correlation of 0.85 and 0.53, respectively, 
keeping only video Views as the sole feature relating to the videos. We also removed Blog 
as it had a 0.61 correlation with News, and Citation was also removed due to its correlation 
of 0.59 with Mendeley Readers.

Fig. 6  Correlation matrix for all the numerical features in dataset C1
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Building models

To explore the relationship between articles and videos as well as predict the impact of 
popularity, we predicted whether an article was cited in at least one video on YouTube. 
This identified important social media features of an article influencing YouTube citation. 
In the first model, Random Forest yielded the best results, as shown in Figure 7, achieving 
an accuracy level of 0.95 and an F1-score of 0.94. Decision Tree performed second best 
with an accuracy of 0.92 and an F1-score of 0.91. Figure 8 shows the feature importance of 

Fig. 7  Classification results for Model 1

Fig. 8  Important features for the Random Forest classifier for Model 1
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the Random Forest classifier in predicting video citations. Twitter and News were the most 
important features, followed by Mendeley Readers and Blog.

To predict whether an article will reach a level of popularity or scholarly impact, we 
built the second model to answer RQ2. For the second model, Random Forest performed 

Fig. 9  Classification results for Model 2

Fig. 10  Important features for the Random Forest classifier for Model 2
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the best overall, with an accuracy level and an F1-score of 0.80. KNN performed second 
best with an accuracy level of 0.75 and an F1-score of 0.78. Figure 9 shows the evalua-
tion metrics of the classification models built on dataset C1 to predict the binary target 

Fig. 11  Classification results for Model 3

Fig. 12  Most important features for the Random Forest classifier for Model 3
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variable. Figure 10 shows feature importance in the model built by the Random Forest 
classifier. We can see that the average number of Video Views citing a research article 
is the second-most important feature, after Mendeley Readers, in classifying citations of 
research articles.

We built the third model with the features and the target variable mentioned in Table 4 
to answer RQ2. The third model correlates video popularity and societal impact. The 
Video Category feature was converted to numerical features using One Hot Encoding. Fig-
ure 11 shows the results of the classifiers: Random Forest again performed best, achieving 
an accuracy level of 0.81 and an F1-score of 0.80, and KNN performed second best with an 
accuracy level of 0.79 and an F1-score of 0.78. Figure 12 shows feature importance in the 
model built by the Random Forest classifier. SubNo and Mendeley Readers were the most 
important features in building the model.

Discussion

Video citations of research articles may help increase the popularity of the articles in the 
research community and eventually increase citations of research articles. In this study, 
we analyzed citations of research articles in the descriptions of videos on YouTube. The 
rise of video citations over recent years, along with the increasing number of conferences 
requiring a video submission of accepted scholarly research, have paved the way to iden-
tify important features that contribute to the popularity and impact of research through the 
results found in Sects. 4.1 and 4.2. It is essential to analyze these video citations and the 
social media mentions of research articles to identify the crucial factors that improve the 
popularity of videos and research articles. We collected data from YouTube and Altmet-
ric to discover hidden patterns and explore the relationship between research articles and 
video citations. We combined the datasets, analyzed them using visualization techniques, 
and built machine learning models to predict important target variables. For the analysis, 
we examined the combined datasets in relation to research articles and videos, which led 
us to build three datasets to predict video citations, video views, and citations of research 
articles.

From our analysis of the large A1 dataset of research articles, we found that around 
three-quarters of the dataset’s research articles were not cited in videos. In Sect. 4.1, we 
found that research related to Medicine and Biochemistry received the highest number of 
video citations. We also found that most of the videos citing research articles were in either 
the Science & Technology or the Education category. Videos categorized as Entertainment 
mentioned fewer research articles but attracted the fourth-highest number of views after 
Science & Technology, Education, and People & Blogs. This result suggests that scientific 
results are being used for entertainment and educational purposes. Through our analysis 
of the video dataset B, we found positive correlations between the number of video views, 
likes, and dislikes, as seen in Figure 6. This is self-evident since users usually view a video 
before adding a like or dislike. This is also in line with findings reported by Welbourne and 
Grant (2016) and Pinto et al. (2013), who found that other video metadata such as likes, 
dislikes, and comment counts are highly correlated with video views. Given these correla-
tions, we removed all these features from consideration, with the exception of the video 
views feature. However, contrary to previous findings, the comment count did not have a 
high correlation with views of scientific videos, as seen in Figure 6. This hesitancy to com-
ment publicly on scientific videos could be related to the hesitancy to comment publicly on 
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research articles. Around 80% of researchers considered that their comments might affect 
their reputation or how others perceive them (Hemminger & TerMaat, 2014).

For our second part of the study, as can be seen in Sect. 4.2, we considered four classi-
fication algorithms-Bernoulli Naive Bayes, Random Forest, Decision Tree, and K-Nearest 
Neighbors-and applied them to each of the three cases to predict three target variables. We 
evaluated the models based on precision, recall, accuracy, and F1-score. Prediction of whether 
a research article is cited in a video is the first model of our study for which we used social 
media mentions of the research article to predict a binary variable indicating video citation. 
Twitter Mentions and News Mentions of research articles were important factors that contrib-
uted to attracting a video citation for a research article. Research articles mentioned in news 
and tweets cause buzz across the internet and have a high chance of being cited in videos. Cita-
tions show the importance and usefulness of a research article and are a strong indication of its 
popularity. The second model in this study predicted the binary variable, indicating whether 
a research article had more citations than the median of all the citations of research articles in 
the dataset. We found that Mendeley Readership and Video Views contributed greatly to this 
scholarly impact prediction. This result is in line with previous studies in which Mendeley 
readership is found to be important for predicting citation counts (Thelwall & Nevill, 2018). 
However, Video Views are a new feature that plays a vital role in garnering citations, reaching 
wider audiences, and fostering the popularity and impact of research articles. Our third model 
predicted Video Views. We found that the subscriber count of a channel, Mendeley Readers, 
and Twitter Mentions of research articles were important in predicting views of videos citing 
those research articles. This shows that the number of followers for a YouTube channel plays 
an essential role in the number of scientific video views. Random Forest achieved the best 
results for all the models built in this study.

A limitation of this study is that it relied on social media features from a single source Alt-
metric.com. It also does not consider other related factors, such as the textual content of the 
research or the video content. Another limitation of our work is that the built models did not 
consider the temporal nature of the features present in the various datasets, which needs con-
tinuous data collection. We also assumed that citations and views could be considered indica-
tors of scholarly and societal impact, respectively, whereas other factors can also influence 
these impacts. Moreover, the prediction of the target feature of the models can only be appli-
cable after the accumulation of important social media features, which is a cold-start problem. 
Furthermore, we used multiple visualizations to explore trends and patterns in our collected 
datasets. One possible improvement for further studies is to relate and synthesize information 
from these visualizations (Sun et al., 2021a, b; Shaikh et al., 2022), which may be help gain 
some more in-depth insights.

Our process offers insight into ways to make improvements in future iterations by incorpo-
rating some traditional factors such as the h-index of authors, scholarly venues, and temporal 
features that have been useful in other studies. Additionally, it would be helpful to distinguish 
between subjects and research fields to provide a basis for building models for individual areas 
that would, in turn, improve the results. Furthermore, we considered Dimensions Citations, 
and it would be worthwhile to check other sources such as Google Scholar. Another direction 
to explore is the use of research in videos. Do the videos include results drawn principally 
from the abstract, methods, or results section? Further, the reasons for including references 
to research articles in videos remain unexplored. For example, do the videos cite research to 
promote content, provide a message within the video, increase public trust in the content, sell 
a product, or even spread misinformation? Lastly, our results could be compared with research 
focused on measuring and predicting other types of societal impact, such as in economic, 
political, and health areas.
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Conclusion and future work

In this study, we analyzed the impact of YouTube on research by building classification 
models to predict video citations, scholarly citations, and video views. We found that 
fewer research articles were cited in videos in a large dataset of research articles. Most 
of the articles cited in videos belonged to the Medicine and Biochemistry categories. 
These subjects also have the highest number of video citations in comparison to other 
subjects. The number of video citations has been increasing in recent years, with most 
of the videos citing research articles categorized as Science & Technology, Education, 
and People & Blogs. Science & Technology and Education are the categories of vid-
eos that garnered the most views. We found a high-to-mid correlation among views, 
likes, dislikes, and the subscriber count of videos. We also observed that Random Forest 
performed the best of all the models built on the datasets. We found that News men-
tions and Twitter mentions of a research article are important factors in determining a 
research article’s video citation. Another important finding of the study is that the view 
count of a video was an important feature in predicting a research article’s citations. 
For future work, we plan to use more textual and temporal features of the videos and 
articles. We will study the topics of videos citing research articles and the relationship 
between the video categories and the research articles’ subjects.
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