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Abstract
We study the structure and evolution of networks of inventors involved in university licens‑
ing and patenting. In particular, we focus on networks of inventors that have success‑
fully licensed a university patent (i.e., licensing networks), and investigate levels of their 
fragmentation, cliquishness, and whether they exhibit the small world phenomenon. We 
find that these licensing networks are more fragmented and cliquish than the networks of 
inventors engaged in all (not necessarily licensed) patents (i.e., patenting networks), and 
that they are not small worlds. Additionally, by comparing the created licensing networks 
to random subnetworks of the patenting networks, we find that concerns in regard to the 
potential effects of opportunistic behavior are, to some degree, justified. We detect an inter‑
esting collaboration behavior of inventors who license, which we designate as dualistic 
opportunistic behavior.

Keywords Social network analysis · Patenting network · Licensing network · University 
commercialization · Technology Transfer

Introduction

The third mission of universities, i.e., embracing the mission of economic development 
alongside teaching and research roles (Etzkowitz & Leydesdorff, 2000), is tightly connected 
to the commercialization of university inventions and technology transfer (Berghaeuser & 
Hoelscher, 2020; Cesaroni & Piccaluga, 2016). This topic has received significant attention 
in the media and is of high priority in policy agendas (Bercovitz & Feldman, 2006; Zhao 

 * Dolores Modic 
 dolores.modic@nord.no

 Borut Lužar 
 borut.luzar@gmail.com

 Tohru Yoshioka‑Kobayashi 
 t‑koba@iir.hit‑u.ac.jp

1 Nord University Business School, Bodø, Norway
2 Faculty of Information Studies in Novo Mesto, Novo Mesto, Slovenia
3 Rudolfovo, Science and Technology Centre, Novo Mesto, Slovenia
4 Institute of Innovation Research, Hitotsubashi University, Tokyo, Japan

http://orcid.org/0000-0002-8356-8827
http://crossmark.crossref.org/dialog/?doi=10.1007/s11192-022-04564-7&domain=pdf


902 Scientometrics (2023) 128:901–932

1 3

et al., 2020). The emphasis on commercialization efforts exists against the backdrop of the 
academic tradition of knowledge sharing and funding programs encouraging collaboration 
(Dasgupta & David, 1994; Nelson, 2004; Walsh et  al., 2007). To understand collabora‑
tive relationships, including in innovation, social network studies have been helpful (see, 
e.g., Prell, 2012). Notwithstanding the attention to social networks, our knowledge of the 
patenting and licensing networks’ properties remains limited. We also know little about 
whether and how dealing with university inventions with high commercialization potential, 
i.e., those that are licensed, moderates the social networks’ properties.

A network structure plays an important role in innovation activities (e.g., Casper, 2013; 
Fleming et  al., 2007; Schilling & Phelps, 2007; Tahmooresnejad & Beaudry, 2018). In 
innovation, a myriad of studies investigated different properties of social networks (e.g., 
Cassi & Plunket, 2015; Fleming et al., 2007; He & Fallah, 2009; Schilling & Phelps, 2007; 
Uzzi & Spiro, 2005), including their fragmentation, cliquishness, and whether they are 
small worlds. Prior research on social networks related to patenting revealed that they can 
be relatively fragmented, and substantially more fragmented than those within open sci‑
ence (Breschi & Catalini, 2010; Lissoni et al., 2013). In social network studies, it is also 
common to discover cliquishness (e.g., Beaudry & Kananian, 2013; He & Fallah, 2009; 
Schilling & Phelps, 2007) and a small world network structure (e.g., Fleming et al., 2007; 
Uzzi & Spiro, 2005); but the latter remains somewhat unclear in terms of patenting (Bal‑
coni et al., 2004; Lissoni et al., 2013).

Only few studies focusing specifically on licensing networks have been performed, and 
these have been done either at inter‑organizational (Hu & Zhang, 2021) or inter‑regional 
level (Yang et  al., 2021b). Moreover, studies focusing on relationships between individ‑
ual researchers have not explored questions related to structure of the licensing networks 
(Kotha et  al., 2013). The question of which properties licensing networks at university 
level would display, thus remains unanswered. This paucity of research dealing is likely 
due to a lack of available data (Bercovitz et al., 2019; Wright et al., 2014). Since licensing 
is a result of relationships on individual level, insights brought by research on interpersonal 
level can be especially informative, and can help build both policy and organizational level 
recommendations.

Actors’ choice to invest or not to invest in their ties and actions can have consequences 
for the structure of their social networks (Gulati et  al., 2012; Prell, 2009). In this line, 
recent social network studies began to focus on the opportunistic behavior of actors and its 
consequences on the network structure. For example, a firm’s competitive advantage seek‑
ing behavior often drive them into a structural hole position and, simultaneously, expand 
their affiliated networks (Guo et al., 2021). Consequently, such behavior can lead to diverse 
network structures (Guo et al., 2021).

However, we do not know how dealing with university inventions with high commer‑
cialization potential, i.e., those that are licensed, moderates the social networks’ properties. 
But such understanding can be very relevant, since from a commercial value perspective, 
licensed patents are more relevant for the industry (Kotha et al., 2013), which brings to the 
forefront the focus on the inventions with the highest commercial potential. When inven‑
tors and technology licensing offices deal with patents with the most commercialization 
potential, their respective collaboration patterns can differ from their overall patterns, due 
to the inventors’ behavioral change (Blumenthal et al., 1997). It is possible that opportunity 
assessment causes opportunistic behavior (Das & Rahman, 2010; Haeussler, 2011; Wil‑
liamson, 1985) mirrored in changed formation of social ties, which in turn affect the prop‑
erties of the licensing networks.
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To reveal the nature of collaboration in academic commercialization, we explored net‑
works of inventors involved in licensing. At the core of our research lies the question of 
whether the engagement of inventors in patents with the most potential for commercializa‑
tion (i.e., the licensed patents) affects the properties of their respective licensing networks 
in terms of fragmentation, cliquishness and small worlds. For such networks, the intuitive 
answer to our question would be affirmative. Nonetheless, there is still ambiguity in both 
theory and empirical evidence. The question is an especially interesting one in settings, 
such as universities, where potential opportunistic behaviors based on higher recognition 
of potential are being countered by Mertonian norms encouraging collaboration. Ideal 
Mertonian norms emphasizing revealing and sharing scientific resources and knowledge 
(Merton, 1957), and the general benefits deriving from collaboration (Bozeman & Corley, 
2004), could counter‑measure substantial negative effects potentially caused by opportunis‑
tic behavior related to university inventions with high potential. This makes studying social 
networks in a university setting especially salient; and can give us hints as to how suc‑
cessfully building up the environments that value collaboration can counter the effects of 
opportunistic behaviors.

We investigate the network properties of licensing networks at two focal universities, 
and compare them first to the patenting networks inside these same universities. Next, 
we test whether licensing networks exhibit unexpected network properties by comparing 
them to a sample of random subnetworks of the patenting networks. Our analysis allows 
us to highlight some unexpected properties of licensing networks, such as the lack of small 
worlds, and that in some cases fragmentation can be so high that a significant size giant 
component, i.e., large component of connected network members, does not even appear. 
Both are unusual phenomena in social networks, especially for environments that in gen‑
eral value collaboration. Combining the analysis of network properties and micro‑level 
insights, we also detect some interesting collaboration behaviors of inventors who license, 
which we term as dualistic behavior.

In contrast to previous studies, we use an original dataset of technology transfer admin‑
istrative data from two Japanese universities. The dataset includes more than 9000 inven‑
tors active between 2004 and 2014. A distinguishing aspect of our research is our multi‑
level and temporal network analysis on novel, hard‑to‑obtain licensing datasets. By doing 
so, we add to the broader discussion of the potential opportunity‑recognition effects on 
social networks’ properties by bringing licensing networks to the forefront. Much of the 
previous literature dedicated to the study of networks in university settings was particularly 
interested in exploring knowledge spillovers or consequences of collaborations, leaving a 
knowledge gap in the literature related to exploring the intrinsic properties of these net‑
works (Boschma & Frenken, 2009; Crescenzi et al., 2016).

Social networks properties in the university commercialization context

Social network properties: network fragmentation, cliquishness, and small worlds

Exploring structural properties of social networks is of key importance, since the struc‑
ture of networks can influence how knowledge is combined (Yayavaram & Ahuja, 2008), 
and can have effects on innovation activities. For example, studies showed that a less frag‑
mented regional academics’ co‑inventor networks are associated with high science‑based 
innovations (Casper, 2013). It was also shown previously that a high network centrality of 
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researchers is connected to high productivity in patenting (Tahmooresnejad & Beaudry, 
2018).

Several network properties are commonly explored in social network research, such as 
centralization, density, network diameter and average path lengths, as well as cliquishness, 
fragmentation, and small worlds (Prell, 2012). We chose to focus on the latter three prop‑
erties. We do so, since ‘cliquish’ networks can increase the level of trust among individu‑
als, encourage sharing of knowledge, and stimulate engagement in joint activities (Cassi & 
Plunket, 2015; Coleman, 1988). Once such cliquish networks interconnect with each other, 
even though sparsely, i.e., typically form a ‘small world’ network, ideas and knowledge can 
flow to diversified actors (Uzzi & Spiro, 2005). However, not all networks interconnect, 
some remain fragmented (Balconi et al., 2004; Lissoni et al., 2013).

We first focus on cliquishness. Collaborating researchers typically comprise groups 
wherein knowledge and ideas are easily transferred between members (Perry‑Smith & 
Shalley, 2003). Many researchers tend to work with the people in their own group (Boze‑
man & Corley, 2004) and most ties between inventors re‑affirm already existing collabora‑
tions (Forti et al., 2013). In line with the closure argument (Coleman, 1988), social net‑
work studies often capture ‘cliquishness’ in networks (e.g., Beaudry & Kananian, 2013; He 
& Fallah, 2009), mirrored in networks of densely connected groups. Frequent and redun‑
dant connections increase the fine‑grained information exchange which is timely, accurate 
and of high quality, formulate common language and communication codes, promote trust 
and learning between researchers, and therefore deepen their collaboration (Beaudry & 
Kananian, 2013; Breschi & Catalini, 2010; Forti et al., 2013; Prell, 2009).

However, membership in highly connected networks can also limit the range of activi‑
ties and may limit the access to non‑redundant knowledge. Based on Burt’s (2005) work, 
non‑redundant knowledge sharing is important, and building networks with large numbers 
of indirect ties may be an effective way for actors to enjoy the benefits of network size 
without the costs of network maintenance associated with direct ties. Consequently, it is 
important for group members to reach beyond the borders of their original groups, since 
these external relationships can bring in non‑redundant knowledge. Two inventors with 
common co‑workers can influence each other even if they have never collaborated directly 
(Brown & Duguid, 2001), and both direct and indirect ties can matter, not only for explora‑
tion, but also for exploitation of knowledge (Ahuja, 2000; Guan & Liu, 2016).

Thus, apart from investigating the level to which individual researchers are intercon‑
nected, we also turn to exploring how well the researchers in the network are connected 
globally, i.e., to network fragmentation. Many obstacles, such as coordination costs, insti‑
tutional contexts, or incentive mechanisms (Landry & Amara, 1998), prevent individual 
actors from collaborating beyond their boundaries. Consequently, the vast majority of 
networks have isolated subnetworks (e.g., Forti et al., 2013). Nonetheless, by connecting 
beyond boundaries, actors can potentially gain a great deal, including new information and 
opportunities, new resources, and new ideas for solving problems (Granovetter, 1973; Lin, 
2001).

But although parts of collaboration networks can remain closed for new members, long 
periods some boundary spanners can exist between densely connected groups (Breschi & 
Catalini, 2010). These are relatively rare people who link distinct groups and contribute 
to establishing relationships between multiple, otherwise cliquish, groups. The essence of 
small world structure is the linkage of densely connected groups by the boundary span‑
ners; as Fleming and Marx (2006) point out, isolated clusters or an overabundance of ties 
between unclustered inventors are not small worlds. A small world network structure has 
been frequently detected (e.g., Fleming et  al., 2007; Uzzi & Spiro, 2005), including in 
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some research focusing on patenting networks, such as those related to patenting in nano‑
technology (Guan & Shi, 2012) or in communication technologies (Hung & Wang, 2010). 
Lissoni et al., (2013: 197) point out, that “small world structures are apt to ensure fast and 
widespread diffusion of technical and scientific knowledge”, which is an important feature 
in university commercialization networks.

Social networks in university commercialization

Studying networks allows us to gain insight into goal‑oriented collaborations which 
require knowledge sharing. Particularly, the university inventions are commonly a result 
of such goal‑oriented collaborations between inventors (Bercovitz & Feldman, 2010; 
Kotha et al., 2013; Wuchty et al., 2007). Social network analysis encompassing univer‑
sity researchers primarily focuses on the collaborative nature of researchers by studying 
large networks of co‑authorships (Newman & Girvan, 2004; Tu, 2019; Wang, 2016) and 
(to a lesser degree) co‑inventorships, seldom combining co‑authorship and co‑inventor‑
ship (Breschi & Catalini, 2010; Cattani & Rotolo, 2014; Subramanian et al., 2013).

Research on co‑inventorships typically explores patenting networks (Balconi et  al., 
2004; Crescenzi et al., 2017; De Prato & Nepelski, 2014; Forti et al., 2013; Guan & Liu, 
2016; Huggins et al., 2020; Hur & Park, 2016; Lissoni et al., 2013; Morescalchi et al., 
2015; Yang et al., 2021a). The use of social network theories and methods on patenting 
data has already resulted in significant contributions; from those related to the determi‑
nants of network properties (e.g., Forti et al., 2013; Huggins et al., 2020; Morescalchi 
et  al., 2015; Yang et  al., 2021a) to those related the effect of networks on innovation 
performance (e.g., Guan & Liu, 2016; Hur & Park, 2016).

However, when combined with a focus on universities, and with what Phelps et al. 
(2012) call interpersonal level, i.e., studies with the focus on individuals and the rela‑
tionships among them, research has rarely been dedicated to studying network proper‑
ties. The research done in relation to patenting networks is usually limited to a particu‑
lar field (Breschi & Catalini, 2010; Guan & Liu, 2016), or a region or country (Balconi 
et al., 2004; Lissoni et al., 2013; Morescalchi et al., 2015), thus not providing a univer‑
sity‑level perspective. As opposed to the extant literature, we did not limit this research 
to a particular field, but observed the properties of social networks in patenting and 
licensing at two focal universities with specific regard to licensing. This is especially 
relevant, since one of the challenges in researching both patenting and licensing are the 
scientific competition effects, which are a major cause of science fragmentation within 
a discipline (Hong & Walsh, 2009). Our approach allows us to control for these influ‑
ences. Next, exploring licensing on the university level can give us a more complete 
picture than using registry data on the regional or national level, since the registration 
of licensing is typically recorded on a voluntary basis and typically does not adequately 
present all licensing activities (Yang et al., 2021b; Ye et al., 2020).

There are few studies that focus at least partially on licensing networks. Hu and 
Zhang (2021) recently engaged in a spatial–temporal analysis of assigned patents of 
U.S. universities, however, their focus remained on collaboration between organiza‑
tions. Yang et al. (2021b) used a voluntary Chinese licensing database, but their focus 
remained on inter‑regional aspects. Kotha et  al. (2013) dealt with inventors that co‑
invented a licensed patent, however, they did not examine the properties of these net‑
works. They rather explored the role of within‑group collaboration experience as a mod‑
erator of coordination costs that could potentially affect the licensing likelihood. Hence, 



906 Scientometrics (2023) 128:901–932

1 3

the literature focusing on licensing does not provide us insights into the structures of 
licensing networks.

In terms of fragmentation in a university environment, we know more about co‑
authorship networks, whereas our understanding of fragmentation in patenting remains 
limited. Many researchers, in order to provide evidence on the existence of fragmenta‑
tion or lack thereof, observed so‑called giant components in networks (Velden et  al., 
2010). With regard to co‑authorship networks, most evidence shows that their giant 
components are comprised of more than 80% of nodes and thus strong fragmentation 
does not appear: for example, 88% of nodes in the Pakistani chemistry researcher net‑
work (Badar et al., 2013) and 80–90% of nodes in the networks of Slovenian research‑
ers (Kastrin et al., 2017). We know less about the fragmentation in patenting networks. 
Lissoni et al. (2013) showed that giant component sizes in patenting networks are below 
30% in all science fields except two, in which they reach 60% of all nodes in the net‑
work. Their work also indicates that patenting networks including university research‑
ers seem to be less fragmented than those also encompassing non‑academic inventors, 
which could also indicate the effects of Mertonian norms on academic inventors. Bre‑
schi and Catalini’s (2010) results indicated that patenting networks seem to have smaller 
giant components than co‑authorship ones (no giant component in any science field 
encompasses more than 34% of inventors). They attribute this to the fact that when the 
emphasis on retaining knowledge as proprietary exists, it is also likely to limit collabo‑
ration across teams of researchers, and consequently the fragmentation of such patent‑
ing networks is “rather natural consequence” (Breschi & Catalini, 2010:20). However, 
the results of both Breschi and Catalini (2010) and Lissoni et  al. (2013) can be influ‑
enced by the fact that they focus on particular science fields.

Next, Forti et al. (2013) could not confirm that in contrast to university researchers that 
only publish, those that also patent would isolate or close their networks. Both researchers 
that only publish and those that also patent, expand their networks in time. To the extent 
that working in groups is common in co‑inventorship, logic dictates we should also be able 
to detect small worlds in patenting networks, and indeed some have been able to detect 
them ‘clearly’, e.g., Yang et al., (2021a) for transnational patent networks. However, having 
a small‑world property was not always confirmed for patenting networks in academic set‑
tings (Balconi et al., 2004; Lissoni et al., 2013).

Lastly, previous works imply that ties that would bridge otherwise disconnected parts 
of the networks could be somewhat limited in patenting networks (Cassi & Plunket, 2015), 
with links predominantly occurring within existing components, hence making them more 
cliquish. Fleming et al. (2007) found a negative impact of higher cliquishness on innova‑
tion productivity, however in the university setting Beaudry et Kananian (2013) show that 
a higher level of cliquishness is even beneficial to a certain degree for the quality and quan‑
tity of patenting by university researchers; however, that having too much of an integrated 
network can then be unfavorable for patenting.

Licensing networks: between opportunistic behavior and following Mertonian 
norms

The macro‑level social network structures emerge from the agglomeration of micro‑level 
behavioral actions of individual actors, which result in the formation of social ties (Gulati 
et al., 2012; Guo et al., 2021; Prell, 2009). The network structures, including licensing net‑
works, will thus be affected by actors’ network strategies aiming to gain access to certain 
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resources, or actors’ strategies choosing to retain some advantages derived from their activ‑
ities within smaller groups.

In particular, collaborating on innovation can be seen as a collaborative cost game, 
actors weighting between forming (larger) networks with particular structures, to share 
the costs related to the activity and to increase (at least implied) benefits of collaboration 
(Curiel, 2013; Vivona et  al., 2022); or not collaborating. The latter consequently entails 
forming differently structured networks, due to the perception of potential costs of collabo‑
rating outweighing its potential benefits (Connelly et al., 2014), and actors thus pursuing 
opportunistic behaviors (Das & Rahman, 2010; Williamson, 1985). We know that some‑
times, albeit actors are able to collaborate, they are not willing to do so, i.e., exhibiting so‑
called ability‑willingness paradox (Rondi et al., 2021).

Based on the idea of opportunistic behavior (Haeussler, 2011; Haeussler et al., 2014), 
the perceived feasibility of commercialization via licensing could potentially limit 
researchers’ collaboration behavior, even more so than in patenting. Opportunistic behavior 
has been discussed in the literature, especially as an impediment to collaboration on organ‑
izational and interorganizational levels as well as on the individual level (Das & Rahman, 
2010; Williamson, 1993). Opportunistic behavior can be divided into two forms according 
to stages: ex‑ante and ex‑post. Typically issues, such as those related to adverse selections, 
are considered as manifestations of ex‑ante opportunistic behavior (Das & Rahman, 2010; 
Williamson, 1993).

Initial recognition of the potential is a prerequisite for any opportunities’ recognition 
and related behavior, and it could trigger specific inventors’ collaboration behaviors, con‑
sequently impacting network properties. O’Gorman et al. (2008) claimed that inventors ini‑
tially recognize an invention’s commercial potential when they are still ‘embedded in their 
research context’. This initial recognition can stem from the inventors’ ‘alertness’ when 
initially identifying their entrepreneurial opportunities during the research process (Kir‑
zner, 1997), from their prior knowledge (Shane, 2000), or as an input from their licensing 
partners (Chang et al., 2009).

There are several types of opportunities arising from most commercially valuable pat‑
ents, including their impact upon individuals’ reputations. The potential for reputational 
gains can in turn reduce collaboration (Haeussler, 2011), since the perceived benefits of 
collaboration may not offset the potential losses incurred (Haeussler et al., 2014). These 
losses are in various forms, e.g., in needing to share licensing revenues, i.e., what Das and 
Rahman (2010) see as economic determinants of opportunistic behavior.

The decision for a more contained collaboration can also be connected to a priori con‑
siderations regarding future problems, which can impact the opportunities arising from 
the patent, e.g., considerations about the active involvement of a particular potential group 
member in collaboration with the licensee during or after the licensing process. These tem‑
poral determinants (Das & Rahman, 2010) thus include considerations related to collabo‑
ration (time) horizon. Kotha et al. (2013) researched coordination challenges in licensing 
and proffered evidence for such a perspective in university technology commercialization. 
Another significant issue is that inventors inevitably weigh the increase of the opportuni‑
ties arising from collaboration with other inventors (Bozeman & Corley, 2004) as opposed 
to no collaboration. A negative assessment, which arises when the inventor sees no need 
for co‑inventors’ knowledge input neither in the patent nor in the licensing process; or can 
envision no future opportunities weighing in on the decision to collaborate and share any 
potential benefits arising from licensing; or the considerations connected to the ability to 
sanction any potential breaches (Coleman, 1988) would not outweigh the positive aspects. 
Such considerations can result in differences in collaboration behavior. Prior research has 
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indeed shown that researchers can use different collaboration strategies (Bozeman & Cor‑
ley, 2004).

On the other hand, ideal Mertonian norms in science that emphasize revealing and 
sharing scientific resources and knowledge with colleagues (Merton, 1957) could be 
strong enough to counter any additional negative effects potentially caused by opportun‑
istic behavior related to those university inventions with higher commercialization poten‑
tial. Another counter‑measuring effect could be consideration of the potential for future 
reciprocity, which can be weighed against the current diminishing of competitiveness 
(Haeussler et al., 2014), or connecting to individuals with previous licensing experiences 
(Kotha et al., 2013). Inventors rely heavily on social sources (Allen, 1977), which are espe‑
cially important when there is a need to transfer tacit knowledge (Fleming et  al., 2007). 
Such an instance may arise, for example, when dealing with patents with the highest poten‑
tial, when the knowledge on the exploration (of the patented technology) is supplemented 
also with the tacit knowledge on exploitation (i.e., licensing), which comes beyond the 
licensing process itself.

Increased entrepreneurial orientation, and the considerations arising from it, can cause 
inventors and their groups to change their behavior; e.g., from conducting basic to con‑
ducting applied research, from focusing on publishing to focusing on patenting, and from 
following open science norms to adopting secrecy behavior (Shibayama et al., 2012), all of 
which are incompatible with traditional academic norms (Dasgupta & David, 1994). Schol‑
ars have, for example, raised concerns regarding the negative consequences of academic 
capitalism such as publication delay or incomplete publication (Blumenthal et al., 2006), 
unwillingness to share research materials (Blumenthal et al., 1997; Campbell et al., 2002; 
Shibayama et al., 2012; Walsh et al., 2007), and shifts toward more applied and lucrative 
research (Slaughter & Rhoades, 1996). Hence, commercialization potentially affects col‑
laborative behavior, and therefore there is a need for a thorough investigation, not only of 
patenting, but especially of licensing networks.

In this paper, we consider whether inventors’ engagement in patents with the most 
potential for commercialization (i.e., the licensed patents) affects the properties of their 
respective networks in terms of fragmentation, cliquishness, and small worlds. We investi‑
gate this first by comparing the properties of licensing networks to those of patenting net‑
works, and next by comparing the licensing networks to randomly generated subnetworks 
(of the same size) of patenting networks.

Since we can construe that the interplay of opportunistic behavior versus collaboration 
norm pressures can be different in licensing and patenting, we first investigate whether the 
patenting and licensing networks at the universities exhibit similar or dissimilar fragmenta‑
tion, cliquishness, and small world properties. There are several possible reasons for poten‑
tial differences between collaboration in patenting and licensing networks. Both patenting 
and licensing are instrumental commercialization activities at universities that allow the 
cognitive content (i.e., the right on the invention) to be transmittable, codifiable, and pro‑
tectable against the risk of appropriation (Fabiano et al., 2020). However, from a commer‑
cial value perspective, licensed inventions are often recognized as combining more distal 
domains, and offering more breakthrough potential, which makes them more relevant for 
the industry (Kotha et al., 2013). Licensed patents include the most valuable information, 
recognized as such by the inventors as well as acknowledged by their licensing partners. 
This leads to a question whether there is a specific engagement of inventors in collabora‑
tion when dealing with patents with the most potential, and whether this can be detected 
in the different structural properties of licensing networks compared to patenting networks. 
Consequently, this would point to the existence of opportunistic behavior by inventors 
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who license (and contrast with the predominance of Mertonian principle‑led collaborative 
behaviors) that would result in limiting their collaborative behavior in regard to the inven‑
tions with the highest commercial potential, and consequently mirror itself in isolating and/
or closing their networks.

Different sizes of networks can disallow us to directly compare different types of net‑
works (e.g., patenting networks versus licensing networks) in order to draw definite con‑
clusions about how fragmented or how cliquish these networks really are. As opposed to 
Arenius and De Clercq (2005) who explored whether and how network properties can 
influence the availability, timing, and quality of information access, i.e., of opportunity 
recognition, in this paper we also test whether we can detect that opportunity recognition 
can result in particularities within licensing network structures. Subsequently, we focus on 
licensing networks, exploring whether they exhibit some unexpected network properties 
diverse from those predicted by randomly created networks. To detect different collabo‑
ration behaviors of inventors in licensing networks compared to patenting networks, we 
perform comparisons of the licensing networks with the randomly created sample networks 
of the same sizes, where ties between inventors are simulated by collaborations on real pat‑
ents that were not licensed.

Data and methodology

Research setting and dataset construction

Exploring the context of Japanese university commercialization has three advantages in 
terms of investigating licensing and patenting. First, Japanese universities’ technology trans‑
fer results are rapidly increasing (Modic & Yoshioka‑Kobayashi, 2020; UNITT, 2018). Sec‑
ond, they have relatively low levels of the so‑called hidden technology transfer (Nakayama 
et al., 2017)—that is, university commercialization activities outside formal channels—which 
allowed us to capture a relatively precise picture of the situation. The third advantage is its 
limited policy interventions which stimulate collaborative inventing activities. The structure 
of patenting networks within universities is potentially affected by some innovation policy 
programs which enhance university‑wide collaboration (e.g., center for research excellence). 
In this regard, Japanese research excellent programs mainly direct to basic research or educa‑
tional activities, and have little attention to collaboration in technology transfer.

Despite the challenges related to the availability and accessibility of such data which 
have been highlighted in previous research (Bercovitz et al., 2019; Wright et al., 2014), we 
were able to acquire individual‑level data on patenting and licensing. We used enriched 
patenting and licensing data based on the administrative records of two well‑respected 
Japanese universities. Both universities exhibit strong patenting and licensing performance 
according to the Japanese technology transfer survey (UNITT, 2018), which ranked them 
among the top 10 most successful Japanese universities in terms of technology transfer. 
Due to confidentiality, we refer to these institutions as University A and University B.

Our database consists of patent application data and data on licensing and patent assign‑
ment between 2004 and 2014. We additionally enriched this database with data gathered 
from an external patent database. All patent applications include at least one inventor 
affiliated with one of the two universities. For every patent application, we use several 
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attributes: the patent’s inventors, the filing date, the field of the patent, and whether or not 
the patent was commercialized via licensing or patent assignment (we call those ‘LA pat‑
ents’)1. Moreover, since we study networks of inventors, we carefully performed inventor 
name disambiguation (see Appendix 1) to avoid duplicated network nodes corresponding 
to the same individuals.

Network analysis and network properties’ measures

In the next step, using the acquired data, we created networks of inventors based on their 
collaboration in patenting activities. The underlying structure of a network is a graph, a 
structure comprised of a set of nodes representing inventors and a set of ties representing 
some relationship between two nodes. In our case, two nodes are related if the correspond‑
ing inventors coauthored a common patent application.

We constructed two sets of networks; one set for each of the two universities. For each 
set of networks and for each year in the period 2004–2014, we created a network with a set 
of nodes comprising inventors who submitted their patent applications in the period from 
the first year of the analysis up to a given year. This cumulative construction enabled us to 
include the temporal dimension in our analysis and thus monitor how network structure 
evolved during the years.

Our research specifically focuses on collaboration behavior on LA patents, thus we sep‑
arately analyze the networks of inventors involved exclusively in them. Specifically, we 
considered two types of networks with regard to the patent types:

• patenting networks in which the nodes represent inventors involved in some patent 
application, where two inventors are connected if they co‑authored a common patent; 
and

• licensing networks with inventors of LA patents as the nodes, in which two nodes are 
connected if they co‑authored a common LA patent application.

Note that the licensing networks are subnetworks of corresponding patenting networks.
We therefore consider four sets of networks; patenting networks at University A, patent‑

ing networks at University B, licensing networks at University A, and licensing networks 
at University B, where each of these four sets contains 11 networks, one per each period 
(2004–2004,…, 2004–2014). See also Fig. 1 for a sketch of our research design diagram.

A group of inventors collaborating on a particular patent forms a clique (a subnetwork 
in which every node is connected to every other node); in our networks, we denote it a pat-
enting group. If two patents have the same set of inventors, then they determine the same 
patenting group. Similar to Balconi et al. (2004), we assume that inventors belonging to 
the same patenting group know each other and have possibly exchanged crucial scientific 
or technical information. In licensing networks, inventors—beyond potentially exchanging 
information on issues related to exploration (scientific and technical knowledge)—are also 
able to share their knowledge on exploitation (sharing knowledge on licensing or selling of 
patents).

1 Patent (ownership) assignments were included since they represent a typical technology transfer channel 
in Japan. In general, there are no one‑to‑one relationships either between patents and licensed patents or 
between patents and assigned patents. For example, a patent can neither be licensed nor assigned, or a sin‑
gle patent can be subject to several licenses.
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Now, we describe and define network measures we are using in our analysis. We begin 
with two measures quantifying the degree of collaboration of individuals; namely average 
degree (AVD) and average extended neighborhood degree. The former being the average 
number of inventors’ collaborators and the latter being the average number of inventors’ 
collaborators together with their collaborators (i.e., the number of nodes at a distance at 
most two from a selected node). We usually denote the set of nodes in the neighborhood 
(neighbors) of a node X with N(X), and the set of nodes at a distance at most two from X 
with N2(X).

Fragmentation and cliquishness of networks are not strictly defined; informally, frag‑
mentation aims to detect how well or to which degree all network nodes are connected (i.e., 
global connectivity by paths), while cliquishness detects to which level the nodes in neigh‑
borhoods of individual vertices are interconnected (i.e., local connectivity of nodes with a 
common neighbor). Both properties can be determined using different measures in order to 
grasp more detailed insights, therefore we decided to use two measures per each. We also 
note here that the presence of one property does not imply the presence of the other; e.g., 
there are networks with high cliquishness and low fragmentation, or networks of any other 
combination of the presence of the two properties (see Fig. 2).

Fragmentation

We continue with two measures that quantify fragmentation of a network in two differ‑
ent ways, yet making use of the same network elements: the connected components. In 
network analysis, the usual substructures of networks are maximal connected subnetworks 
called connected components. A subnetwork S of a network N is connected if for any pair 
of nodes X and Y, there exists a sequence of ties such that one can traverse S, tie by tie, 
from X to reach Y. We say that S is maximal if there is no node in N, which does not belong 
to S, that is connected to some node in S.

Fig. 1  A diagram of research design
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A connected component in our networks represents a group of inventors who are con‑
nected through collaboration on patent applications. The largest connected component in 
a network N is then called the giant component (we denote it GC(N)), and it is a com‑
mon phenomenon in collaboration networks (Newman, 2001). The relative size of the giant 
component of a network is the number of nodes appearing in the giant component divided 
with the number of all network nodes.

As the second measure of fragmentation, we use the number of all connected components 
in a network. This is relevant due to the fact that two networks with the same number of con‑
nected components may have very different structures (e.g., one has a huge giant component 
and many isolated nodes, and the other has many connected components of comparable sizes). 
We use the component concentration measure (CoC) defined in Hur and Park (2016) as.

where N is a given network, CC is the set of connected components, |C| is the number of 
nodes in a connected component C, and |N| is the number of nodes in N.

Cliquishness

The clustering coefficient is typically used to measure cliquishness in patenting network analy‑
sis (He & Fallah, 2009; Schilling & Phelps, 2007). The local clustering coefficient ClC(X) of a 
node X measures how well connected its neighbors are between each other; i.e.,

CoC(N) =
∑

C∈CC

(
|C|
|N|

)2

,

Fig. 2  A diagram of networks having four combinations of the fragmentation and cliquishness properties
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where |E(N(X))| denotes the number of ties between the nodes in N(X). The average 
local clustering coefficient of a network N, denoted ClC(N), is then computed as the aver‑
age of the local clustering coefficients of all nodes. Since a high clustering coefficient for 
an inventor usually shows that their work is limited to research within a fixed group of 
coworkers, we are also interested in shares of researchers exhibiting lower values. For this 
reason, we also compute the relative number of inventors having local clustering coeffi‑
cients equal to 1, which we denote the local clustering index.

Note that if an inventor X has ClC(X) = 1, it does not necessarily mean that they only 
work within one patenting group, but we assume that in the majority of instances this is 
the case. In order to investigate this more thoroughly, for every network in our analysis, 
we constructed an auxiliary two‑mode network, as suggested by Newman (2001), which 
we call a patenting group network. In particular, these networks are comprised of two sets 
of nodes, G and I. In the former (set G), every node represents a patenting group, and in 
the latter (set I), every node represents an individual researcher. There are no ties between 
nodes within each of the two sets of nodes. Ties exist only between the two sets; hence 
every tie is connecting a patenting group with an inventor. Clearly, every inventor is con‑
nected to the patenting groups she/he is a member of. These networks enabled us to better 
understand how often inventors collaborate with different patenting groups. We computed 
two measures: average degree of nodes in set I, giving us an average number of patent‑
ing groups that inventors are involved with, and the relative number of nodes in set I with 
degree 1, i.e., being involved with only one patenting group. We call the former the inter-
group degree, and the latter the single-group index.

Small worlds

To determine whether our networks exhibit small world properties, we computed their 
small world coefficients. It is well known that a precondition for a network to be a small 
world is that the majority of nodes are connected, i.e., having a giant component compris‑
ing at least 50% of nodes. To compute the small world coefficient of a network N, we first 
compute its average path length (AP(N)), i.e., the average distance between all pairs of 
nodes in the giant component, and then compute the global clustering coefficient gClC(N), 
defined as

where T denotes the number of triples of nodes which are pairwise connected. The small 
world coefficient (SWC(N)) is then computed as

where Nr denotes a random network with the same number of nodes as the giant compo‑
nent GC(N) in N, and its average degree being equal to the average degree in GC(N), i.e., 
we choose a tie between every pair of nodes with the probability AVD(GC(N)) / |GC(N)|-1.

ClC(X) =
2|E(N(X))|
|N|(|N| − 1)

gClC(N) =
T(
|N|
3

)

SWC(N) =

gClC(N)

gClC(Nr)
AP(N)

AP(Nr)
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Robustness check

In our analysis, the sizes of patenting networks are substantially different from the sizes 
of licensing networks. Thus, to be able to detect differences between them, we performed 
a robustness check by creating a sample of 500 artificially generated networks. There are 
several possible ways to create sample networks (see Supplement 1 for a discussion on fur‑
ther alternatives to our construction of the random networks). We followed two important 
principles: a sample network must have a similar number of nodes as the licensing net‑
work, and it must reflect patenting collaboration behavior for non‑LA patents. By the lat‑
ter, we mean collaboration of inventors on non‑LA patents in small groups (i.e., patenting 
groups), which represent cliques in the network. For a given licensing network being tested 
we therefore constructed sample networks by consecutively selecting a patent uniformly 
at random from the set of non‑LA patents (from the same period for which the licensing 
network was constructed), then adding all the patent’s inventors in the sample network as 
nodes (if an inventor is not already in the network), and finally adding ties between all pairs 
of the patent’s inventors. We repeated this step until the sampled network had more nodes 
than the tested licensing network. Finally, we determined values of analyzed measures for 
each network in the sample and computed average values for every measure. In this way, 
we obtained expected values of measures to which we compared values of licensing net‑
works’ measures.

Results

Initial observations

In Table 1, we present the patenting and licensing data for the period 2004–2014 for both 
universities. In general, the universities under investigation manage to license a consider‑
able number of their patents and are, in this respect, on par with some of the best U.S. 
universities. In the considered period, licensed patents accounted for 9.0% of all patents. At 
first glance, in comparison to some top US universities, this percentage is somewhat lower. 
For example, Wright et al. (2014) reported that 20% of inventions generated at the Univer‑
sity of California in the period 1990–2005 were linked to at least one license. However, 
among the top eleven Japanese research universities, licensed patents accounted for 9.1% 
of all patents between 2013 and 2016 according to the UNITT survey. This indicates that 
our focal universities are both representative of the top Japanese research universities. Fur‑
thermore, in Japan, patents are commonly transferred also via assignment and therefore we 

Table 1  Basic network 
characteristics

University A University B

# Patent Applications 2525 3723
# Licensed Patents (a) 435 128
# Assigned Patents (b) 292 727
# LA Patents (a & b) 642 852
# Inventors 3324 5842
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classified them as LA patents, hence inferring that 23.9% of patents were either licensed or 
assigned.

We now provide some basic data to understand the general characteristics of the four 
sets of networks. We detected growth in the cumulative number of inventors in both sets of 
networks during the observed timespan at both University A and University B (see the left 
chart in Fig. 3). We assume this phenomenon stems from the fact that applying for patents 
is a common activity in entrepreneurial universities today. Regarding the LA patent inven‑
tors, their number also grew over the years although at a much slower pace, maintaining 
the relative rate of LA patent inventors compared to all inventors (18% at University A and 
35% at University B).

In the right chart of Fig. 3, we show the cumulative number of patents and LA patents. 
Interestingly, the average number of inventors per patent application was almost the same 
at both universities. In the observed period, this average ranged from 3.15 to 4.16 at Uni‑
versity A and from 3.86 to 4.66 at University B. When limited only to LA patents, the aver‑
age ranged from 2.80 to 4.62 and from 4.04 to 4.62, respectively. These numbers are also 
relatively stable throughout various academic fields, with the average number being the 
highest for Chemistry at both universities, and with numbers remaining close to those for 
all other fields. Interestingly, both universities at the end of the observed period also exhib‑
ited similar average degrees (see Appendix  2) in the patenting and licensing networks, 
indicating that the inventors collaborated on average with around six collaborators directly 
(5.91 for University A and 6.42 for University B) in patenting, and on average with around 
five collaborators (4.88 for University A and 5.68 for University B) in licensing.

Fragmentation in patenting and licensing networks

The fragmentation of a network is often studied at the macro level through the prism of 
giant components. The relative sizes of giant components in the patenting networks at 
University A and University B grew over the observed period, comprising more than 50% 
and 60% of all nodes in 2014, respectively (see Fig.  4). A considerable increase can be 
observed at University B between 2008 and 2010, due to merging of several large con‑
nected components.

The giant components in licensing networks are smaller than in patenting networks, but 
even more interestingly, there is an important difference between the licensing networks in 
the observed two universities. At University A, the relative size of the giant component was 
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about 20% during the observed period, which is substantially smaller than in the patent‑
ing network. However, the major difference is that at University B, a giant component did 
not appear at all; namely, the largest connected component in the network comprises less 
than 3% of nodes, i.e., inventors. At University B, this is also corroborated by a large num‑
ber of connected components in the licensing network, also as compared to their number 
of connected components in the patent network (see Appendix 2). This indicates a frag‑
mented network, with the nodes scattered across a relatively large number of disconnected 
components.

Apart from the giant component sizes, we also explored the differences in sizes of 
all connected components using the component concentration measure. Its lower value 
implies that inventors are more evenly distributed over connected components in the net‑
work. Contrastingly, if inventors are connected in a few large connected components within 
a network, then component concentration takes higher values, meaning that the fragmenta‑
tion of a network is lower. The values of component concentrations in all our networks (see 
Appendix 2) indicate that outside the giant component, they do not contain other connected 
components of significant sizes. Hence, inventors outside the giant components collaborate 
in relatively small groups.

Cliquishness in patenting and licensing networks

We observed cliquishness through micro‑level measures; namely, the average local cluster-
ing coefficient and local clustering index. We also add to the aforementioned, the measures 
obtained from the patenting‑group network analysis: single-group index, allowing us to 
observe how many inventors belong to only one patenting group, and inter-group degree, 
stating on average how many patenting groups inventors collaborate with.

The supposition that people interact in cliquish clusters is confirmed by high values of 
average local clustering coefficients (in licensing networks spanning between 0.88 and 
0.97), and the high values of the local clustering indices (see Table 2). The latter implies 
that only about one fourth of inventors connect two inventors without direct connection in 
the patenting networks at both universities, whereas only one fifth do so in the licensing 
networks. A slightly decreasing trend for both measures can be detected in all networks. 
However, we can observe that these measures also have higher values in licensing than in 
patenting networks at both universities.
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Analysis of patenting group networks also reveals that inventors tend to be relatively 
constrained in terms of working with several different groups. The average inter‑group 
degrees are surprisingly consistent at both universities for patenting and licensing (see 
Table 2), with very consistent values of 1.50 at University A and 1.51 at University B for 
licensing in the year 2014. All values of inter‑group degrees exhibit increasing trends in 
the observed period, yet the inventors’ collaboration with more than one group remains 
restrained.

Additionally, cliquish behavior can be exhibited by a single‑group index; a big share 
of inventors is only ever collaborating within their original patent groups (see Table 2). In 
terms of licensing networks, the numbers are surprisingly consistent. At University A, in 
the last observed year, 80% of inventors only collaborated within their original group in the 
patenting network. By comparison, 75.9% do so at University B. All trends are decreasing 
over the years. Furthermore, the results indicate that at both universities the licensing net‑
works appear to be more cliquish than the patenting networks.

No small world property in licensing networks

A characteristic of most real networks are very short average path lengths, which are 
closely connected to the concept of the small world. In our patenting networks, the aver‑
age path lengths are 6.5 and 7.5 for University A and University B, respectively (Table 3), 
and have an inverted U‑shape, with both reaching the maximum in 2011. Furthermore, the 
values of small world coefficients in our patenting networks are always higher than 1 (see 
Table 3), implying that these networks are small worlds.

Note that in Table 3, we do not provide values for the licensing networks, since the aver‑
age path length can only be computed by averaging the distances between nodes that are 
connected in the network. Therefore, in networks with many pairs of disjoint nodes, i.e., 
where the majority of nodes is not contained in one connected component, the average path 
length can be small, although most of the nodes are not even connected with each other. 
This restricts us in interpreting the values in any meaningful way. Since this is the case in 
our licensing networks, and the average path length is the main component in determin‑
ing the small world property, we can conclude that our licensing networks are not small 
worlds.

Understanding licensing networks: Is all not as it seems to be?

We were particularly intrigued by the apparent differences between the giant components’ 
sizes in licensing networks at both focal universities. The question remains if the differ‑
ences between the patenting and licensing networks, and the behavior of inventors therein, 
reflect something more than simply differences in the sizes of these networks. In order to 
tackle this issue, we provide a series of random network computations and comparisons for 
individual measures in line with prior literature (e.g., Gay & Dousset, 2005).

The relative size of the giant components in licensing networks at University B are 
indeed smaller than expected (Fig.  5, top‑right) as shown by differences between the 
real and expected giant components. In the years 2006–2010, there were high numbers 
of inventors active, but the boundary spanners that would connect the largest components 
in the network did not appear. On the other hand, the giant component at University A 
is actually larger than expected (Fig. 5, top‑left). This is especially due to the strong rise 
in the size of the giant component in the last few years, whereas before, the GC was of a 
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relatively expected size. Interestingly, the comparisons of the component concentrations 
(see Fig.  5, second row) show that the licensing network at University B exhibits lower 
than expected component concentration, thus somewhat higher than expected fragmenta‑
tion, which is also outside its giant components. The opposite is true for University A, 
where in the last period the component concentration is somewhat higher than expected.

Observing the values of the measures for cliquishness in both licensing networks allows 
us to discover that many of them are in ranges that would be more or less expected for 
such networks (see Fig. 6). Overall, both networks are slightly less cliquish than expected, 
but not overly so. If we focus on University A, we can observe the inventors involved in 
licensing cooperate with slightly more groups than expected. Meanwhile, less inventors 
than expected are engaged only with a single group.

At both focal universities exhibit values of cliquishness measures that are close to those 
predicted by our sample networks. Contrary to this, the values of fragmentation measures 
are distinct from those predicted by the sample networks.
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Fig. 5  Relative sizes of giant components’ sizes (row 1) and component concentrations (row 2) in licensing 
networks compared to the average sizes in the sample (University A, left; University B, right; LA licensing 
networks, NIS random networks)
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Fig. 6  Comparison of real‑life licensing networks with random networks
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Discussion

Discussion on patenting and licensing networks’ properties

Our analysis revealed that most inventors involved in patenting activities formed large 
connected components in patenting networks at both focal universities and that patenting 
did not cause strong fragmentation. In particular, in the last year of the analysis, the rela‑
tive sizes of the giant components in our patenting networks are somewhat smaller than 
those generally observed in the co‑authorship networks; however, they still exceeded 50% 
of nodes at both universities. Similarly, Lissoni et  al. (2013) also detected giant compo‑
nents in patenting networks that are, on average, above 50% (discounting for two that were 
extremely small).

On the other hand, in the licensing networks, fragmentation was more pronounced than 
in the patenting networks. The relative sizes of the giant components were about 20% at 
University A, but only 3% at University B. Hence, no giant component of any significant 
size appeared at University B, which signaled a highly fragmented licensing network. 
Additionally, considering the component concentration, our data shows that inventors out‑
side the giant components collaborate in relatively small groups in licensing networks. The 
inventors that license are thus seemingly often parts of disjoint constellations, which may 
have distinct expertise, follow specific interests, and pursue their own agendas.

Social networks originating from collaboration can also exhibit contradicting network 
properties at the same time. A long‑standing weakness of social network research was the 
inability to connect the micro‑level interactions to macro‑level network patterns in some 
convincing way. Even weak connectivity on the macro‑level can be enough for the giant 
component to appear due to the existence of some boundary spanners mitigating the frag‑
mentation. At the same time, cliquishness might still be a property of such a network.

The average values of the local clustering coefficients and indices, as well as the values 
of inter‑group degrees and single‑group indices evince that both patenting and licensing 
networks of both universities are very cliquish. Furthermore, while neither the patenting, 
nor the licensing networks are of the same size in the last observed year, the values are 
surprisingly consistent. As seen from the local clustering index values in all networks, only 
a few inventors ( 1∕4 of inventors in patenting and 1∕5 in licensing networks) connect pairs 
of their neighbors which were not directly connected. This suggests that most of the ties 
are redundant, or mutatis mutandis, signaling that mostly these ties reinforce existing col‑
laborations. We can detect a slightly decreasing trend in the values of the clustering index 
if taking into account the whole period values, meaning that over time there are somewhat 
more people who act as boundary spanners between previously unconnected individuals.

Furthermore, while all values of inter‑group degrees exhibit increasing trends in the 
observed period at both universities, the inventors still collaborate in patenting networks 
on average with only two groups, and even less in licensing, on average solely with one and 
a half groups. This also reinforces our previous assumption that many groups most likely 
work independently of each other. Lastly, the single‑group index reveals very consistent 
patterns for both pairs of patenting and licensing networks. These two measures therefore 
also confirm that, over time, networks are becoming less cliquish.

As expected, we confirm that patenting networks at both universities are small worlds 
in line with the evidence of research on patenting networks typically done outside the uni‑
versity settings (Guan & Shi, 2012; Hung & Wang, 2010). On the other hand, licensing 
networks are not small worlds. We specifically note that lacking the small‑world property 
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can be contingent on other network properties, such as a high level of fragmentation, which 
disallows the formation of a small world. Our conclusions are seemingly opposing the find‑
ings of Yang et al. (2021b), which claim to detect the small worlds, but they do so while 
focusing on the inter‑regional level. However, the interpersonal networks we explore, are 
highly fragmented, and consequently, are lacking the benefits of small worlds, i.e., short 
path lengths allowing the inventors to be exposed to non‑local perspectives and apt to 
ensure fast and widespread diffusion of knowledge (Fleming et  al., 2007; Uzzi & Spiro, 
2005).

Licensing networks: do recognized opportunities make them different 
than expected?

We address the concerns that researchers are more conservative when starting a collaboration 
when dealing with university inventions with recognized higher commercialization potential. 
Several results, especially those related to a distinct lack of a giant component in the licens‑
ing networks at University B, have at first glance signaled distinct collaboration patterns for 
inventors who collaborate on patents that were licensed. Furthermore, it is possible to infer 
that different types of networks of inventors that are involved in various types of knowledge 
transfer activities, could exhibit different structural properties; e.g., the giant components in 
publication networks appear to be significantly larger than those in patenting (see, e.g., Bre‑
schi & Catalini, 2010). This indicates that there can be a negative incentive for collaboration 
in academic entrepreneurship to maintain secrecy and exclusiveness following an opportunity‑
based collaboration behavior. However, in the networks that encompass more than one activ‑
ity by the same inventors, there is typically also a difference in the sizes of these networks 
themselves. In particular, in our analysis, based on the fact that licensing networks are subnet‑
works of patenting networks, we compared the licensing networks with randomly chosen sub‑
networks of patenting networks of the same sizes, confirming that licensing networks indeed 
have essentially smaller giant components than patenting networks.

Although we did observe that the relative size of the giant component of the licensing net‑
work at University B was two and a half times lower than expected, we did, on the contrary, 
discover that the giant component of the licensing network at University A was in fact bigger 
than expected. Similarly, the component concentrations’ values indicated a less fragmented 
network than expected at University B, also outside the giant component, and a more frag‑
mented network than expected at University A. This implies that there are contextual reasons 
influencing the fragmentation of licensing networks at universities. Similarly, opportunity 
recognition in terms of the commercialization potential for licensing does not seem to imply 
more cliquish behavior per se, as implied by our results for University A. For example, there 
is a specific university‑wide research program, a globally recognized center of excellence in 
applied research at University A which could explain that. Such types of institutional settings 
seem to affect inventor’s within‑university collaborative behavior. Thus, we were unable to 
find evidence to support the notion that (initial) opportunity recognition would automatically 
lead to more restrained behavior.

At this point, one may wonder how the LA patent inventors collaborated when dealing with 
non‑LA patents. For this purpose, we analyzed networks of LA patent inventors with addi‑
tional ties added; namely, we extended the licensing networks by connecting two inventors 
also if they co‑invented a non‑LA patent. With this approach, at University A, the relative size 
of the giant component increased from 20 to 30% in 2014. While this is already a consider‑
able increase, at University B, the difference was even more pronounced. The relative size of 
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the giant component was 55% (in contrast with the 3% observed in their licensing network) in 
2014. We therefore observed that when dealing with patents with high (commercialization) 
potential, i.e., licensed patents, these inventors are more ‘monogamous’ (Bercovitz & Feld‑
man, 2010), but less so when engaged in patenting activity in general, causing also a recon‑
figuration in the respective networks. In other words, inventors involved in licensing activities 
exhibit what we can call a dualistic opportunistic behavior, since their collaboration is sub‑
stantially less limited when involved in patenting activities in general. However, the simplified 
idea of opportunistic behavior does not perfectly explain this finding. If the inventors are actu‑
ally opportunistic, they would prefer to join a giant network, in which they might find another 
opportunity to commercialize by collaborating with other teams.

Conclusion

We explored networks of inventors at two universities in order to gain insight into the prop‑
erties of the patenting and licensing networks and the differences between them. Both focal 
universities exhibited strong patenting and licensing activity providing a rich research set‑
ting. Focusing on several different properties of network structures conjointly, i.e., frag‑
mentation, cliquishness, and small worlds, allowed us also to reconcile potentially con‑
trasting implications. In addition, having data spanning more than a decade allowed us to 
understand how these properties are evolving over time. In order to provide robust evi‑
dence of our claims on detected network properties, we introduced additional measures 
for both the fragmentation and the cliquishness; e.g., for fragmentation we also introduced 
a measure to provide an insight into fragmentation outside the giant component; to better 
understand cliquishness, we went beyond the most typically used clustering coefficients 
and constructed three measures, which are based on a construction of an auxiliary two‑
mode network, as suggested by Newman (2001).

Clarifying the implications of cliquish and fragmented network structures for various 
organizational outcomes is important to our understanding of network resources. We reveal 
that, in contrast to licensing networks, patenting networks are not especially fragmented. 
However, the trends in the values of the two measures we use for fragmentation are quite 
distinct, which is due to the connecting of larger components at the university where we 
detect an abrupt rise. Fleming et al. (2007) report on their attempt to understand more by 
identifying and interviewing the inventors who allowed the linking of components into the 
giant component along with similar ‘counterfactual’ non‑linking inventors.

Not finding small worlds in licensing networks is somewhat interesting, since there is lit‑
tle evidence in existing literature about social networks not being small worlds. In terms of 
inventors and their groups, when licensing, they remain relatively isolated. Hence, the shar‑
ing of knowledge gained by licensing to different licensees and the related further collabora‑
tion with the licensees (needed due to university inventions for the large part being embry‑
onic), does not necessarily occur naturally through the collaboration of different groups that 
license. Instead, planned efforts to allow them to connect could provide such benefits.

We contribute to the debates on the effects of increased commercialization efforts on a 
network structure at universities in terms of inventors involved in licensing. We also com‑
bined the opportunity recognition and opportunistic behavior literature with the stream of 
literature dealing with collaboration benefits and strategies, and the Mertonian norms of 
sharing, to examine whether potential opportunity recognition would drive licensing net‑
works to be more fragmented and more cliquish as expected. Based on our robustness check, 
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in terms of cliquishness, we found that they are about as cliquish as expected. However, in 
terms of fragmentation, we found evidence of both more fragmented networks as well as 
less fragmented networks than expected, which indicates that there are other factors at play.

This concurs with the assessments that the collaboration behavior of inventors, when 
dealing with the most commercialization potential, i.e., licensed patents, is most likely 
affected by institutional characteristics such as incentives, norms and geographical proxim‑
ity (Bozeman & Corley, 2004), or other contextual factors. Hence, although our findings 
may have some limitations in regard to generalizability due to the different contextual set‑
tings, these limitations are key stepping‑stones in understanding university commercializa‑
tion and collaboration mechanisms in other university settings. Our results do not allow us 
to conclude that increased commercialization opportunities cause more fragmentation, and 
hence this does not follow the logic of debates on changed behaviors as a consequence. 
There could be several reasons why we cannot detect this, e.g., a) there might not be an 
initial recognition of this potential; b) the general Mertonian norms of sharing and col‑
laboration might be so prevailing that they neutralize any effects to the contrary; c) oppor‑
tunity‑based behavior arising from commercialization potential does not overshadow the 
well‑recorded assessments of collaboration benefits (see, e.g., Bozeman & Corley, 2004).

Whilst more research is needed, the latter of the aforementioned reasons might 
be the most suitable interpretation of our results. But we do find evidence of what 
we call the dualistic behavior of inventors. Even when inventors’ licensing net‑
works are highly fragmented, their patenting networks are not. When collaborating 
on non‑licensed patents, inventors extend their collaborations to new collabora‑
tors, and they do not simply strengthen ties with existing collaborators. This would 
indicate that there are some diverse strategies used when engaging with patents 
having the most commercial potential or at least that in some cases inventors are 
able to recognize this potential. Furthermore, inventors’ dualistic opportunistic 
behavior may also be exacerbated when they take potential requests from licen‑
sees into account (Brouwer, 2005), particularly to limit their collaboration. Again, 
more research is needed to determine how much licensees influence the behavior 
of inventors.

Our findings suggest that a limited number of inventors commit to inter‑group 
collaboration, while the majority of inventors maintain single‑group collaboration. 
Policy makers and top management teams at universities often emphasize both inter‑
group collaborations and commercialization of academic achievements, and some‑
times provide research grants or internal incentives for interdisciplinary and trans‑
lational collaborative research. Our findings urge caution in the implementation 
of these incentive mechanisms. Motivating researchers to enter new collaborations 
can be contradictory for those who have already committed to commercially feasi‑
ble research. These incentives might also contradict their opportunity recognition 
assessments.

Prior research has generally investigated technology transfer, university patent‑
ing, and university licensing using US, European, or more recently, Chinese data. 
However, improving technology transfer results and strong formal technology trans‑
fer pathways—namely, patenting and licensing—makes Japan a premier environ‑
ment to study university commercialization efforts. In general, we need to under‑
stand more about technology systems in their earlier stages, since evidence‑based 
policy directions and managerial recommendations are crucial to steer them towards 
maturity.
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Appendix 1: name disambiguation process

Our name disambiguation process included several steps: 1) as some Japanese char‑
acters have multiple styles, we first determined names including these characters and 
detected same names; 2) next, we checked through all names and picked up misspell‑
ings or mistakes in the order of surname and first name; 3) names given only in Latin 
characters were carefully matched with Japanese names when they appeared to be typi‑
cal Japanese names; 4) to double check, we have used the combination of name and 
no‑name variables for inventors (this being the field of the technology and the inventor 
network). We manually examined the remaining ambiguous cases (re‑checking affilia‑
tion titles, checking information in the university researcher directory and the national 
researcher information portal, Researchmap, and checking for common licensees, com‑
mon joint applicants, and the proximity of the technologies’ titles).

Appendix 2: overview of network measures

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Basic 
charac‑
teristics

Number of 
Nodes

PAT Univ. 
A

291 620 945 1300 1575 1863 2134 2451 2780 3060 3324

PAT Univ. 
B

528 1298 2055 2669 3163 3712 4117 4524 5054 5533 5842

LA Univ. 
A

40 99 173 201 249 315 367 436 503 555 585

LA Univ. 
B

214 402 648 934 1146 1405 1576 1695 1815 1922 1964

Number of 
Patents

PAT Univ. 
A

159 401 736 1126 1558 1895 2328 2761 3342 3988 4634

PAT Univ. 
B

190 553 1079 1472 1826 2193 2522 2814 3174 3511 3723

LA Univ. 
A

35 84 132 197 254 300 368 437 512 581 735

LA Univ. 
B

76 136 230 362 473 572 657 717 769 827 852

Average 
degree

PAT Univ. 
A

3.76 4.6 4.64 4.8 4.9 5.42 5.54 5.64 5.75 5.87 5.91

PAT Univ. 
B

4.75 5.04 5.31 5.76 5.84 5.94 6.06 6.21 6.32 6.39 6.42

LA Univ. 
A

2.2 4 3.7 3.83 3.81 4.27 4.29 4.38 4.41 4.92 4.88

LA Univ. 
B

5.02 5.07 5.23 5.37 5.42 5.47 5.52 5.7 5.66 5.7 5.68
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2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Average 
extended 
neigh‑
borhood 
degree

PAT Univ. 
A

4.42 7.08 9.24 12.26 14.38 17.74 20.52 24.81 28.87 35.09 37.7

PAT Univ. 
B

7.32 9.63 14.52 19.51 21.62 23.75 26.84 29.12 31.91 34.08 35.37

LA Univ. 
A

2.2 4.53 4.43 4.68 5.11 6.67 7.32 10.27 13.58 24.1 28.38

LA Univ. 
B

5.78 6.72 8.6 9.52 10.06 10.82 11.3 12 12.21 12.89 13.2

Fragmen‑
tation

Relative 
size of 
giant 
compo‑
nent

PAT Univ. 
A

0.038 0.034 0.059 0.158 0.216 0.267 0.32 0.417 0.458 0.481 0.514

PAT Univ. 
B

0.045 0.035 0.071 0.1 0.138 0.352 0.56 0.585 0.615 0.619 0.646

LA Univ. 
A

0.125 0.152 0.087 0.075 0.096 0.111 0.101 0.108 0.147 0.189 0.203

LA Univ. 
B

0.065 0.045 0.039 0.029 0.024 0.028 0.032 0.03 0.028 0.028 0.027

Compo‑
nent 
concen‑
tration

PAT Univ. 
A

0.019 0.014 0.014 0.034 0.055 0.078 0.107 0.177 0.212 0.234 0.267

PAT Univ. 
B

0.016 0.01 0.017 0.033 0.043 0.137 0.315 0.343 0.379 0.385 0.419

LA Univ. 
A

0.08 0.061 0.033 0.03 0.028 0.031 0.029 0.03 0.037 0.05 0.056

LA Univ. 
B

0.032 0.019 0.015 0.012 0.01 0.01 0.009 0.009 0.009 0.009 0.009

Cliquish‑
ness

Average 
local 
cluster‑
ing coef‑
ficient

PAT Univ. 
A

0.909 0.916 0.901 0.903 0.903 0.891 0.888 0.885 0.885 0.885 0.884

PAT Univ. 
B

0.94 0.926 0.901 0.896 0.894 0.893 0.889 0.888 0.888 0.888 0.888

LA Univ. 
A

0.875 0.913 0.953 0.947 0.934 0.925 0.914 0.915 0.91 0.906 0.899

LA Univ. 
B

0.966 0.961 0.949 0.942 0.932 0.93 0.927 0.925 0.924 0.924 0.924

Average 
local 
cluster‑
ing index

PAT Univ. 
A

0.838 0.81 0.787 0.787 0.792 0.768 0.764 0.753 0.753 0.752 0.753

PAT Univ. 
B

0.877 0.846 0.791 0.773 0.764 0.764 0.753 0.748 0.744 0.744 0.744

LA Univ. 
A

0.875 0.889 0.936 0.915 0.896 0.873 0.853 0.853 0.841 0.818 0.809

LA Univ. 
B

0.893 0.873 0.863 0.842 0.812 0.818 0.808 0.796 0.797 0.798 0.798
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2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Average 
inter‑
group 
degree

PAT Univ. 
A

1.2 1.36 1.47 1.57 1.61 1.72 1.77 1.81 1.86 1.91 1.95

PAT Univ. 
B

1.25 1.38 1.62 1.73 1.8 1.84 1.9 1.94 1.98 2 2.02

LA Univ. 
A

1 1.08 1.09 1.16 1.16 1.23 1.25 1.28 1.32 1.47 1.5

LA Univ. 
B

1.22 1.24 1.32 1.38 1.44 1.44 1.46 1.5 1.5 1.51 1.51

Average 
single‑
group 
index

PAT Univ. 
A

0.859 0.765 0.753 0.738 0.739 0.716 0.701 0.693 0.692 0.69 0.688

PAT Univ. 
B

0.835 0.79 0.72 0.709 0.699 0.696 0.684 0.679 0.676 0.677 0.675

LA Univ. 
A

1 0.919 0.913 0.841 0.855 0.841 0.839 0.842 0.831 0.8 0.8

LA Univ. 
B

0.846 0.828 0.801 0.783 0.767 0.776 0.767 0.758 0.755 0.758 0.759
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