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Abstract
The field of expertise extraction utilizes published research enabling communities to high-
light and identify the skills of researchers within specific scientific domains. This can be 
useful for evaluating research performance, and in the case of rising stars, in identifying 
top scientific talent. Previous research has harvested a range of publication indicators in 
an effort to identify expertise and talent. These include content indicators, citation met-
rics, and also the position of a researcher within a full collaboration network of scientists. 
The existing mechanism of expertise extraction utilizes all papers attributed to a scientific 
author, thereby potentially neglecting their specific or specialized expertise. Here we show 
that a tensor decomposition technique when applied to the problem addresses a number of 
useful problems. This includes better identification of individual expertise, as well as an 
integrated appraisal of an author’s role in an extended scientific network. The technique 
will afford new analyses of knowledge production which consider specialisation and diver-
sity as core elements for further analysis. More generally the tensor decomposition tech-
niques presented in this paper can be applied to a range of scientometric problems where 
multi-modal data is encountered.
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Introduction

There are three traditions for measuring expertise. Expertise may be demonstrated through 
the knowledge of a domain and the use of appropriate scientific or technical language, 
available knowledge of a social network and one’s role within that network, and the tech-
nical skills one can marshal to accomplish a task. The first tradition involves the study of 
co-authorship. Effective scientific collaboration draws upon multiple sources of expertise; 
therefore measuring collaboration is essential to understanding expertise. The second tradi-
tion involves the use of scientific indicators such as publications, and consequent derived 
indicators such as citation measures. Since publications are a demonstrable indicator of 
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scientific performance, there has been great interest in (and concern with) the measurement 
of expertise using scientific outputs such as publication. The third tradition involves the 
use of semantic indicators of expertise such the words or phrases present in authored texts. 
These elements of scientific text may provide a deeper indicator of the knowledge and dis-
ciplinary commitments of the scientists who use such language. These three traditions are 
reviewed in capsule form below.

These three traditions are reviewed in capsule form below, and represent a brief intro-
duction to the concept of scientific expertise as it has been conceptualised and measured 
across different traditions. One tradition of measuring expertise is based on published sci-
entific articles by making use of several performance indicators, including the quantity and 
quality of the document (Hammarfelt & Rushforth, 2017; Lopez-Herrera et al., 2010). Bor-
dea argues that expertise is closely related to the notion of experience; the assumption is 
that the more a person works on an expertise topic, the more knowledgeable he or she is 
(Bordea, 2013). These researchers estimate the expertise of a person based on the number 
and scientific impact of the articles. Scholars have also explored many methods that might 
be used to evaluate research performance. For example, bibliometric indicators, ike the 
number of published papers, citation counts, H-indexes, and journal impact factors (Basu 
et al., 2016; Gulbrandsen & Smeby, 2005; Kademani et al., 2007; Kotsemir & Shashnov, 
2017; Lee, 2019; Panaretos & Malesios, 2009). These performance indicators are similar 
to the frequency indicators (Trausan-Matu & Niculescu, 2008).

Another tradition of measuring expertise is based on observed collaboration, as well as 
the position of the author in an extended scientific network. Quantifying the expertise of a 
person is not an easy task, but usually expertise is analysed in the context of an organiza-
tion or community (Yeung et al., 2011). Expertise can also be measured in extrinsic ways, 
through the judgement of peers. This can be gathered either directly through interviews 
or indirectly through citations (Kavitha et al., 2014). Related works in mining expertise in 
social networks are as follow. For example, Ofek and Shabtai mined experts’ expertise by 
analyzing the social network’s activity information (Ofek & Shabtai, 2014). Schall devel-
oped an expertise ranking model for expertise mining, and used this model for estimating 
the relative importance of persons based on reputation in collaboration networks (Schall, 
2012). Lappas and his colleagues explored expert’s expertise by using information avail-
able in social networks, and find experts who can collaborate effectively to complete a task 
(Lappas et  al., 2009). Serdyukov et  al. acknowledge that expertise resides in knowledge 
networks of authorship and thereby derive propagation and assignment metrics (Serdyukov 
et al., 2008). Steele and Min proposed an expertise measurement based upon online profes-
sional social networks (Steele & Min, 2013). Vrabic proposed a scientific network for the 
structuring of the community’s expertise (Vrabic et al., 2018). Other relevant work incor-
porates social network indicators, such as the number of co-authors, co-author citations 
(Ding et al., 2018; Panagopoulos et al., 2017; Silva et al., 2019; Zhang et al., 2018).

A third tradition of measuring expertise is based on the semantics of articles pub-
lished by that author. In order to mine expertise content, existing studies extract exper-
tise topics from document corpora based on latent semantics methods such as LSA, 
pLSI, LDA to extract information about the content of expertise (Campos et al., 2021; 
Lee & Kim, 2020). The information about expertise topics is further used to construct 
expert profiles and to find the experts (Momtazi & Naumann, 2013). In the previous 
works, the proposed methods for identifying expertise by semantics can be divided into 
two graph-based (Zhang et al., 2008) and topic modeling-based categories (Balog et al., 
2009; Kichou et al., 2020; Tang et al., 2011). Gong proposed a probabilistic graphical 
model that estimates human expertise, and model human expertise on different topics 
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(Gong et al., 2018). Liu estimated user’s expertise on individual topics with LDA model 
by document-topic relevance and user-document association (Liu et  al., 2014). Liang 
utilized generative language model for finding knowledgeable groups that have exper-
tise on a given a query topic (Liang et  al., 2013). Li applied the biterm topic model 
(BTM) to model questions and fields of expertise (Campos et al., 2021). Other research-
ers have created rolling windows of text within documents thereby enriching the analy-
sis of expertise using a full-text document (Petkova & Croft, 2007).

These traditions of the analysis of expertise can and should be fully applied to the 
field of rising stars. Expertise refers to the mechanisms underlying the superior achieve-
ment of an expert, i.e., "one who has acquired special skill in or knowledge of subjects 
through professional training and practical experience" (Ericsson et al., 1993). Several 
broad categories of expertise can be identified including cognitive expertise, and social 
expertise (Farrington-Darby & Wilson, 2006). Cognitive expertise refers to knowledge 
of a domain, while social expertise is knowledge of a social network. Cognitive exper-
tise can be derived from documents produced by individuals, while social expertise can 
be mined from social networks, including co-authorship networks or citation networks 
(Zhang et al., 2008).Currently, rising stars are identified based on their individual per-
formance (Daud et al., 2015; Zhang et al., 2017; Zhu et al., 2019). Current methods can 
be of help in identifying rising stars, although multiple problems still need addressing. 
One of these problem involves encoding the native expertise of rising stars. A second 
problem involves integrating information about co-author networks thereby deonstrating 
integrated measures of expertise and networked production of knowledge.

Rising stars are scholars that have achieved a high reputation and thereby are on their 
way to becoming experts in their respective fields in the future (Zhang et al., 2016). The 
discovery of rising stars is an emerging research direction which may enable research 
communities to better highlight the achievements of potential researchers (Daud et al., 
2017). This is essential in organizations, enterprises, and academic communities. Rel-
evant scenarios include when educational administrators hire early-career researchers, 
they look to build a future faculty that reflects excellence in a field. In addition, enter-
prises seek employees with talent that can cultivate vitality, knowledge innovation, and 
performance within a team.

This paper argues that new advancements are possible in the measurement of scien-
tific expertise. The literature clearly argues for a complete and contextual understanding 
of scientific expertise, using a variety of different sources of information. Such infor-
mation includes the co-authorship community of the scientist, the number or count of 
publications delivered by the scientist, and the scientific content of the authored publi-
cations. Unfortunately many existing approaches to the measurement of expertise take 
these elements separately, as part of a portfolio of indicators of expertise. In this work 
we argue that a joint measurement of expertise, jointly conditioned on authorship, co-
authorship and scientific content, is needed. To meet the challeges, new approaches are 
needed which create a comprehensive measurement of specific expertise using all avail-
able evidence, and which more clearly distinguish between individual and team exper-
tise. Adancements in these areas will enrich state-of-the-art efforts in developing deter-
ministic and probabilistic knowledge graphs (Petkova & Croft, 2007; Serdyukov et al., 
2008). This paper sets requirements for the appropriate representation of individual spe-
cific expertise, and proposes the use of a well-established computational method which 
meets these requirements. The method is relevant for expert finding applications, as well 
as for the potential prediction of rising stars given their publishing history. Nonetheless 
the underlying computational method is relevant to a range of scientometric purposes 
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where there are multiple document attributes which should be analysed in a reduced 
form.

Methods

In this section a review of matrix and tensor decomposition methods are presented. The 
literature reveals that it is mathematically possible and computationally practical to decom-
pose higher-dimensional matrices. Most importantly these techniques reduce in two 
dimensions to the familiar matrix decomposition techniques which are widely used in bib-
liometrics and information retrieve. Nonetheless the converse is not true. Generalising the 
two-dimension decomposition techniques to higher dimensions requires careful considera-
tion of the joint quantities involved.

There is a long history of matrix decomposition methods used in scientometic, biblio-
metric and informetric application (Cunningham, 1996; Deerwester et al., 1990). The vari-
ous techniques bear different names, but the underlying mathematics is often based on a 
linear decomposition of matrices. Relevant matrix methods include latent semantic index-
ing, a matrix decomposition technique used for information retrieval purposes. Other rele-
vant techniques include principal components analysis, factor anakysis and correspondence 
analysis which are used for visualization or science mapping purposes. These three tech-
niques differ by the similarity metrics used, the representation of uncertainty in the data, 
and the specific decomposition components which are generated as results. Nonetheless 
these techniques are all reducible to a fundamental technique of matrix composition known 
as singular value decomposition (SVD). Decomposed eigenvectors are known alternatively 
as factors or components depending on the technique and the raw scaling of the data.

Singular value decomposition is suitable for the decomposition of matrices in two 
dimensions, but is actually a reduced form algorithm for the analysis of higher-dimen-
sioned objects. In scientometic application various publication metrics are extremely high 
dimensional, yet are converted to vector form. Because such metrics are high dimensional 
they present challenges for analysis, visualisation and validation. Mstrix decomposition 
techniques which reduce the data into a lower dimensional form ae often highly usable. A 
matrix represents a two-dimensional format for the representation of scientometric data. 
For instance a matrix dimensioned articles by terms may be used to represent the content 
of a corpus of scientific articles. Or a matrix which is dimensioned articles by authors may 
be used to represent co-authorship patterns.

Most imporantly multiple dimensions of scientific attribution are not necessarily of like 
kind. For instance a document may be represented by time, authorship, citation relations, 
and semantic content. Although customarily represented in a series of two-dimensional 
forms, many scientometric matrices are intimately linked. Such linkages can be represented 
in three-dimensional or even higher dimensional matrix form. A third or higher dimen-
sional matrix is known as a tensor. For instance a tensor which is dimensioned publication 
by author by term enables a richer representation of scientific collaboration and scientific 
expertise than could otherwise be obtained. This is because there are intrinsic dependen-
cies between publications which can only be revealed by a close examination of the author-
ship and term matrix. Similar insights can thereby be gained about authorship and also 
scientific terms.

Tensors require expanded methods for analysis. Fortunately there are a family of tensor 
decomposition techniques closely related to the familiar matrix decomposition techniques. 
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The use of these techniques is proven and extensive in the field of image processing as well 
as psychology (De Lathauwer et al., 2000; Sheehan & Saad, 2007; Tucker, 1966). A nota-
ble example of a richer, higher-dimensional analysis is offered by Liu (2011). The authors 
offer an analysis of scientific content and scientific citation using tensors. This principled 
form of analysis enables the joint construction of models of content and citation. Content 
and citation are embedded in a common metric space, and information about one is used to 
anchor and regularize the other. The technique used in the analysis is multi-linear singular 
value decomposition (MLSVD). Unfortunately – and despite the analytical opportunities 
afforded by the use of tensor algorithms – such techniques are not yet widespread in the 
scientometric literature. Nonetheless these techniques enable new and richer forms of sci-
entometric analysis.

There are multiple related tensor decomposition techniques. Within the field of tensors 
and their decomposition and analysis there appears to be a lack of standardization and uni-
fication across the respective disciplinary literatures. Despite this a remarkable contribu-
tion is made by Sheehan and Saad (2007). The generalized problem which underlie all 
of these methods according to Sheehan and Saad (2007) is the higher-order orthogonal 
iteration of tensors – or HOOI for short. In this paper the authors demonstrate that a variety 
of different decomposition techniques including 2-D principal components analysis (2-D 
PCA), higher-order SVD (HOSVD or MLSVD) and the generalized low-rank approxi-
mation of matrices (GLRAM) are all special instances of a more general class of tensor 
decomposition problems. De Lathauwer and co-authors popularized HOSVD and MLSVD 
(2017), and the terms appear to be synonymous. Most importantly of all these algorithms, 
the familiar PCA and SVD algorithms are only special cases.

This work is interested in the applications of one scientometric tensor in particular. 
The tensor has three dimensions consisting of documents, terms, and authors. This ten-
sor is reducible to three separate matrices – a matrix of documents and terms, a matrix of 
documents and authors, and a matrix of terms and authors. These matrices and their self-
products (including co-authorship, and co-word matrices) have revealed a wealth of insight 
into bibliometric activity. The underlying data, and various related products are shown in 
Table 1. This and related tables will be used to describe the analysis throughout the paper. 
Table 2 (in the data section below) deepens the discussion by describing the dimensions 
and scope of the analysis.

The joint representation of these matrices in tensor format contains rich structural infor-
mation, albeit in a high dimensioned format. For this reason tensor decompositions are 
further pursued. The research question to be investigated is whether the full tensor of docu-
ments, words and authors contains additional information regarding the unique expertise 
of authors that can not be otherwise uncovered from the data analysed in reduced form. In 
pursuit of this question this paper examines the data reduction of word vectors, but also the 
data reduction of authorship matrices. Document loadings are described as content vectors. 

Table 1   Data products Symbol Dimensions Explanation

X1 [d × w × a] Raw data in tensor format
X2 [d × w] Derived matrix
X3 [d × a] Derived matrix
X3

T × X3 ~ N [a × a] Matrix multiplication, 
resulting in co-authorship 
graph
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The word vectors are summarily labelled semantic vectors, in keeping with long-standing 
practice. For conciseness the new measure explored here, a reduction of the authorship 
vector conditioned on documents and words, is described as expertise. This measure will 
be compared with a leading indicator of expertise, the aggregate or average content of the 
papers authored.

A decomposition of this tensor will simultaneously result in a low-ranked approxima-
tion of the underlying data (Fig. 1a). The decomposition represents the best available low-
ranked approximation of the underlying data, and obeys a set of additivity constraints. A 
tensor of documents, authors and words can be deconposed into three separate spaces, with 
the requisite transformations for comparison. The separate spaces are described by the L, 
R and V tensors, and the core tensor used to translate between the spaces is represented 
as B. Each document vector is an approximate representation of the contents of the docu-
ment, and each term vector is an approximate representation of underlying meaning and 
semantics. Each vector assigned an author may thereby be interpreted as the expertise of 
the author. Most notably this representation is conditioned on the measurement of exper-
tise of all other authors in the network. Thus the assignment of expertise is made given the 
underlying semantics of terms and documents, as well as the assignment of expertise to all 
other authors and co-authors in the document corpus.

Figure 1 presents a conceptual framework describing the merits of a tensor decom-
position perspective. The figure shows how there are three separate spaces resulting 
from the tensor decomposition pursued in this research. There is a vector space of doc-
uments, a vector space of terms, a vector space of authors. The resultant projections of 
these spaces involve documents × terms, terms × authors, and authors × documents. 
The three spaces are inter-related to each other. The decomposition represents the best 
available low-ranked approximation of the underlying data, and obeys a set of additiv-
ity constraints. These constraints are that each document vector represents both the 
sum of the constituent term vectors, and the sum of the constituent author vectors. The 
assignment is made given the underlying semantics of terms and documents, as well as 
the assignment of expertise to all other authors and co-authors in the document corpus. 
This is known as idempotency. Figure 1b shows the adjustment of a single author so 
that the author sits at the average of all the terms used by this author. Because of the 
property of idempotency, this adjustment is made mutually between authors, terms and 

Table 2   Dimensions of the analysis and the data

Dimension Explanation Full Sample Study protocol

w Number of words 1000 1000
a Number of authors 21,992 100 for main 

analysis; 599 
for visualisa-
tion

d Number of documents 23,145 10,000 for 
main analy-
sis; 394 for 
visualsation

f Number of eigenvectors; possibly separately 
dimensioned (f1, f2, f3) for HOOI

3

t Number of trials 100
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documents. Each is projected and scaled so that the entities sit at the average of their 
respective spaces. This averaging property is the result of the least-squares charac-
ter of the tensor reduction. Specifically the law of cosines relates vector projections 
to Euclidean distances in the respective decomposed tensor spaces. These two-dimen-
sional projections are all related to one another, so that the structure of one informs the 
other two, see Fig. 1c.

In this paper we investigate whether the full tensor representation contains rele-
vant information beyond that conveyed by the reduced form matrix of documents and 
words. If this is the case then information about which authors work together on which 
manuscripts will better enable a model that will jointly estimate the expertise of the 
individual authors. This will further clarify the semantic representation of individual 
terms, and thereby generate a more appropriate classification of document content.

(a) (b)

(c)

Fig. 1   Spaces, Relations and Mutual Adjustment. The figure graphically portrays the dual, idemopotent 
spaces of a decomposed matrix in a at top. The spaces are mutually adjusted to the positioning of elements, 
shown in b at top. Each element of each space is assigned accordingly to the required spaces, relations and 
transformation rules. This is portrayed in c at the bottom
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Data

To demonstrate and validate our methodology, we conducted an empirical study on 
scholars in gene editing domain. Although we selected this domain, any other domain 
would be a suitable subject for our method and analysis. The analysis involves all 
11,458 articles indexed in Web of Science until October 2020 under the search strat-
egy TS = ((Genome OR Gene OR Genetic OR DNA) NEAR/2 Editing) (Huang et al., 
2019).

The dataset is created by collecting information about scholars, the titles, the scholar 
keywords, the keywords plus, and the full abstract and citation information from the 
articles. Indexing and analyses are performed in Python 3.3. Indexing is performed 
using the scikit-learn package feature_extraction.text. Stopwords (as provided by the 
package) are removed. The various forms of copyright used by Elsevier are removed as 
well. Words are reduced to lower case and punctuation is removed. No lemmatization 
or stemming is used. As will be demonstrating in the robustness analysis, lemmatiza-
tion or stemming does not materially change the output. Using plain text eases further 
interpretation. The top 1000 words by total count are used to index the articles. This 
number of features is sufficient to produce a rich description of documents content, and 
to effectively place individual articles within a taxonomy of content. After indexing 
the documents with the 1000 terms a dense document-term matrix is produced.

Table  2 presents summary statistics of the data set. There are over 23,000 docu-
ments. In this sample nearly 22,000 unique authors are identified using the available 
ORCID. A vector of the top 1000 words, minus any stop words, is used to represent 
document content. The test is conducted with two separate samples. In the first analy-
sis a full 10,000 of papers are investigated.

In the second analysis a smaller sample is investigated for exploratory purposes. 
The documents, and the uniquely identified authors of the documents, are linked in 
a scientific collaboration graph. There are multiple disconnected components to this 
graph. The largest of these components contains 5154 articles authored by 6800 
uniquely identified scientists. The analysis focuses in detail on this giant component. 
For the purposes of this case it is helpful to take a sharp focus on smaller groups of 
researchers to better compare and evaluate the effects of measuring expertise using 
different techniques. Therefore the most centrally located researcher in the giant com-
ponent is first identified. Then all researchers within three hops of the most central 
researcher are identified. Including the central researcher this results in a case study 
sample of 394 articles and 599 researchers. The structure and organisation of the graph 
(N) is discussed further below in the analysis.

The use of the central-most community in this network enables an incisive explo-
ration of expertise and its representation. Other comprehensive studies could also be 
designed to investigate the operation of expertise in real-world scientific communi-
ties. This research however is a feasibility test to investigate whether this new measure 
of expertise shows promise and should be trialed in detailed case studies. The paper 
returns to this point in the conclusions. A low-dimensional decomposition is sufficient 
to conduct this exploratory test—a three-dimensional decomposition is therefore used. 
Care is taken to investigate the robustness of the resultant network. One hundred tri-
als are conducted and tests are performed to investigate the stability of the content, 
semantic and expertise network.
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Analysis

The analysis procedure is elaborate, although the outputs are spare. Therefore the section 
breaks down the analysis into a series of procedures, steps and products. These are dis-
played in a series of tables, and discussed individually. Table 3 displays the core analytical 
procedures. Table 4 displays the decomposed elements of the analysis. Derived products of 
the analysis are detailed in Table 5. Then testing procedures are described in Table 6.

The principle analytical procedures are matrix decomposition (SVD) and tensor decom-
position (HOOI) (Table  3). Tensor decomposition is implemented using a custom made 
function in python, following the pseudo-code as described by Sheehan and Saad (2007). 
This implementation is made available by the authors (Cunningham, 2022). The function 
utilizes the numpy library, and the linear algebra package, and SVD subpackage (numpy.
linalg.svd). The SVD procedure is suitable only for a reduced form of the data, and there-
fore is conducted on the document by factor matrix. The data has therefore been collapsed 
on the authorship dimension. The scipy library in python is used for this analysis, specifi-
cally the sparse matrix and linear algebra packages, and the svds subpackage (scipy.sparse.
linalg.svds). These tables use pseudo-code, whereby analytical procedures are described as 
function calls with inputs and outputs.

The tensor and matrix decompositions result in multiple decomposed components of 
scientometric interest. These components and their explanation are discussed (Table  4). 
The dimensioning and symbolic representation of these components are also provided.

Three derived products are calculated from these analysis (Table 5). The first of these 
products is a leading procedure for evaluating the expertise of individual authors. This 
involves determining the topics of all the articles they have published, and then assigning 
each author the sum total of all papers they have individually authored, or co-authored in 
a team. Here the content is evaluated using the SVD procedure. This derived calculation 
is presented as element 10. Products 5 and 6 are projections of one matrix upon another. 
These are interesting elements for analysis and testing since they demonstrate potential 

Table 3   Analytical procedures

Procedure Decomposition Explanation

1 HOOI (X1, f, t) B × 1 L × 2 R × 3 V1 Tensor decomposition
2 HOOI (X1, f, t) ~ L, i X4: [f × d × t] Experimental design tensor
3 SVD (X2, f) U × W × V2

T Matrix decomposition

Table 4   Decomposed 
components

Decom-
posed 
element

Dimension Explanation

4 B [f × f × f] Core tensor, from HOOI
5 L [f × d] Tensor decomposition of content
6 R [f × w] Tensor decomposition of semantics
7 U [d × f] Matrix decomposition of content
8 V1 [f × w] Tensor decomposition of expertise
9 V2 [w × f] Matrix decomposition of semantics
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structural similarities or differences between the models, whether representing content, 
semantics, or expertise.

A number of different analytical and visual techniques are used for evaluating the results 
(Table 6). The first derived test involves the calculation of the network eigenvector central-
ity. This is also a test using SVD, in another guise. This is implemented using the network 
centrality measure available in the networkx package in python (networkx.algorithms.cen-
trality.eigenvector_centrality). Two more derived quantities are motivated by a comparison 
of the representation of documents and expertise generated by SVD and by HOOI. These 
comparisons require joint projections for further analysis, as shown previously lines 11 and 
12.

Since the outputs are inherently multidimensional in character, it is also convenient to 
use data decomposition techniques. Thus the SVD and HOOI procedures are used both in 
analysis and testing, but the rationale and use of the procedures is very different. The gen-
eral applicability of the techniques for a range of different testing and analysis procedures 
is not in this cause tautological, and does not compromise the validity of the subsequent 
testing. The procedures are to evaluate the span of D, the joint projections in documents 
and in expertise. Span is a technical property of matrices, and it represents the degree of 
overlap of the two matrices. The calculated eigenvectors provide an additional information, 
since small eigenvalues indicate the degree of shared span. Similarly the HOOI procedure 
is useful to evaluate whether the repeated experimental design revealed any systematic var-
iation across testing runs.

Three hypotheses and tests are formulated to investigate this question. In the first test 
the latent semantic dimensions generated by SVD and HOOI are compared. The hypoth-
esis is that there is only partial overlap between the resultant dimensions. This is significant 
because SVD is at best an approximate decomposition of any higher-dimensioned dataset. 
A lack of overlap indicates a potential threat to validity for using SVD in place of more 
appropriate higher dimensioned techniques. In the second test an aggregate content vector 
is assembled out of the results of the matrix SVD, and compared with the latent exper-
tise vector extracted directly from HOOI. Here again the hypothesis is that the two repre-
sentations of expertise partially but not completely overlap. A partial overlap is explained 
because the expertise vectors of SVD and HOOI are only partially related to one another. 

Table 6   Testing procedures Procedure Quantities Test

13 CENT(N) ~ c [ a × 1] Eigen-
vector 
central-
ity

14 SVD (D1,f) W, the eigenvalues of 
the document embed-
ding

Span

15 SVD (D2,f) W, the eigenvalues of 
the expertise embed-
ding

Span

16 HOOI (X4,f) B, the core tensor Span 
in the 
space of 
model 
runs
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More significantly the expertise vectors are only partially related because the assignment of 
expertise used by SVD and HOOI actually differ. HOOI will utilize the proven expertise of 
authors, demonstrated on other papers and collaborators in the database, to assign vectors 
of expertise. In the third test the rated expertise of authors is displayed on a collaboration 
graph, and contrasted with the resultant indicators of network centrality and summed con-
tent. The hypothesis is that an truly effective measure of expertise will reflect local epis-
temic communities.

Regardless of the outcomes of these three experiments, the contributions offered by 
fuller consideration of tensor decomposition techniques are of general methodological 
value. Tensor decomposition is of wide applicability to the field of scientometrics as a 
whole, and therefore there are additional contributions to be offered beyond the specifics of 
the case. In particular the applicability of tensor decomposition for extended scientometric 
analysis, regardless of the specific formulation of the tensor, has been rarely examined. 
The exceptional work of Liu et  al. (2011) is noted above. Thus the results of this paper 
help advance and enrich current bibliometric practice whereever SVD and related decom-
position matrices are already being used. The aforementioned analyses are conducted, the 
derived products calculated, and the described tests and validation procedures performed. 
The results are described in the following section.

Results

The result of comparing the document embedding (described previously as test 14) is 
shown below. First a few words about the SVD procedure are offered. The SVD procedure 
addresses both the rotation as well as the scaling, of the projected matrices, before any 
comparison is made. Each eigenvector is scaled to 1.0. If one document vector is com-
pletely projected onto the other the resultant score would be one. If there were no overlap 
and the two document vectors were orthogonal from one another then the resultant vector 
would be zero.

The results for content suggest that there are two leading factors of content that are 
largely comparable, and one which is incompatible. The sum of squares of the eigenvectors 
indicates the share of variance preserved in the projection. Since the total variance in the 
two content matrices is 3.0, it is possible to calculate the percent of variance held in com-
mon, and uniquely by each of the measures. The results indicate that 61% of the variance is 
shared in the projected matrix, while another 39% is unique to the individual space. On the 
one hand these results suggest a high face validity for both measures of content, since they 
corroborate one another. On the other hand the techniques do not corroborate across the 
third factor of content (Table 7).

The evaluation is more complex for the expertise projection matrix (line 15). The 
summed content matrix results in varying amounts of summed content by author, and 
therefore is not unit scaled. The jointly projected matrix of expertise and summed content 
has a variance of 33.97. This variance is poorly predicted by the summed content vectors, 
since only 40% can be explained solely by means of the left eigenvectors representing the 
summed content. On the other hand the right eigenvectors representing the expertise vec-
tors explain fully 90% of the variance in the projected matrix. These results suggest that 
the space of expertise can be fully expressed using transformations of content. Nonetheless 
summed content cannot be fully expressed using these derived measures of expertise.

This section presents a short case study drawing upon a subset of the authors and 
papers contained in the larger sample. The query used for the analysis is intrinsically 
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interesting since it has been previously and extensively studied (Huang et al., 2019; Zhu 
et al., 2019). The case serves an expository role by illustrating fundamental questions 
of the measurement of expertise. Therefore rather than characterise the entirety of the 
semantic and author space, a smaller case study is drawn from the data.

The study of expertise is necessarily very high dimensional. This researcher there-
fore uses graph overlays to communicate the relationship between expertise and sci-
entific networks. The base graph is the collaboration network of scientists surrounding 
the most connected author in the network. Then three separate indicators are plotted 
for comparative purposes, starting with the base social network (Fig. 2a). As expected 
the network centrality measure (Fig.  2b) is centred around the most central actor. As 
a measure it rapidly diminishes at one or two hops away from the central author. As a 
measurement of expertise it appears inadequate overall, although it has some attractive 
features in demonstrating the presence of coherent research groups within the graph.

An authorship summary measure is also shown for comparison (Fig.  2c). This 
measure summarises the expertise of individual authors in terms of the content of all 
the papers which they have authored. A simple three factor decomposition is used for 
illustrative purposes. The first factor is displayed in the graph using a contrastive color 
scheme indicating the degree of expertise signalled by the particular author. This meas-
ure also appears inadequate since expertise is averaged across the network, with very 
few indicators of local knowledge or expertise. This runs counter to theories of the soci-
ology of knowledge. (Note however the hotspot of unique expertise in the upper right of 
the Fig. 2c, demonstrating one or two authors with a sharply differing average knowl-
edge profile than the others.)

This needs a fuller discusion and interpetation. Figure  2d shows expertise fully 
decomposed by paper, author and content using the HOOI technique. A simple three 
factor decomposition is used for illustrative purposes, and for suitable comparison with 
the other cases above. This measure demonstrates local communities of knowledge, 
as expected by theory. This group is seen at the bottom of the graph. The community 
indicated by the first factor is not solely the most central community, and therefore is 
not artefactual of network positioning. Furthermore even this community shows con-
siderable heterogeneity in its expertise, with some members sharply focused on the spe-
cific measured attribute of expertise and other co-authors demonstrating very different 
sources of expertise. This case is only one part of the necessary, larger effort needed to 
validate this (and indeed all other) measures of scientific expertise. These efforts are 
further discussed in the validation and discussion sections below.

Table 7   Test results

Eigenvalue source Eigenvalues Unique and common variance

Document projection matrix [0.983, 0.926, 0.074] Content: 61% of the variance 
is held in common and 39% 
is unique

Expertise projection matrix [5.738, 0.866, 0.546] Summed content: 40% of the 
variance is held in common, 
and 60% is unique

Expertise: 90% of the 
variance is held in common, 
and 10% is unique
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Application

The concept of expertise refers to the knowledge content of specific topic of schol-
ars, also refers to the experience of the acquirement of special skill in or knowledge of 
specific topic. What makes rising stars different from stars is that their experience on 
expertise has been on the rise in recent years. The experience on expertise can be meas-
ured by bibliometric indicators, such as the number of published papers, citation counts. 
We use the trend index algorithm for measuring the upward trend of expertise experi-
ence (Zhu et  al., 2019). The trend indexes are constructed following the definition of 
rising stars: including active trends index and recent trends index. Active trends index 
measures the relatively continuous trends in ongoing multi-year activity of expertise 
experience, whereas recent trends index watches for relatively short-period, abruptly 
increasing activity of the expertise experience. Both trend indexes can be assessed at the 
productivity level and impact level. A high trend index value means the rising stars have 

Fig. 2   Network Positioning and Expertise. Upper left, a This represents the co-authorship network of the 
core of the graph. Upper right, b This represents an overlay of network centrality on the social network. 
Bottom left, c This represents an overlay of the summed content on the social network. Bottom right, d This 
represents the overlay of expertise on the social network
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a significant upward trend in their research productivity and impact, therefore, they have 
more potential become brilliant stars in the future. The trend indexes are given by:

Active-Trend Index Productivity/Impact: Ratio of the change in the number of publications/
citations in the last 5 years to that in first 5 years.

Recent-Trend Index Productivity/Impact: Ratio of the change in the number of publications/
citations between the most recent 2 years and the prior 2 years.

where pxtn is the set of publications for author x in the yeartn,pub
(
x, tn

)
 is the number of 

publications to author x in the year tn and Cit(pxtn , tn) is the number of citations to author x 
in the yeartn.

Top 15 rising stars are identified based on the uptrends of their expertise experience. 
The results presented in Table 8. It provides some insight into the rising stars with upward 
productivity and impact trends over the last two and five years. The active-trend indexes 
show significant uptrends for productivity and impact of rising stars over the recent five 
years, they maintain these uptrends on their expertise experience over successive years. 
There are some rising stars, such as Anstee, Quentin M.; kim, Jin-Soo; Varshney, Rajeev 
K. and Specchio, Nicola, whose productivity or impact have surged in the last two years.

Validation

A basic robustness and testing concern for this study involves demonstrating that the 
data has been fully and completely indexed. Bibliometric matrices tend to be highly 
sparse; this is even more the case with tensor representatios of the data. Table 9 displays 
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some of the key characteristics of the data including words, ORCID, and identified and 
unidientified authors. The table reveals an adequate coverage of the data (Table 9).

One potential validity concern for the analysis is the fact that many authors are unas-
cribed in the analysis since they lack an ORCID. This choice is perhaps less distorting 
than the alternative, which is to impute unique authorship from some combination of 
first name, last name, and perhaps city or institution. This is because some imputations 
of authorship also use expertise, which would be unacceptable for the purpose of this 
paper. Nonetheless the consequences of such missing authorship data are potentially 
consequential. Concerning cases could could occur if authors are concentrated in par-
ticular areas of expertise, or in one or more critical communities of collaboration.

The principal validation concern for this study lies in the strategy used for index-
ing words and phrases. The concern may be that the semantic factors underlying the 
documents are not robust. Thus the introduction of a handful of terms may cause the 
solution to pivot to other solutions, or otherwise introduce noise into the indexing. In 
order to test this concern, one hundred separate SVDs are performed on the baseline 
document-term matrix. On each of these runs, one hundred of the terms are dropped at 
random from the thousand terms used to index matrix. The corresponding counts are 
then zeroed out of the matrix before decomposition. In each run a three factor solution 

Table 8   Top 15 rising stars with an upward trend on their expertise experience

Rising stars Active − TrendProd Active − TrendImp Recent − TrendProd Recent − TrendImp

Anstee, Quentin M 3.317 16.914 0.372 5.663
Kim, Jin-Soo 8.749 13.898 5.302 0.969
Dardiotis, Efthimios 6.982 10.214 0.255 3.027
Varshney, Rajeev K 5.142 9.186 2.243 2.380
Specchio, Nicola 2.650 7.705 1.822 1.410
Qasim, Waseem 2.414 7.080 0.904 1.300
Voytas, Daniel F 1.617 6.553 0.802 1.442
Guerrini, Renzo 0.732 5.637 0.586 1.688
Bush, Stephen J 3.529 4.631 0.822 1.325
Mussolino, Claudio 2.968 4.830 0.586 1.200
Scala, Marcello 4.474 3.284 0.768 1.879
Has, Cristina 2.132 3.790 0.268 0.793
Striano, Pasquale 1.915 1.973 1.332 2.335
Kullmann, Dimitri M 1.453 1.613 0.588 1.064
Opriessnig, Tanja 2.025 1.067 1.817 0.467

Table 9   Descriptive statistics Numbers 5% 50% average 95%

Indexed words per document 6 78 74.0 131
ORCID per document 0 1 1.5 14
Unascribed authors per document 0 3 4.6 12
Documents per ORCID 1 1 1.6 4
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is extracted from the data, and the resultant tensor of documents, loadings, and model 
runs is recorded and analysed.

The resultant solution suggests that any SVD or HOOI decomposition of this data 
will be highly robust. There were no systematic variances in document loadings not oth-
erwise explainable by factors flipped or rotated in the shared semantic space. The ratio 
of the first two eigenvectors is 1000 to 1, suggesting the vast majority of the variance 
in the data is explainable by a shared, low dimensional solution. The robustness of the 
solution to perturbations of the data is initially surprising, but it is well-known that the 
matrix decomposition method is an effective means of data and noise reduction.

There are of course other validity concerns. One concerns the appropriateness of a 
low dimensional representation of the space in terms of terms, or factors. This impor-
tant concern is shared across the field of bibliometrics. Another concern is the nature of 
the exploratory case study used here, where the giant component was isolated and ana-
lysed and the rest of the author graph is set aside. This decision, made for computational 
and case study reasons, does not sacrifice the validity of the resulting model. Each of 
the authorship graph components is separately decomposed with their own eigenval-
ues and eigenvectors. This means that while one component of the graph cannot fully 
inform the other, it also does not alter or distort the findings of each of the components. 
Note also that all other components of the co-authorship graph are much smaller than 
the giant component.

In addition to statistical conclusion validity, any validation test should also be con-
cerned with concept validity. That is to ask whether or not the concept being tested is 
suitable for purpose. Any algorithm designed to attribute expertise to authors should 
obey several desirable properties. The algorithm should be efficient, symmetric, linear, 
and subject to the null player constraints. An efficient algorithm given evidence of sci-
entific expertise allocates the entirety of that credit to the authors on the paper. A sym-
metric algorithm treats two authors with an identical publication record identically. A 
linear algorithm is both additive and multiplicative in its credit. That is to say authors 
of a manuscript with twice the evidence of expertise should receive twice the credit; 
likewise there should be no difference in credit received if the same evidenced content 
were distributed across multiple manuscripts. The null player constraint indicates that 
an author should not receive credit when there is greater evidence of substantive contri-
bution by other authors. These four properties are familiar to the Shapley value for fair 
allocation of resources.

These four properties are familiar to the Shapley value for fair allocation of resources 
(Shapley, 1952). The Shapley value is a Nobel-prize winning mediation mechanism for 
fairly distributing the proceeds of joint effort. The analogy applies here if a publication 
is considered a joint effort, subject to the contributing efforts of each of its consituent 
authors. Effort cannot be demonstrated, but as previously discussed, the proven publica-
tion histories of the authorship team can be.

The Shapley value is the only available allocation procedure satisfying these four 
properties. Subdivision of expertise according to a HOOI decomposition satisfies the 
Shapley value. Like the Shapley value it effectively averages through all expertise of 
all publications of which the author has been involved. Perhaps just as importantly the 
Shapley value does not credit the author for any expertise not evidenced by their own 
work. On the contrary at least one of the available alternatives, the total weighting of 
papers, will fall awry of this null player constraint. This method will apportion full 
credit to all authors even if there is substantial prior publication evidence of sole exper-
tise by one of the co-authors.
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Discussion and conclusion

The testing procedures reveal a number of insights about content and expertise. It is clear 
from the results that in this study a distinct factor is captured from the data which is not 
available from SVD. This quantity, which we choose to call expertise, maps closely to 
established measures of document content and word semantics. Its distribution in the sci-
entific network under investigation meets sociological expectations, while the aggregate 
measure of content does not. The aggregate content measure introduces additional vari-
ance not otherwise explanable as expertise. The algorithm used to derive expertise displays 
valuable properties of fair assignment.

This paper applied new techniques for identifying expertise to the practice of identifying 
rising stars. The method effective partitioned a research community into separate groups, 
demonstrating heterogeneity in scientific content and co-authorship patterns. We believe it 
is important to use expertise rather than a naïve rating of publication output since different 
communities will have different practices of output and co-authorship.

Furthermore expertise measures may help unethical practices of co-authorship, includ-
ing the awarding of ghost, gift or honorary authorship, which may distort rising star meas-
ures. This is the primary effect of incorporating better measures of expertise in the iden-
tification of rising stars. Nonetheless a range of secondary models may be considered in 
future research. It is possible to create tensor models which rate changes in author expertise 
over time. Such models could be built on an extended tensor of publication by author by 
content by year. Such models may help model the propensity of publication as well as the 
growth and diminishment of expertise. The resultant expertise score might be used more 
directly in the reporting of rising stars.

It will be attractive to consider neural architectures for this and related problems. Neu-
ral networds are procedures for implementing algorithms, rather than a distinct class of 
algorithm in their own right. Neural networks have the advantages of being expressed in a 
highly parallelizable format, which can therefore be tasked to multiple cores or graphical 
processing units. Tensors (as used in this paper) are the common data structure underlying 
many popular neural network libraries, such as TensorFlow. The HOOI algorithm as used 
here is a simple extension of existing architectures within a neural network framework. The 
HOOI algorithm is most closely related to a class of neural network architectures known 
as transformers (Vaswani et  al., 2017). Transformers have been credited with remark-
able advances in transfer learning in recent years. Transfer learning involves applying the 
knowledge discovered in one domain to another very different domain. In this scientomet-
ric application the HOOI algorithm creates a shared representation between authors, key-
words, and papers. The HOOI algorithm in three dimensions entails one input layer, one 
multidimensional hidden layer (representing the core tensor), and three output layers (rep-
resenting each of the three transformers).

We forsesee four areas for continued research in the space of tensor applications in sci-
entometrics. The first is to examine parallel or neural architectures as described above. The 
second is to explore probabilistic algorithms and to deepen the understanding of condi-
tional and unconditional independence of entities in text (Petkova & Croft, 2007). A third 
area for investigation is to examine other higher-order representations, including those 
using time or citation information. A fourth direction is to advance the science of science. 
This requires a deeper analysis of specific case studies of scientific communities in action 
in order to better disentangle relationships between scientific communities, knowledge and 
organization.
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A potential drawback of the HOOI procedure is the fact that it is so memory intensive. 
Conducting the procedures described in this paper for instance, required storing not one 
matrix but the equivalent of one matrix of content for every author considered in the sam-
ple. Nonetheless such procedures can be moved to the cloud where more memory is readily 
available. Furthermore the iterated least squared procedures of Sheehan and Saad (2007) 
can be adapted to online variants which utilizes a window in the dataset and operates 
through successive passes of the data. Sparse matrix formats and algorithms are another 
potential solution to this problem. These algorithms may also be comparatively easy to 
implement using the successive least-squared approximation procedure described by Shee-
han and Saad (2007).

The contributions of this paper are as follows. First we advance and enrich current prac-
tice where SVD and related algorithms on matrices are already being used. This paper 
advances and enriches current scientometric practice where SVD, and where multivari-
ate extensions such as HOOI may be applied. This paper, as well as the methodologically 
related work of Liu et al. (2011) presents one of the few papers in the scientometric lit-
erature to apply tensor decomposition. We argue that a vector decomposition of the data 
results in manuscripts being placed at the average estimated expertise of all the contrib-
uting authors. This is a contribution to separating individual and team expertise. Further 
instruments are hereby created using the methods of this paper for the better understanding 
of scientific collaboration about expertise. The fact that the co-authorship dimension of the 
tensor should meaningful has been hypothesized by many, yet a joint appraisal of author-
ship and expertise has been challenging.

The results presented in this paper have important implications for expert identification 
and retrieval, and for the finding of new and rising scientific stars. The method applied in 
this paper will also be useful for analysing the structure and content of scientific fields, and 
may help in the development of new theories of scientific knowledge production. Future 
work may examine the role of scientific generalists, whose knowledge spans multiple 
fields, as well as scienific specialists, who contribute deeply to a single field. Generalists 
and specialists may play very different roles within teams and across organisations, and 
they may experience very different career trajectories.
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