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Abstract

There is increasing research interest in the automatic detection of citation functions, which
is why authors of academic papers cite previous works. A machine learning approach for
such a task requires a large dataset consisting of varied labels of citation functions. How-
ever, existing datasets contain a few instances and a limited number of labels. Furthermore,
most labels have been built using narrow research fields. Addressing these issues, this
paper proposes a semiautomatic approach to develop a large dataset of citation functions
based on two types of datasets. The first type contains 5668 manually labeled instances
to develop a new labeling scheme of citation functions, and the second type is the final
dataset that is built automatically. Our labeling scheme covers papers from various areas of
computer science, resulting in five coarse labels and 21 fine-grained labels. To validate the
scheme, two annotators were employed for annotation experiments on 421 instances that
produced Cohen’s Kappa values of 0.85 for coarse labels and 0.71 for fine-grained labels.
Following this, we performed two classification stages, i.e., filtering, and fine-grained to
build models using the first dataset. The classification followed several scenarios, including
active learning (AL) in a low-resource setting. Our experiments show that Bidirectional
Encoder Representations from Transformers (BERT)-based AL achieved 90.29% accu-
racy, which outperformed other methods in the filtering stage. In the fine-grained stage, the
SciBERT-based AL strategy achieved a competitive 81.15% accuracy, which was slightly
lower than the non-AL strategy. These results show that the AL is promising since it
requires less than half of the dataset. Considering the number of labels, this paper released
the largest dataset consisting of 1,840,815 instances.
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Introduction

Citation analysis is part of the bibliographic analysis that studies how the connection
between academic publications is established in terms of one which cites and the other
which is cited (Nicolaisen, 2008). Citation analysis has become widespread practice to
measure the impact of academic publication. Hlavcheva and Kanishcheva (2020) stated
that an academic publication’s impact comes from several directions, such as the impact
of the researcher, the impact of the group or institution, the local or global academic rank-
ing, and the quality of the publication, which are measured by citation counts. In this set-
ting, the citation counts involve calculating the number of times a document is cited by
other documents and is performed through bibliometric databases. However, there is no
single database that gathers all publications together with their cited references. The analy-
sis needs to look at several database options, such as Web of Science (WOS),1 Scopus,2
Google Scholar,’ etc. There are several measurements, e.g., h-index personal metric, or
impact factor for journal metric, which are widely used as impact indicators because of the
citation analysis.

Besides the benefit of current citation analysis, measuring the publication impact using
the citation counts gets intense criticism. This is because the citation counts assume that
all citations have an equal impact on the academic publication. In fact, not all citations are
equal and should not be treated equally (Valenzuela et al., 2015). Treating the citations to
be always a positive endorsement of the cited references is problematic because the cita-
tions are often made to show disapproval of the cited references. Moreover, the citation
analysis fails to capture contextual information (Hirsch, 2005; Mercer et al., 2014) contain-
ing several citation functions, such as giving the background, using the work, making the
comparison, criticism, etc. Focusing on the research paper, the contextual information can
be used to dig deeper into the paper. Authors of research papers use citations to show the
position of their research in broad literature (Lin & Sui, 2020). The citation functions indi-
cate the research’s novelty (Tahamtan & Bornmann, 2019), and the quality of the research
(Raamkumar et al., 2016), and help authors understand the big picture of the given topics
(Qayyum & Afzal, 2018). Furthermore, the citation functions enable the research paper
to obtain a higher impact when it is used, approved, and supported by other works, and
less impact when other works just mention the research paper. Thus, involving the citation
functions as the contextual information needs serious attention to enrich the impact analy-
sis of the scientific publication.

There is a growing concern for works on the automatic identification of citation func-
tions (Pride & Knoth, 2020). This trend is caused by the fact that authors provide cita-
tions to determine the important and non-important roles of citations (Nazir et al., 2020).
According to (Zhu et al., 2015), previous works are considered influential if they inspire
authors to propose solutions. While incidental citations refer to a previous work that does
not provide a significant impact on the proposed research. In this domain, the terms impor-
tant and non-important (Valenzuela et al., 2015) are identical to the terms influential and
incidental (Pride & Knoth, 2020). However, most previous works have a small number
of citation instances or considered few types of labels. In addition, existing works have

! https://clarivate.com/webofsciencegroup/solutions/web-of-science/.
2 https://www.scopus.com/home.uri.
3 https://scholar.google.com/.
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suffered from a lack of research variety. Most of these works were developed based on
natural language processing (NLP)-related papers. Consequently, several potential citation
functions were missing from being identified.

The contribution of this paper consists of two parts. In the first part, we propose a
new annotation scheme for citation functions that have not been accommodated in previ-
ous works. Our proposed scheme covers all computer science (CS) fields on arXiv from
the beginning to December 31, 2017. This paper uses well-organized parsed sentences
of research papers from (Farber et al., 2018) and selects 1.8 million raw citing sentences.
Based on 5668 randomly selected instances, we developed the proposed annotation scheme
following three stages, i.e., top-down analysis, bottom-up analysis, and annotation experi-
ment. Completing the first two stages reveals that there are potential newly proposed labels.
We found five fine-grained labels related to the background’s role of cited papers that were
not proposed by existing works. These labels are definition, suggest, technical, judgment,
and trend. In addition, we found three new labels defining the role of a cited paper, i.e.,
cited_paper_propose, cited_paper_result, and cited_paper_dominant. Our final scheme
consists of 5 coarse and 21 fine-grained labels. Following this, annotation experiments
were conducted involving two annotators on 421 samples. We use Cohen’s Kappa (Cohen,
1960) to validate the results of the annotation experiments.

The second part of our contribution is to build a dataset of citation functions through a
semiautomatic approach. This approach was chosen because manual labeling is time-con-
suming and needs enormous human effort. The proposed method consists of two develop-
ment stages. In the first stage, we build two classification tasks, i.e., filtering, and fine-
grained classification. The filtering task eliminates nonessential labels, and the fine-grained
task categorizes the detail of the essential labels. In both tasks, we implement a classical
machine learning and deep learning approach. Because of the small number of manually
labeled instances, pre-trained word embedding methods should be considered here. In
addition, this paper demonstrates pool-based active learning (AL) as a low-resource sce-
nario. Following this, the next stage is to assign labels to the entire unlabeled instances
using the best models from both tasks of the previous stage.

At the end of this research, this paper delivers several contributions:

e The annotation scheme for citation functions consists of five coarse and 21 fine-grained
labels.

e The validity of the scheme is demonstrated in terms of Cohen’s Kappa results with
0.85 (almost perfect) for coarse labels and 0.71 (substantial agreement) for fine-grained
labels.

e The low-resource scenario-based AL achieves competitive accuracies on less than half
of the training data.

e While Bidirectional Encoder Representations from Transformers (BERT)-based AL
outperformed other methods in the filtering task, SciBERT reached competitive perfor-
mances compared to non-AL methods in the fine-grained stage.

e Considering the number of labels, we released the largest dataset consisting of
1,840,815 instances.*

4 https://github.com/tutcsis/SDCF.
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The rest of this paper is organized as follows. The “Related works” section describes
existing works covering three parts, namely, the annotation schemes of citation functions,
the research papers’ argumentative structure, and the detection of citation functions. Next,
the section “Building the dataset of citation functions” discusses how our dataset is devel-
oped. This section covers several points, i.e., scheme development, scheme comparison,
annotation strategy, and text classification strategy. The section “Experiment results” pre-
sents annotation and text classification experiments, including the released dataset. Finally,
in the “Conclusion and future work™ section, we present other notable findings from the
conducted experiments.

Related works

This section contains a review of existing works related to several points, i.e., the annota-
tion schemes of citation functions, the argumentative structures of scientific papers, the
dataset of citation functions, and the automatic identification of citation functions. For con-
sistency, this paper uses several terminologies, namely, citing paper is an author’s work,
cited paper is previous work cited by citing paper, citing sentence is a sentence containing
citation marks, and citation function is a reason behind citations.

Citation function labels

The review was conducted on previous works proposing their annotation schemes. During
the review, we found two major categories of citation functions, i.e., coarse label (general)
and fine-grained label (detail). While several works provided both categories, other works
provided a single category, either coarse or fine-grained label. The existing annotation
schemes of citation functions are shown in Table 1.

We report several notable results while reviewing previous works on citation functions.
The review of existing works poses the fact that most of the schemes were developed using
NLP-related papers. The paper data sources were dominated by ACL Anthology, but sev-
eral works used other sources such as NIPS Proceedings, PubMed, SciCite, and Computa-
tion and Language E-Print Archive. However, we identified two works that have developed
the scheme based on multi-disciplinary research papers. In addition, instead of proposing
new annotation schemes of citation functions, several works reproduced existing schemes.
Turning to the developed scheme, most existing works have citation functions related to the
background label, use-related labels, and comparison-related labels.

Reviewing the labeling scheme of citation functions in the previous works reveals sev-
eral drawbacks.

e Most existing works have developed a few types of labels and the labels were con-
sidered too generic. There was a work by (Casey et al., 2019) that proposed detailed
labels. However, these labels were designed not only for citing sentences but also for
other sentences in the Related Work section. This situation brings a consequence that
several potential citation functions are missing from being identified.

e The labels developed in the previous works were domain-specific since they were cre-
ated based on Natural Language Processing (NLP)-related papers. As a result, there is
an issue related to the compatibility of the labels when applied to broader computer sci-
ence domains. Here, we identified two works that developed the labels based on multi-
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disciplinary fields (Pride & Knoth, 2020; Tuarob et al., 2019), but these works have few
and too generic scopes of 8 labels, and 4 labels, respectively. In addition, it is difficult
to justify the accuracy of developed labels for comprehensively analyzing the research
paper when it is developed according to a wide-ranging domain, for example involving
computer science and non-computer science domains. This is because each domain has
its style of argumentative structure in the research papers.

To handle these issues, this paper proposed a new labeling scheme of citation functions
from multiple fields in the computer science domain. Accommodating the variety of citing
sentences in the multi-field paper and maintaining the scope still in the computer science
domain, it is arguable that our proposed labels provide more comprehensive coverage for
future citation function-related analysis tasks.

Research paper argumentative structure

The argumentative structure represents how information is presented, discussed, and moti-
vated. This structure is useful to justify the scientific claim, state the existing trend, and
guarantee research reproducibility (Alliheedi et al., 2019). It is worth discussing argumen-
tative structures in this paper since our proposed annotation scheme naturally contains
argumentative labels.

Argumentative structures can be applied to a section-level or sentence-level category.
Sollaci and Pereira, (2004) presented the study about the adoption of section-level catego-
ries, namely, introduction, methods, results, and discussion (IMRAD). This scheme was
first used in the 1940s, and since the 1980s, it became the only pattern adopted in health
papers. The IMRAD scheme is considered a generic scheme since authors use it to struc-
ture a paper’s sections. Teufel et al. (1999) developed the first version of Argumentative
Zone (AZ-]) as a sentence-level category. AZ-I consists of seven labels based on 48 com-
putational linguistics papers. Then, AZ-I was upgraded using 30 Chemistry papers and 9
Computational Linguistics papers (Teufel et al., 2009). The upgraded version, AZ-II, con-
tains 15 labels. The next sentence-level category is Core Scientific Concepts (CoreSCs)
proposed by (Liakata, 2010). This structure consists of 18 labels based on 265 Physical
Chemistry and Biochemistry papers. Another argumentative structure is Dr. Inventor pro-
posed by (Fisas et al., 2015). This scheme contains five categories and three sub-categories
built based on 40 Computer Graphics papers.

Citation function dataset

Table 2 shows the summary of the existing datasets of citation functions together with esti-
mation number of sample papers and number of labeled instances. The work by (Roman
et al., 2021) has provided the largest dataset, consisting of 10 million instances which was
labeled automatically. However, these works provided too few labels, i.e., background,
method, and result, which are not sufficient to represent the reason behind citations.

@ Springer
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Table 2 Existing datasets of citation functions, togather with the estimation number of source papers, and

citing sentences

No. Research paper Estimation Number of Papers ~ Estimation number of
labeled instances

1 Teufel et al. (2006) 300 9576

2 Dong and Schifer (2011) 122 1768

3 Lietal. (2013) 91 6355

4 Valenzuela et al. (2015) 20,527 465

5 Hernandez-Alvarez et al. (2016) 85 2092

6 Jurgens et al. (2018) 185 1969

7 Bakhti et al. (2018) ? 8700

8 Casey et al. (2019) 95 related work sections 1806

9 Rachman et al. (2019) Dataset 1: 160 Dataset 2: 50 Dataset 1: 2475
Dataset 2: 1153

10 Su et al. (2019) ? 1432

11 Zhao et al. (2019) 39,601 3088

12 Cohan et al. (2019) 6627 11,020

13 Tuarob et al. (2019) 8063 8796

14 Pride & Knoth (2020) 883 11,233

15 Roman et al. (2021) ? 10 million

Citation function classification

The existing works which performed citation function classification can be divided into
two main categories. First, the works that proposed both labeling schemes of citation func-
tions and datasets, second, the works that use other dataset and perform the citation func-
tions classification.

In the first category, the work by (Teufel et al., 2006) is considered as a pioneer in cita-
tion functions development. Next, (Valenzuela et al., 2015) built a classification system
using support vector machine (SVM) and random forest (RF). Similarly, the RF approach
was implemented by (Jurgens et al., 2018) using several features, i.e., pattern, topic, and
prototypical. Zhao et al. (2019) used long short-term memory (LSTM), along with char-
acter-based embedding, to classify citation resources (tools, code, media, etc.) and func-
tions. Tuarob et al. (2019) proposed a system to classify algorithm citation functions on
four usage labels, i.e., use, extend, mention, and notalgo. The maximum entropy-based
classification was used by (Li et al., 2013) to propose coarse annotation with sentiment
labels. Because of the limitation of labeled instances, Dong and Schifer (2011) introduced
ensemble-style self-training to reduce annotation efforts.

Still, in the same category, another work proposing both annotation schemes of cita-
tion functions and datasets is (Hernéndez—Alvarez et al., 2016). This research covered
three classification tasks, i.e., citation functions, citation polarities, and citation aspects.
All tasks were implemented using sequential minimal optimization. Su et al. (2019) used
a convolutional neural network (CNN) for citation function and provenance classification.
This task was implemented using multitask learning. Sharing a similar multitask setting.
While Bakhti et al. (2018) also used a CNN, Cohan et al. (2019) proposed another multi-
task learning approach.

@ Springer
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In the second category, most of the existing works were dominated by studies focusing
on classification strategies based on Valenzuela’s dataset. Hassan et al. (2017) proposed six
new features combined with Valenzuela’s most important features. This work used five algo-
rithms, i.e., SVM, naive Bayes, decision tree, K-nearest neighbor (KNN), and RF. This work
outperformed Valenzuela’s performance using RF, achieving 84% accuracy. Another work,
i.e., Hassan et al. (2018), reached 92.5% accuracy by implementing LSTM using 64 features.
Following this, Nazir et al. (2020) proposed using citation frequencies, similarity scores, and
citation count. The classification in this research was built using kernel logistic regression,
SVM, and RF. Pride and Knoth (2017) used influential and non-influential citations to find
highly predictive features. The classification in this work was performed using RF. Next,
Wang et al. (2020) used syntactic and contextual features for important and non-important
citation detection. This work applied several algorithms, namely, SVM, KNN, and RF.

Besides all these works, Rachman et al. (2019) used a dataset from (Teufel et al., 2006)
with re-annotation and developed a model using SVM. Following this, (Roman et al.,
2021) used the citation context dataset from CORE. This research applied BERT, depend-
ing on the three labels proposed by Sci-Cite (Cohan et al., 2019).

Building the dataset of citation functions

This section describes how our dataset is developed using a semiautomatic approach. The
entire system consists of three stages. The first stage is annotation scheme development. In
this stage, we identified and reviewed the existing labels of citation functions. More potential
labels are obtained by enlarging the research scopes. The goal of this stage is to develop a
final version of the annotation scheme for citation functions. The second stage is building
classification models based on available handcrafted instances. This paper uses several clas-
sification scenarios to build these models. The first scenario is implemented using a classi-
cal deep learning method. Next, we apply non-contextual and contextual word embedding
to cope with limited available data. Furthermore, a low-resource scenario is applied using an
AL approach. Finally, the third stage is assigning labels to all instances using the best models
resulting from the previous stage. Figure 1 depicts how our proposed dataset is developed.

Annotation scheme development

The proposed annotation scheme for citation functions in this paper is developed by fol-
lowing several steps. First, we performed top-down and bottom-up analyses. The top-down
analysis elaborates on the label definitions of existing schemes, i.e., background, usage,
and comparison. In this analysis, the concept of background can be expanded by question-
ing what, why, when, and how. The usage can be expanded by categorizing its degree into
inspired, uses method, or use data. The comparison can be elaborated using the similarity
and difference between citing paper and cited paper. The bottom-up analysis is used to
identify the citing sentence patterns in 5,668 random instances. This paper uses a dataset
from well-parsed sentences from arXiv (Firber et al., 2018). We filtered sentences con-
taining < DBLP:,< GC:, or<ARXIV: as targeted citing sentences. This process results in
1,840,815 citing sentences of 15,534,328 sentences. The final scheme consists of 5 coarse
labels and 21 fine-grained labels shown in Table 3.
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Fig.1 Development of the semiautomatic dataset of citation functions

Citation scheme comparison

As part of scheme development, a label comparison is performed between our scheme and
existing schemes. As mentioned before, the existing schemes consist of citation functions
and argumentative structures. Through comparison, we show the compatibility and contri-
bution of our proposed scheme. In Table 4, N/A marks indicate the newly proposed labels
of our scheme that were not accommodated in existing works. The comparison reveals
that our labels are partially and fully compatible with existing labels. However, there exist
incompatibilities here. This is caused by the fact that argumentative labels are not natu-
rally designed for citing sentences. For example, the label AIM in (Teufel et al., 1999) and
(Teufel et al., 2009) is defined as a specific research goal or hypothesis of research papers.
This label is commonly stated using ordinary sentences. Another example is the label Con-
clusion in (Liakata, 2010). This label makes a connection between the experimental results
and research hypotheses. Sentences explaining this label naturally are not citing sentences.
Furthermore, another reason for incompatibility is that labels in the argumentative struc-
ture can be represented using more than one sentence.

Annotation strategy

Annotation experiments are the last part of scheme development. Two CS master’s degree
graduates (annotators) are used in the experiments. Several required resources for the
experiments are annotation guidance and unlabeled citing sentence samples. In the guid-
ance, there are annotation task explanations, label definitions, and annotation examples,
as well as the guidance step-by-step annotation process, best practices, and annotation
schedules. After training, each annotator was provided with an Excel sheet containing 421
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instances to be labeled. We used Inter-annotator Agreement and Kappa values (Cohen,
1960) to validate the annotation results. The Kappa is categorized into several ranges:
0.01-0.20 is stated as slight agreement, 0.21-0.40 as fair agreement, 0.41-0.60 as moder-
ate agreement, 0.61-0.80 as substantial agreement, and 0.81-1.00 as almost perfect (Wang
etal., 2019).

Text classification strategy

Text classification strategies contain two stages, i.e., filtering stages and fine-grained classi-
fication. The filtering stage eliminates three fine-grained instances belonging to the coarse
label other. The fine-grained classification is used to categorize 18 detailed labels. These
two stages are applied to a dataset containing manually labeled 5668 instances. Here, we
evaluate four classification approaches. First, three classical approaches, namely Logistic
Regression, Support Vector Machine (SVM), and Naive Bayes are used as a baseline sys-
tem. Then, LSTM is our deep learning method. Considering the few numbers of labeled
instances, it is worth applying pretrained word embeddings. We implement two contex-
tual models, i.e., BERT (Devlin et al., 2019) and SciBERT (Beltagy et al., 2019), and
three non-contextual models, i.e., fasttext (Bojanowski et al., 2017), word2vec (Mikolov
et al., 2013), and glove (Pennington et al., 2014). Note that the non-contextual models’
implementations are combined with LSTM. The labeled dataset is divided into training,
development, and testing with 80%, 10%, and 10% proportions, respectively. Deep learning
approaches are implemented with Keras API, whereas BERT and SciBERT are built using
the ktrain python library. The best learning rates were obtained during the experiment with
a range of 1 e 10 5 €73, batch sizes of 32 and 64, and dataset balance or imbalance. The
best epoch was specified using early stops by keeping the best model based on validation
instances. Regarding the imbalance problem, we use class_weight parameter to address
this issue. This parameter is applied by multiplying the proportion of minority class to
make the distribution of all classes relatively balanced and force to assign higher values to
the loss function. Figure 2 depicts the distribution of the development dataset for all clas-
sification strategies.

Active learning strategy

Active learning (AL) is subfield of Machine Learning which allows the algorithm to choose
to the data from which it learns (Settles, 2010). This method is motivated by existing prob-
lems faced by machine learning where the huge unlabeled data is easily obtained but the
labels are expensive and time-consuming. The AL argues that the algorithm will perform
better using less data because the mechanism for asking queries to the oracle (human anno-
tator) to label the unlabeled instances. The implementation of the AL is conducted by
using scenarios in which the learner asks queries. Figure 3 shows the pool-based scenario
as the most common scenario of the AL. Lewis and Gale, (1994) define the pool-based
AL by assuming there is small set of labeled data L and a large pool of unlabeled data U.
The instances are selected from the pool by considering several informativeness measures.
Technically, the most informative instances will be labeled by the oracle.

The mechanism to select the most informative instances is called query strategy. The
most popular and simplest method of query strategy is uncertainty sampling (Lewis &

@ Springer
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Fig.2 Development (initial) labeled instance distribution

Gale, 1994) that an instance will be selected when it has the least certain how to label. The
uncertainty sampling can be implemented through these sampling variants, by denoting the
x}, is the most informative instance based on selection method (Settles, 2010):

e [east confident
This is the general uncertainty sampling strategy. Here, the instance will be selected
if they have the least confidence in its most likely label. Here, the 3 is the class label
having the highest posterior probability of the model 6.

x; - = argmax1 — Py(y]x)

learn a model / " "
aaulgnods machine learning
model

labeled
training set

unlabeled pool

u

select queries
oracle (e.g., human annotator)

Fig. 3 Pool-based active learning scenario (Settles, 2010)
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®  Margin sampling

Addressing the drawback of the least confident strategy that considering only the
most probable label, the margin sampling selects the instance that has the smallest
difference between the most and the second most probable labels. The margin sam-
pling is defined as follows (Scheffer et al., 2001):

xy, = argminPy (3, |x) — Py(3,|x)
e FEntropy

This is the most popular uncertainty sampling strategy that works by utilizing all
label probabilities (y;). Entropy works by using the following formula (Shannon, 1948)
to each instance and the instance having the highest value will be queried.

X}, = argmax— Z P, (inX)IOgPe(Vi |x)
x i

AL has been successfully used to reduce the manual labeling effort. This paper
implements the pool-based AL strategy using a batch mode as illustrated in Fig. 4.
Using BERT and SciBERT, AL is used in the filtering and fine-grained stages. The
filtering stage selects seed L from 10% of training instances, whereas the fine-grained
stage selects 20% for initial seed L training. The difference in seed proportion is caused
by two factors, i.e., the number of available datasets and the number of labels in each
stage. The rest of the unlabeled instances U will be used later in AL iterations. The AL
strategy is designed to run in 20 iterations. The pretrained word embeddings are trained
on seed L. In each iteration, the AL strategy selects a batch consisting of 50 unlabeled
instances from U and added them to L with their real labels. This means that there are
1000 new instances from U that are gradually added to L. For batch selection, we com-
pare three sampling approaches, i.e., least confident, max-margin, and entropy. Note
that this paper follows the AL strategy proposed by (Ein-Dor et al., 2020; Hu et al.,

Train Machine Learning Models

using BERT and SciBERT Deploy Trained Models over
Unlabeled Data
o 9° . Pool-based Active Learning Unlabelod O O O
Instances with Batch Mode Instances O
) w o O
A /
[ J- O OO
’ﬁ Instance Selection
Add L::EIsd llJata to random sampling, least
e Poo 1 - i
Human-simulateq  confident, max-margin, and
entropy
Annotator

Fig.4 Pool-based active learning used in this paper, modified from (Settles, 2010)
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Table 5 The 22 contingency

N Classifier 2: correct Classifier

table of the McNemar’s test 2: wrong
Classifier 1: correct a b
Classifier 1: wrong c d

Table 6 Confusion matrix for inter-annotator agreement on five coarse labels

Background Citing paper Cited paper Compare and Other
work work contrast
Background 94 3 0
Citing paper work 4 114 6 0 2
Cited paper work 5 93 0
Compare and contrast 0 34 0
Other 6 3 3 4 38

2019) that fine-tuning is performed from scratch in each iteration to prevent overfitting
data from previous rounds. The best parameters from a non-AL strategy will be used in
the AL experiments.

Statistically significant test

Since this paper implements two classification scenarios, i.e., non-AL and AL, we com-
puted the significance of achieved performances. The McNemar’s test (McNemar, 1947)
is a statistical test for checking the significance of the difference of paired nominal data.
In the case of machine learning, the McNemar’s test is used to compare two classifier
performances by creating a 2 X 2 contingency table.

According to Table 5, the test statistic is calculated as follows:

, _ (b-cof
T (b+o)

Under the null hypothesis where none of the compared classifiers perform better than
the other, the test statistic X? should be a small value. The high value of X2 indicate that
there is an option to reject the null hypothesis. In addition, we need to specify the com-
mon significant threshold by 0.05 and then compute the p-value. If the p-value is larger
than the threshold, then it is called Fail to Reject Null Hypothesis which means that
none of the compared classifiers perform better than the other. In contrast, if the p-value
is lower than the threshold, we can Reject Null Hypothesis because the two compared
classifiers are significantly different. The p-value is calculated as follows:

p—value =1 — cdf(Xz)

where cdf is cumulative distribution function of the chi-squared distribution with 1
degree of freedom.
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Table 8 The best testing results of each classification technique for the filtering stage. Bold values indicate
the best result in each performance metric. All metrics are measured by percentage (%)

Methods Accuracy Macro avg Macro avg recall Macro avg f1
precision
SVM 85.71 82.88 52.28 50.62
Naive Bayes 85.19 42.59 50.00 46.00
Logistic regression 85.19 70.48 69.67 70.06
LSTM + embedding layer 84.66 50.18 52.62 46.96
LSTM + word2vec 85.19 50.00 42.59 46.00
LSTM + fasttext 85.19 50.00 42.59 46.00
LSTM + glove 85.36 50.60 92.67 47.22
BERT 90.12 71.58 85.15 75.99
SciBERT 90.12 74.53 82.72 77.73

Experiment results

This section shows the result of the annotation experiments and text classification
experiments.

Annotation experiment results

The annotation experiment results contain raw agreement and Kappa values. The confu-
sion matrix in Tables 6 and 7 show raw agreements between annotators. The diagonal bold
values in the confusion matrices indicate the number of agreed instances between annota-
tors. The raw agreements reached 88.59% (373 agreed instances) and 72.55% (305 agreed
instances) for coarse and fine-grained labels, respectively. Citing paper work achieved the
highest percentage of 30.56% in the coarse level, followed by background with 25.20% and
then cited paper work with 24.93%. The two labels with the lowest percentage are other
label with 10.19% and compare and contrast label with 9.12%. The fine-grained agree-
ments show fairer results since each label has a relatively equal number of samples. The
highest percentage in the fine-grained level was achieved by suggest with 6.89%. Next,
citing_paper_corroboration and other had the two lowest percentages of 1.64% and 0.33%,
respectively. The Kappa statistic on coarse labels reached 0.85 and 0.71 for the fine-grained
label. The results are considered as nearly perfect and substantial agreement.

Considering the number of labels in our scheme, the obtained Kappa values are com-
petitive compared with previous works, e.g., (Casey et al., 2019) with 0.77, (Teufel et al.,
2006) with 0.72, (Dong & Schifer, 2011) with 0.757, and (Zhao et al., 2019) with 0.47.

We highlight several sources of disagreement between annotators. The highest number
of disagreements in the coarse labels occurred in 6 instances where annotator I (x-axis)
predicted as background label and annotator II (x-axis) predicted as other label. The anno-
tators have an issue to identify the motivation behind the background label through its fine-
grained labels and understanding the motivation behind other labels. Focusing on the total
of miss-categorized instances by each annotator, there were 15 instances labeled by anno-
tator I and 16 instances labeled by annotator II. On the fine-grained labels, the highest
disagreement happened on 8 instances where annotator I labeled as citing_paper_use and
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Table9 The hyperparameter settings were used in the filtering stage

Techniques Parameters
SVM ngram_range: (1, 2); imbalance; TF/IDF; kernel =linear
Naive Bayes ngram_range: (1, 2); imbalance; TF/IDF
Logistic regression C: 1; penalty =11; ngram_range: (1, 1); imbalance; solver =liblinear
LSTM +embedding layer optimizer = adam; loss =binary_crossentropy; epoch 5; batch 32; imbalance
LSTM + word2vec optimizer =adam; loss =binary_crossentropy; epoch 5; batch 32; imbalance
LSTM + glove optimizer =adam; loss =binary_crossentropy; epoch 7; batch 32; imbalance
LSTM + fasttext optimizer =adam; loss =binary_crossentropy; epoch 5; batch 32; imbalance
BERT 2 e73; batch 64; imbalance
SciBERT 3 ¢73; batch 32; balance
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Fig.5 The performance metrics of individual class in the filfering stage. The x-axis depicts the classes and
their performance metrics, and the y-axis depicts the performance values

annotator II labeled as citing_paper_corroboration. In this case, both labels are part of the
coarse label citing paper work and our analysis shows that the disagreement on both labels
occurred in ambiguous instances. To handle this, the annotation guidelines, including the
labeling example, need to be improved to solve the ambiguous instances.

Filtering stage result

In Table 8, we show performance metrics of classification experiments without AL.
Focusing on accuracy, the experiments demonstrated that contextual word embeddings,
i.e., BERT and SciBERT, shared the highest performances of 90.12%. However, the
SciBERT achieved higher macro avg fl by 77.73% compared with BERT which was
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Table 10 The best testing results of each classification technique for fine-grained labels

Methods Accuracy Macro avg Macro avg recall Macro avg f1
precision
SVM 67.29 75.57 66.79 68.49
Naive Bayes 57.55 74.06 50.94 52.87
Logistic regression 69.98 71.87 70.23 70.53
LSTM + embedding Layer 13.87 10.22 8.09 6.02
LSTM + word2vec 10.97 7.73 2.29 3.45
LSTM + fasttext 14.49 10.02 4.89 5.75
LSTM + glove 14.49 10.23 4.99 6.00
BERT 80.95 80.98 82.40 81.06
SciBERT 83.64 83.46 85.35 84.07

Bold values show the best result in each performance metric. All metrics are measured by percentage (%).

SVM with Linear Kernel Multinomial Naive Bayes Logistic Regression

b

s

wprecision s recall ufit-score uprecison u recall ufi-score i B o Bt acois
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Fig. 6 Performance metrics of each class in the fine-grained stage. The x-axis depicts the classes and their
performance metrics, and the y-axis depicts the performance values

only 75.99%. Notably, classical classifiers achieved almost similar accuracies of 85%.
But if we look at the macro avg f1, the Logistic Regression reached the highest value
by 70.06% among three baseliners. Following this, three non-contextual word embed-
dings, i.e., word2vec, fasttext, glove, depicted nearly equal accuracies and macro avg
precision. But, for macro avg recall and macro avg f1, the glove achieved higher values
by 85.15% and 75.99%. Among all methods, the embedding layer showed the poorest
performance in all metrics. Table 9 depicts the parameters used in the filtering stage.
Looking at the performance of each label in Fig. 5, all performance metrics in the
noother label are lower than other label. There are extreme cases where the noother
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Table 11 Hyperparameter setting for the best results for fine-grained labels

Techniques Parameters

SVM ngram_range: (1, 2); TF/IDF; imbalance; kernel =linear;

Naive Bayes ngram_range: (1, 2); bag of word; imbalance;

Logistic regression C: 1; penalty: 11; ngram_range: (1, 2); TF/IDF; imbalance; solver =’liblinear’

LSTM +embedding layer  epoch 3; batch 32; imbalance; optimizer = adam; loss = categorical_crossen-
tropy;

LSTM + word2vec epoch 7; batch 32; balance; optimizer = adam; loss = categorical_crossentropy;

LSTM + glove epoch 7; batch 32; imbalance; optimizer =adam; loss = categorical_crossen-
tropy;

LSTM + fasttext epoch 7; batch 32; imbalance; optimizer = adam; loss = categorical_crossen-
tropy;

BERT 3 ¢73; batch 32; imbalance

SciBERT 3 ¢73; batch 32; balance

label has zero values as in Naive Bayes, word2vec, and fasttext. Two methods, BERT
and SciBERT, relatively have balanced proportions compared with other methods.

Fine-grained stage result

As predicted, the performance in this stage will be lower than that in the filtering stage.
Table 10 shows that there are performance gaps between contextual word embedding and
other approaches. The SciBERT showed its superiority compared with other approaches
in all metrics. Here, the three non-contextual word embeddings and embedding layers pro-
duced the lowest performances below 10% of accuracies and below 10% of macro avg f1.
Looking at the baseliners, the best results were achieved by Logistic Regression by around
70% of all metrics. If we look at the individual performance, four approaches i.e., embed-
ding layer, word2vec, fasttext, and glove show poor results (Fig. 6). Here, the three baseline
approaches show better performances but still underperform the results from BERT and
SciBERT.

All parameter settings in this stage are shown in Table 11. The full performance com-
parison of BERT and SciBERT in the filtering and fine-grained stages is shown in Fig. 7.

Active learning results

The experiments were performed using the best parameters from the non-AL results. The
filtering experiment used several parameters, i.e., learning rate of 2 e, batch size of 64,
and imbalanced distribution in the BERT-based AL. For the SciBERT experiments, the
best parameters were learning rate of 3 ¢, batch size of 32, and balance distribution.
BERT-based fine-grained experiment implemented the AL strategies based on learning
rate of 3 e™>, batch size of 32, and imbalanced distribution. For SciBERT, the parameters
used were learning rate of 3 ¢, batch size of 32, and balanced distribution.
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Fig.7 BERT and SciBERT performance comparison in filtering and fine-grained stages depend on learning
rates and batches

Table 12 The best result in the filtering stage for AL strategies, and the bold value indicates the highest
accuracy among others

Classifica- Max_margin Entropy Least_confident Random_sampling

tion strate-

gies Queries Accuracy  Queries Accuracy  Queries Accuracy  Queries Accuracy
(%) (%) (%) (%)

BERT 450 88.71 500 88.88 1000 90.29 900 88.35

SciBERT 900 88.00 850 89.59 800 88.88 650 89.41

Filtering stage results

AL-based performance in the filtering stage is depicted in Table 12. BERT combined
with least confident achieved the highest accuracy with 90.29% in the filtering stage. To
obtain this result, the AL strategy requires 1,000 queried instances for training. While
entropy used 500 queried instances to obtain 88.88% accuracy, max-margin required
450 queried instances to reach 88.71% accuracy. At this stage, the best accuracy reached
by SciBERT was 89.59% when integrated with entropy on 850 queried instances. Inte-
grating SciBERT with max-margin and least confident demonstrated the same accuracy
of 88.88%, although they need different queried instances, 900 for max-margin and
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Fig.8 Result comparison of AL strategies on the filtering stage using BERT and SciBERT with four sam-
pling approaches. The data splitting scenario is 1039 (testing), 4534 (simulating L and U), and 453 (seed)

Table 13 Detailed performance metrics of the best accuracy in the AL strategy. All metrics are measured
by percentage (%)

Methods Accuracy Macro avg precision Macro avg recall Macro avg f1

AL BERT 90.29 71.76 80.19 78.89

800 for least confident. The random sampling reached the lowest accuracy of 88.35%
when the AL was combined with BERT but achieved the second-highest performance
by 89.41% in the SciBERT setting. In summary, the AL strategy outperformed the best
result from the classification strategy without AL on the entire training instances, espe-
cially when integrating BERT with least confident and using smaller training instances.
The detailed AL results for the filtering stage are shown in Fig. 8.

As the AL-based strategy in the filtering stage achieved slightly higher accuracy
(90.29%) compared to the non-AL strategy (90.12%), we conducted a statistically
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Table 14 The best result of fine-grained AL strategies, and the bold value indicates the highest accuracy
among others

Classifica-  Max_margin Entropy Least_confident Random_sampling
tion strate- - - - -
gies Queries Accuracy Queries Accuracy Queries Accuracy Queries Accuracy
(%) (%) (%) (%)
BERT 850 79.08 1,000 80.95 700 79.71 650 79.91
SciBERT 850 80.33 850 81.15 600 81.15 700 80.12
SciBERT: Entropy BERT: Entropy
0.850 0.850
0825 0825
0.800 0.800
g g
E 0775 E 0775
8 0.750 8 0750
0725 0725
0.700 0700
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Fig.9 Result comparison of AL strategies for fine-grained classification using BERT and SciBERT with
four sampling approaches. The data splitting scenario is 1039 (testing), 3858 (simulating L and U), and 771
(seed)

significant test based on the McNemar approach. Unfortunately, the accuracy achieved
using the AL strategy failed to show its significance by producing a p-value of 0.73.
Instead of relying only on accuracy, we measured alternative metrics as shown in
Table 13 as performed in the non-AL setting. Even failed to reject the null hypoth-
esis, we are still able to justify that the AL strategy achieved a better macro avg f1 of
78.89% compared to the best results in the filtering stage by 77.73% using SciBERT.
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Table 15 Detailed performance metrics of the best accuracy in the AL strategy. All metrics are measured
by percentage (%)

Methods Accuracy Macro avg precision Macro avg recall Macro avg f1

AL SciBERT 81.15 81.16 82.83 81.52

Fine-grained results

The AL-based performance in fine-grained classification is depicted in Table 14. The high-
est accuracy of 81.15% was achieved by two AL settings, namely combining SciBERT
with entropy-based sampling using 850 queries and combining SciBERT with least_con-
fident sampling using 600 instances. Using another sampling technique, i.e., max-margin,
the AL strategies reached maximum accuracy of 80.33% on 850 queried instances. At this
stage, the maximum accuracy obtained by combining BERT and AL was 80.95% on 1000
queried instances. Other sampling methods only reached 79.08%, 79.71%, 79.91% on max-
margin, least confident, and random sampling, respectively. The detailed AL results for
fine-grained classification are shown in Fig. 9.

AL-based strategy in the fine-grained stage achieved slightly lower accuracy (81.15%)
compared to the non-AL strategy (83.64%). As in the filtering stage, the significant test
conducted in the fine-grained stage compared these two accuracies. The test demonstrated
that the accuracy was significantly different with a p-value of 0.011. Considering more
detailed performances, the AL strategy obtained lower results in all metrics compared to
the non-AL strategy, as shown in Table 15.

Here, the AL strategies required fewer instances (less than half of the total dataset) for
the training process to achieve competitive accuracy in the fine-grained stage and slightly
higher accuracy in the filtering stage. This proves two aspects. Firstly, not all instances in
the dataset do not share the same contribution toward performance, and secondly, keeping
the role of humans in the loop of machine learning using fewer instances will make better
judgments than entirely processed datasets by machine learning. Focusing on query strat-
egy, the least confident delivered the best performances compared with other methods.

Another point worth mentioning is that the random sampling strategy reached competi-
tive accuracies in the filtering stage when combined with SciBERT and in the fine-grained
stage when combined with BERT. In this setting, the random sampling slightly outper-
formed least confident as the best method in overall scenarios. However, even though it has
smallest accuracies compared with all other strategies in another setting, the performances
of unbiased instance selection performed by random sampling can be used to generalize
the performances when using the whole dataset.

Finally, we use the best models to classify unlabeled citing sentences. Table 16 shows
the label distribution in the dataset. cited_paper_propose has the highest distribution both
in the cited paper work category and the entire dataset by 243,031 instances, whereas cit-
ing_paper_future has the lowest instance distribution by 5439. The most interesting point
is that there is consistency in the highest distribution in each coarse category in the devel-
opment dataset with manual labeling (See Fig. 2) and the final dataset, e.g., judgment for
background class, citing_paper_use for the citing paper work class, cited_paper_propose
for the cited paper work class, and compare for the compare and contrast class.
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Table 16 The distribution of our new dataset of citation function. The bold values indicate the fine-grained
labels which have the highest number of instances in each coarse category

Filtering stage Instance distribution Coarse label Fine-grained labels Instance distribution
No-other 1,328,985 Background Definition 55,508
Suggest 51,987
Judgment 215,428
Technical 85,374
Trend 66,594
Citing paper work Citing_paper_cor- 113,488
roboration
Citing_paper_based_ 55,878
on

Citing_paper_use 115,215
Citing_paper_extend 28,779

Citing_paper_domi- 24,823
nant

Citing_paper_future 5,439

Cited paper work Cited_paper_pro- 243,031
pose

Cited_paper_success 34,505

Cited_paper_weak- 15,054
ness

Cited_paper_result 154,394

Cited_paper_domi- 3,215
nant
Compare and contrast Compare 39,364
Contrast 20,909
Other 511,830 Other Other 511,830
Total instances 1,840,815

Conclusion and future work

This paper developed a dataset of citation functions consisting of 1,840,815 labeled
instances. The dataset was built using a semiautomatic approach. Specifically, we trained
machine learning models on manually labeled data and use these models to label unlabeled
instances. Our scheme was developed through top-down analysis, bottom-up analysis, and
annotation experiments. Besides our competitive Kappa results, several findings were iden-
tified during the experiments. First, assigning coarse labels first helped annotators select
appropriate fine-grained labels. Second, annotation guidance needs to be upgraded to
handle ambiguous instances. Third, the proposed scheme is compatible with well-known
papers’ argumentative structures.

The classification experiments have shown that BERT and SciBERT achieved higher
accuracies than other methods. In addition, these two methods achieved promising results
using AL on less than half of the training data. SciBERT consistently outperformed BERT
in the fine-grained stage in both AL and non-AL settings. However, BERT outperformed
SciBERT in the filtering stage using AL. Note that there is a consistent label distribution
between the initial and final datasets.
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The limitation of this paper is the labels of citation functions are determined using only
citing sentences themselves, without considering the surrounding sentences. These sen-
tences will be useful during the manual labeling stage, especially when deciding on the
labels of ambiguous samples. In future work, we plan to extract sentences before and after
the citing sentences using the window sizes of two. Not only useful for judging labels of
difficult samples, but this information is also important as classification features. Another
potential research direction is to investigate the possibilities of applying our scheme of
citation functions to other research areas through domain adaptation. In this case, domain
adaptation becomes a potential method since creating entirely new training data on target
domains is expensive, time-consuming, and needs massive human efforts.
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