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Abstract
Although the topic of networks has received significant attention from the scientific lit-
erature, it remains to be seen whether it is possible to quantify the degree to which an 
organisation benefits from being part of a network. Starting from the concept of network 
value and that of Metcalfe’s Law, this paper introduces and defines the collective network 
effect (CNE). CNE is based on the concept that a network member is not only affected 
by its friends but also by the friends of its friends. By taking into account network con-
nection patterns, CNE provides a proxy for quantifying the benefit of network member-
ship. We computed the CNE for the nodes of a large network built using the whole set of 
common projects among the participants of the 7th Framework Programme for Research 
and Technological Development of the European Commission. The obtained results show 
that nodes with a higher CNE have access to substantially more conspicuous fundings than 
nodes with a lower CNE. In general, such a measure could supplement other centrality 
measures and be useful for organisations and companies aiming to evaluate both their cur-
rent situation and the potential partners they should link with in order to extract the highest 
benefits from network membership.
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Introduction

Being part of a network is generally considered beneficial for companies and organisa-
tions; a notation that is reflected by several real-world examples as well as by the increas-
ingly widespread interest of the scientific community in investigating the effects of network 
membership. The importance of network membership has been discussed in terms of its 
beneficial role for network organisation and management (Choi et al., 2010; Ebers, 2015; 
Etemad et  al., 2001), in terms of its capability in fostering firms’ ability to sustain and 
develop their competitive advantages (Ford et al., 2011) and in terms of its importance for 
accessing the fundamental resources needed to survive the market, as in the case of small 
and medium-sized enterprises (SME) (Cova et al., 1994; Henrikki, 1998; Partanen et al., 
2008).

The benefits of network membership have been widely investigated also from a struc-
tural point of view. For instance, the effect of the network structure on certain functions 
was studied in (Choi et al., 2010; Cinelli et al., 2019) and (Cowan & Jonard, 2004) in order 
to shed lights on processes such as the development and the diffusion of innovation. The 
intensity of collaborations among members was also studied from a structural point of view 
considering centrality measures, focusing on the effects of bridging members (Bergé et al., 
2017), in studying collaborative regional networks  (Calignano et al., 2019; Calignano & 
Quarta, 2015; Hazır et  al., 2018) and collaboration paths through layered networks  (Liu 
et al., 2013). Nevertheless, there is still a lack of a quantitative perspective capable of pro-
viding the tools to measure the benefits of network membership.

The most remarkable effort in such a direction was that of computing the value of the 
network under the assumption that the higher the value of the whole network the higher 
the benefit for a node to be part of it. The rule used for quantifying the network value was 
called the Metcalfe’s law (Gilder, 1993).1 Such a law derives from the world of telecom-
munication networks, e.g., the ethernet, where all the nodes are equally important in terms 
of their potentiality to be connected to others (Odlyzco & Tilly, 2005). Relying on such an 
assumption, the Metcalfe’s law estimates the network value proportional to the total num-
ber of possible connections, that is asymptotically proportional to the square of the network 
size.

In response to certain criticisms regarding the simplicity of Metcalfe’s law, other laws 
such as Sarnoff’s law (linear growth of network value) and Reed’s law (Reed, 1999) (expo-
nential growth of network value), and Odlyzko’s law (Briscoe et al., 2006), have been pro-
posed. Notwithstanding its simplicity and certain limitations (Swann, 2002; Briscoe et al., 
2006), Metcalfe’s law remains a reasonable rule of thumb  (Madureira et  al., 2013; Van 
Hove, 2016), having been used in many practical applications such as figuring out Face-
book’s network value (Metcalfe, 2013; Zhang et al., 2015) and, more recently, estimating 
the values of cryptocurrency networks (Alabi, 2017) such as Bitcoin, Ethereum and Dash.

Essentially, the main limitations of the Metcalfe’s law are two: the potential value of a 
network is a biased measure of its actual value since real networks are not fully connected; 
the assumption that all the nodes contribute to the total value of the network equally is not 
realistic. These two limitations are quite evident, for instance, in the application of Met-
calfe’s law to Facebook in which the users are neither fully interconnected nor identical.

1 The name “Metcalfe’s law” derives from the work of (Gilder, 1993) that mentioned the intuition that Rob-
ert Metcalfe had about 10 years before.
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A partial solution to the aforementioned biases consists in considering the contri-
bution of each node as proportional to its number of connections (Barabási, 2016). 
However, it still doesn’t cover an important issue that is considering the quality of con-
nections. For example, being connected only to hubs—i.e., nodes with many connec-
tions—strongly differs to being connected only to spokes—i.e., nodes with few con-
nections. The concept of quality of a node is not only attributable to its number of 
connections, but also to some other aspects such as the experience, the performance, the 
ability in acquiring more resources and on the reputation, as shown in (Bol et al., 2018; 
Egghe et al., 2013; Liao, 2021).

In order to be able to provide a proxy measure for the benefits of the network mem-
berships that doesn’t suffer from the same issues of network value, we propose a new 
measure called the collective network effect, that extends the discussion introduced 
in (Arpetti & Iovanella, 2020).

Starting from the concept of network value, as described by the Metcalfe’s law and 
by its recent improvements, we extend it by considering the heterogeneity of the net-
work structure in order to provide a measure that focuses on the node-level perspective. 
Considering the set of the node’s connections in combination with the connections of its 
neighbours results in a measure that can be considered a proxy of the network benefit 
rather than the network value. Interestingly, the integral of the collective network effect 
(CNE) goes far beyond the value estimated by the actual number of connections; an 
aspect in line with the criticism against Metcalfe’s assumption of connection homogene-
ity (Odlyzco & Tilly, 2005) and somewhat closer to the view of a network as a complex 
system where the total is more than the sum of its parts.

From a technical perspective, our measure, despite being correlated with other cen-
trality measures, could be easily integrated in a wider framework aimed at evaluating 
the prominence of actors in social networks.

As a proof of concept, we apply the proposed measure to quantify the benefit for 
each organisation in joining the 7th Framework Programme for Research and Techno-
logical Development (FP7) in terms of network membership. FP7—one of the main 
research policy instruments of the European Commission—came into effect in 2007 and 
remained operative until 2013, bringing together all the initiatives designed to consoli-
date the European Research Area and to promote strategic actions for achieving tar-
gets in scientific excellence, growth, competitiveness and employment. FP European 
programmes were largely investigated under the network point of view (Balland et al., 
2019; Heller-Schuh et  al., 2011). Specifically, FP7 dataset was largely investigated 
under different perspectives; for instance, the degree of participation in the network was 
analysed in  (Calignano, 2021), the evolution of the EU research network across coun-
tries was investigated in (Balland et al., 2019; de Arroyabe et al., 2021).

Using FP7 dataset, we build up a network in which nodes are organisations and two 
organisations are linked if they co-participated in at least one funded project. We find 
that the CNE is a good proxy for the quality of the nodes neighbourhood. Indeed, by 
fixing the number of connections, nodes with CNE higher than expected have access to 
more conspicuous fundings. Such an effect is disproportional to the number of connec-
tions the node has; in other words, weakly connected nodes are more likely to benefit 
from having an high network effect than hubs. In general, the collective network effect 
could be acknowledged as an additional measure useful for institutions and companies 
aiming to evaluate both their current situation and the potential partners to be linked 
with in order to extract the highest benefits from network membership.
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The paper is organised as follows: “Methodological prerequisites” section contains 
some methodological prerequisites: “Collective network effect” section presents the defini-
tion of CNE; “Empirical application” section includes the analysis on the FP7 network; and 
“Conclusions” section gives some final remarks and suggests directions for future research.

Methodological prerequisites

It is a settled practice to consider a graph G = (V ,E) as the mathematical abstraction for a 
network; in such representation is intended that V is the set of n nodes and E is the set of m 
links representing the relationships among the nodes. For example, if we consider an inter-
organisational network, the set V contains the organisations in the system, while the set E 
contains all collaborations among such organisations.

A node in V is generally indicated by its index i, while the set of links in E is given by 
the adjacency matrix A = (aij)i,j=1,…,n, in which the generic element aij is equal to 1 if the 
link between i and j exists or 0, otherwise.

In this paper, we take into consideration undirected and unweighted networks, hence 
aij = aji ∈ {0, 1}, for each i, j = 1,… , n . In network analysis, a fundamental quantity is 
given by the number of relationships owned by a node, i.e. by the number of nodes that are 
present in the neighbourhood of i—in symbols, N(i). For a generic node i, such a quantity 
is measured by the degree centrality indicated as ki.

As the network science approach includes Social Network Analysis  (Scott & Car-
rington, 2011), this paper considers some of the main centrality measures, which represent 
the relative importance of a node within a network, with the assertion that the higher the 
centrality index of a node, the higher its perceived centrality in the graph. Moreover, cen-
trality measures assess the involvement of nodes in contributing to the cohesiveness of the 
network (Borgatti & Everett, 2006; White & Harary, 2001).

The concept of centrality has an inherent ambiguity; there is no point in including all 
measures in one method (Rowley, 1997). Deciding which option to choose requires con-
sideration of the specificity of the measures and the requirements of different applications. 
There are several quantities describing the centrality that depend on the type of statistics on 
which they are based; the most commonly used are reported in Table 1.

Beside such measures, another useful one that represents the overall importance of the 
neighbourhood of node i is the average degree of N(i) that is computed as (Pastor-Satorras 
et al., 2001):

Such a quantity can be also generalised in order to quantify the overall prominence of all 
the nodes with degree value k using the following equation:

The trend of knn(k) characterises two distinctive structural organisations of networks in 
which different degree sets show diverse features in the local connectivity structure. In 
particular, when knn(k) displays an increasing trend, then the network exhibits assortative 
mixing, that is high-degree nodes tend to link with other high-degree nodes. Conversely, a 

(1)knn,i =
1

ki

∑

j

kjaij

(2)knn(k) =

∑
i∶ki=k

knn,i
∑

i∶ki=k
1
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decreasing trend of knn(k) indicates disassortative mixing, that is high-degree nodes tend 
to connect to low-degree nodes. Empirical networks display degree-degree correlation, for 
instance social networks display positive degree correlation (Newman, 2002), while tech-
nological networks display somewhat negative correlation (Newman, 2003).

When a network is neither disassortative nor assortative, there is not degree-degree cor-
relation and it holds that (Catanzaro et al., 2005):

⟨k⟩ being the average degree value and ⟨k2⟩ the average of the squared degree values.
Differently from the empirical case of Eq. (1), knn is independent from the node’s degree 

but dependent exclusively on ⟨k⟩ and ⟨k2⟩ that are global network’s characteristics. In addi-
tion to being straightforwardly computable, such measures give a global view of the net-
work, making knn a simple and powerful overall measure.

Note that knn is greater than the average degree of a node. In fact, 
⟨k2⟩∕⟨k⟩ − ⟨k⟩ = (⟨k2⟩ − ⟨k⟩2)∕⟨k⟩ = 𝜎2∕⟨k⟩ > 0, since: (i) the variance is positive unless 
the network displays the same degree for all its nodes; and (ii) ⟨k⟩ is greater than zero 
unless all the nodes have zero degree.

Therefore, ⟨k2⟩∕⟨k⟩ > ⟨k⟩, revealing a scenario named the friendship paradox, accord-
ing to which ‘your friends have more friends than you do’ (Feld, 1991). This bias is caused 
by an over-representation of high-degree versus low-degree nodes.

For the sake of completeness, in Table  2 we resume the notations used thus far and 
hereafter.

Collective network effect

In this section, we introduce the CNE starting from the concept of ‘network value’ defined 
by Metcalfe’s law. It states that the value ⊑ of a network G is proportional to the square of 
the number of nodes, i.e. ⊑ ∝ n2 (Gilder, 1993). This definition originates from the context 
of the ethernet networks, and considers that nodes are potentially connected by mutual 
relationships; that is, the n nodes are linked to other n − 1 nodes; in such a case, each node 

(3)knn =
⟨k2⟩
⟨k⟩

Table 2  Table of notation Symbol Meaning

k
i

Degree of node i
N(i) Neighbourhood of node i
k
nn,i

Average degree N(i)
k
nn
(k) Average degree of nodes with degree k

k
nn

Average degree of the neighbourhood for non-
correlated networks

NS
i

Network share of the node i
CNE

i
Collective network effect of node i

CNE
i
(k) Collective network effect of node i with degree k

NE
G

Network effect of network G
⊑ Metcalfe’s network value
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has degree 
(
n

2

)
, i.e., of the same order of n2 . Therefore, the potential value of the network 

maps into the case of a complete network, i.e. one with density d =
2m

n(n−1)
= 1.

In real applications, networks are rarely densely connected, meaning that estimating the 
current value (as much as the potential value) of a network as n(n−1)

2
 appears unrealistic. 

In our setting, it is reasonable to consider that not all nodes are mutually linked to one 
another. Therefore, we consider the whole set of connections that are present in a certain 
moment rather than all the possible relationships.

By means of the handshaking lemma, a well-known result in graph theory (e.g. see Bol-
lobás, 2013), p. 4), we obtain that the sum of all networks’ degrees is equal to twice the 
numbers of links, i.e. 

∑
i∈V ki = 2m. Therefore, it is possible to redefine Metcalfe Law’s 

in order to estimate the current value of a network, such as ⊑ ∝ 2m. Note that the value 
⊑ ∝ n2 remains still valid for a complete network.

Additionally, the global network value can be dissected in its nodal contributions, mean-
ing the Network Share NS of the generic node i is:

Even if the network share seems well defined, it fails to capture a fundamental aspect 
of being part of a network; that is, the quality and the influence of the neighbourhood. We 
can reasonably assume that the benefits for a node of being part of a network are not only 
given by its network share but also by the share of its neighbours. For example, as shown 
in Fig.  1, assuming that (a) and (b) are different portions of a network having m links, 
than node i displays the same NS in both cases, while the NS of j, k and l differs in the two 
cases. In case (b) nodes j and l have higher network share than in case (a), thus node i is 

(4)NSi =
ki

2m

(a) (b)

Fig. 1  Schematic representation of the neighbourhood of node i when its neighbours display different 
shares of the network



3966 Scientometrics (2022) 127:3959–3976

1 3

characterised as having a higher value of the average degree of neighbourhood knn,i. There-
fore, we can easily state that node i may benefit more from being part of the network in 
case (b) than in case (a).

In such a vein, it is possible to introduce the collective effect of neighbours (referred to 
as the collective network effect CNEi ) of a node i, as the sum of its network share NSi with 
the network share NSj of all the nodes j in its neighbourhood N(i):

Equation (5) can be rewritten using the identity 
∑

j∈N(i) kj = ki ⋅ knn,i, that is ki multiplied by 
the average degree of a neighbour. Thus:

Similarly to the case of Eq. (1), we can generalise Eq. (6) considering all the nodes i with 
fixed k using Eq. (2), obtaining:

In this case, the CNE is a function of a given degree. Note that for a given degree k, 
CNEi(k) is the value averaged on all CNEi of nodes i having degree k.

Also in this case, we exploit the properties of the configuration model, holding for 
n → ∞, by substituting in Eq. (6) the result of Eq. (3) obtaining:

Overall, by looking at Eqs. (6) and (8), for a node i we can state that its CNE is given by 
the value of its network share NSi multiplied by a value that captures the level of connect-
edness given either as the average of the neighbours’ degrees or as a measure of the whole 
network. In that latter case, it represents a specific measure concerning the entire network 
G. Indeed, we call such a measure Network Effect NEG of the network G:

Since ⟨k2⟩∕⟨k⟩ > 0 and with the exclusion of the networks with all nodes with the same 
degree, we have that NEG > 1. NEG is a baseline value that expresses the benefit of being 
part of a network and it can exceed or be disregarded by empirical values of CNEi depend-
ing on the heterogeneity of the neighbours of i.

In a complete network—where each node is linked to the others—the num-
ber of connections is m = n(n − 1)∕2, and for each node we obtain that NSi = 1∕n, 
while CNEi = 1. Indeed, in this case, each node has degree ki = n − 1, then 
NSi = ki∕2m = (n − 1)∕n(n − 1) = 1∕n, while ⟨k2⟩ = (n − 1)2 and ⟨k⟩ = n − 1 thus 
CNEi = (1∕n)(1 + (n − 1)2∕(n − 1)) = 1, ∀i.

Such a result means that when all the nodes are mutually connected, then the CNE on 
each node reaches the maximum and is equal across all nodes. In other terms, each node is 
affected by any other in the network.

(5)CNEi = NSi +
∑

j∈N(i)

NSj =
ki

2m
+

∑

j∈N(i)

NSj =
ki

2m
+

1

2m

∑

j∈N(i)

kj

(6)CNEi =
ki

2m
+

ki

2m
knn =

ki

2m
(1 + knn,i)

(7)CNEi(k) =
ki

2m
+

ki

2m
knn(ki) =

ki

2m

(
1 + knn(ki)

)

(8)CNEi =
ki

2m

�
1 +

⟨k2⟩
⟨k⟩

�

(9)NEG =

�
1 +

⟨k2⟩
⟨k⟩

�
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Empirical application

We test the effectiveness of the CNE by using data provided by the European Commis-
sion regarding the 7th Framework Programme for Research and Technological Develop-
ment (FP7). FP7 had the active strategic objective of fostering scientific and technological 
development across Europe and it was active from 2007 to 2013 with a total budget of over 
€50 billion.2

FP7 data comes in the form of table with columns listing project acronyms and respec-
tive participants and its network properties have been matter of recent investigations (Hel-
ler-Schuh et al., 2011; de Arroyabe et al., 2021). Such columns are employed in order to 
realize a bipartite network in which one partition is made up of financed projects while 
the other is made up of participants to such projects (see an example in Fig.  2). A link 
between the partitions exists if an organisation participated in a project. The bipartite net-
work is then projected onto one of its partitions (by means of an operation called one-mode 
projection  (Newman, 2018)) thus obtaining another network in which two organisations 
are connected if they participated in the same project (connections are considered with-
out weights). The projected network has n = 293,85 nodes and m = 685,319 links and we 
consider as node metadata (i.e. non-structural information about the node) the contribu-
tion of the European Commission to each organisation, measured in euros. The FP7 net-
work displays heterogeneous degree distribution—having a shape close to a lognormal 
distribution—indicating the presence of hubs as shown in Fig. 3. Hub nodes are actually 
very active institutions that participated in a high number of projects throughout the pro-
gramme, as reported in Table 3.

Fig. 2  An example of bipartite graph with four projects (P
1
,P

2
,P

3
,P

4
) and the corresponding participating 

organisations (O
1
,O

2
,… ,O

7
) (left panel); the resulting one-mode projection (right panel)

2 European Commission Research & Innovation, FP7 in brief: https:// wayba ck. archi ve- it. org/ 12090/ 20191 
12721 3419/ https:/ ec. europa. eu/ resea rch/ fp7/ index_ en. cfm; accessed: October 27, 2020.

https://wayback.archive-it.org/12090/20191127213419/https:/ec.europa.eu/research/fp7/index_en.cfm
https://wayback.archive-it.org/12090/20191127213419/https:/ec.europa.eu/research/fp7/index_en.cfm


3968 Scientometrics (2022) 127:3959–3976

1 3

In Fig. 4 we report the distribution of CNEi for the FP7 network, noting how the CNEi 
positively correlates with the node degree. It follows that most of the nodes with low 
degree values display a low CNE. In spite of this aspect, it is indeed admissible that a 
node i with degree k can assume values of CNEi greater than any node of degree at least 
k + 1 . In other words, having a lower number of connections doesn’t imply having a lower 
value of the CNE. Additionally, we note a relatively strong scattering of the values of CNEi 
around their average value given by CNEi(k), as shown in the inset of Fig. 4, meaning that 
some nodes display a CNEi higher than expected while others display a CNEi lower than 
expected. This means that not all nodes are alike in terms of the quality of their neighbour-
hoods; indeed, some outperform the average while others do not.

Finally, as reported in Table 3, the rankings of nodes with respect to degree and CNE 
do not match perfectly. The two variables are not perfectly correlated: the CNE is capable 
of capturing patterns of connections that goes beyond the first neighbours. Therefore, the 
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Fig. 3  Degree distribution for FP7 Cordis network. Thresholds �
1
,�

2
 and �

3
 are three mean degree values 

that are used as thresholds as indicated in Table 4. In more detail, the value �
1
 is the average degree of all 

the nodes in the network, the value �
2
 is the average degree of all the nodes in the network that have degree 

higher than �
1
 and �

3
 is the average degree of all the nodes in the network that have degree higher than �

2

Table 3  The first ten institutions in the network of FP7 ranked by their degree

Institutions Country Degree CNE
i

Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. DE 7261 0.624
Centre National de la Recherche Scientifique—Cnrs FR 4557 0.564
Consiglio Nazionale delle Ricerche IT 3956 0.533
Commissariat á L’Énergie Atomique et aux Énergies Alternatives FR 3842 0.533
Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek—

TNO
NL 3469 0.458

Agencia Estatal Consejo Superior de investigaciones Científicas ES 3286 0.491
Danmarks Tekniske Universitet DK 2870 0.454
Fundacion Tecnalia Research & Innovation ES 2852 0.399
Katholieke Universiteit Leuven BE 2838 0.445
Teknologian Tutkimuskeskus VTT FI 2762 0.412
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value of the collective network effect is not strictly dependent on the number of connec-
tions retained by the node.

Association between CNE and funding

The evaluation of business performance is generally a complex task (Chandler & Hanks, 
1993). However, the scientific literature concerned with the study of funded projects, 
generally agrees in considering funding a key indicator in association with other relevant 
aspects such as: collaboration patterns (Defazio et al., 2009; Ma et al., 2015), innovation 
and technology transfer  (de Arroyabe et  al., 2021), growth  (Piekkola, 2007; Staniewski 
et al., 2016) and other elements related to performance (Cooke & Wills, 1999).

In order to test the capacity of the proposed measure to quantify the benefits of being 
embedded in a high-quality collaboration pattern, we correlate the CNE with the contri-
bution (in Euros) that nodes received from the European Commission for participating in 
projects, by answering to the following question:

• Do nodes with CNEi higher than expected receive, on average, a higher amount of 
funds than nodes with CNEi lower than expected?

In other words, we aim at validating the CNEi by testing if it can be considered a good proxy 
for discerning nodes that benefited significantly from being part of their neighbourhood.

In order to answer the aforementioned question in a favorable manner still distinguish-
ing between different classes of nodes we cluster them by their degree values and then we 
compute the aforementioned probability within each cluster. The clustering is performed 
by means of a non-parametric method developed in the field of bibliometrics to identify 
disjoint sets of academics by partitioning the distribution of their number of publications. 
The method, introduced in Schubert et al. (1987) and referred to as Characteristics Scores 
and Scales (CSS), can be consistently applied to partition distributions that are not neces-
sarily related to the number of publications (Cinelli, 2020).
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Fig. 4  Scattering of the values of CNE
i
 for nodes in the FP7 network. The inset shows the values of CNE

i
 

for degree until k
i
= 100, showing that some nodes display a CNE

i
 higher than expected while others dis-

play a CNE
i
 lower than expected



3970 Scientometrics (2022) 127:3959–3976

1 3

The technique involves reiterated truncation of a frequency distribution according to 
mean values � called “characteristic scores”. After truncating the overall distribution 
at its mean value, the mean of the sub-population above the first mean is recalculated; 
the sub-population is again truncated, and so on until the procedure is stopped (Abramo 
et al., 2017). Applying the CSS method, with three characteristic scores, the following 
five classes of nodes C can be obtained:

• Zero degree (ZK): k = �0 = 0

• Low degree (LK): 𝜇0 < k ≤ 𝜇1

• Average degree (AK): 𝜇1 < k ≤ 𝜇2

• High degree (HK): 𝜇2 < k ≤ 𝜇3

• Very high degree (VHK): k > 𝜇3

The different values of � and the resulting clusters are reported in Fig. 3.

The aforementioned research question can be answered by computing, for each class 
C, the probability that the average contribution ECC received by over-performing nodes, 
i.e. those with CNEi > CNEi(k), is higher than the average contribution received by 
under-performing nodes, i.e. those with CNEi ≤ CNEi(k). In formula:

In Table 4 we summarise the results for Pr where column 1 reports the classes, column 
2 the different values for the characteristic scores �1, �2 and �3, column 3 the number of 
nodes falling in the corresponding cluster, column 4 the number of over-performing nodes, 
i.e. nodes with CNEi > CNEi(k), and, finally, in column 5 the values of Pr.

We note that low-degree nodes with CNEi ≥ CNEi(k) are almost sure to receive a 
higher amount of funds than nodes with CNEi < CNEi(k). We also note that over-per-
forming with respect to CNEi almost guarantees access to better resources. Therefore, 
CNEi is a good proxy for the quality of the neighbourhood and consequently for the ben-
efit of network membership.

When the degree starts to grow, the effect of CNEi increasingly weakens until ran-
domness (i.e., Pr 0.5), suggesting that other factors beyond the quality of the neighbour-
hood increasingly gain importance.

In general, from the analysis of the FP7 network, we can conclude that in net-
works of organisations small nodes can actually benefit from careful selection of their 

(10)Pr

(
ECC(CNEi > CNEi(k)) > ECC(CNEi ≤ CNEi(k))|k ∈ C

)
∀ i, k,C

Table 4  Classes of degrees and 
relative results for Pr 

Note that being the network connected the class ZK is empty

Classes Characteristic scores No. of nodes 
in the cluster

No. of over-
performing 
nodes

Pr

LK k
i
≤ 47 24,068 10,637 0.94

AK 48 ≤ k
i
≤ 183 4119 2041 0.67

HK 184 ≤ k
i
≤ 510 857 383 0.53

VHK k
i
> 510 341 50 0.55
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connections, providing further evidence to the notion that moving first within an envi-
ronment is fundamental for gaining a competitive advantage.

Comparison with other centrality measures

In this section, we provide quantitative evidence for the difference among the CNE and 
other centrality measures by computing the concordance between the rankings provided by 
such measures using the Kendall rank correlation coefficient:

where the vectors x and y are the rankings provided by the centrality measures and n is 
the length of the two vectors. The Kendall � lies in the range [ − 1, 1 ] and it has value 1 in 
the case of perfect agreement, 0 in the case of independence and − 1 in the case of perfect 
disagreement.

In Fig.  5 we note that eigenvector centrality is the measure that provides the most 
similar ranking to CNE, together with the closeness centrality. While the former match-
ing is somewhat expected (although with some differences since the two variables are 
not perfectly correlated) the latter seems quite surprising since the concept of shortest 
path, that is core to closeness centrality, is not the conceptual focus of our measure 
(except for the fact that the neighbours of a node are at distance one from it). In general, 

(11)
𝜏 =

∑

i<j

sgn(xi − xj)sgn(yi − yj)(
n

2

) ,
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a high correlation between the obtained rankings is somewhat expected (Valente et al., 
2008) and the usefulness of different centrality measures, including CNE, should be 
found in their capability to identify nuances in the concept of importance.

Given such results we repeated our analysis finding slightly different results in the 
case of eigenvector centrality (Table 5) and quite different results in the case of close-
ness centrality (Table 6).

The stronger similarities in terms of the indicator Pr occur in the case of the eigen-
vector even if the CNE seems to display a slightly higher probability in the case of 
nodes belonging to the class HK. The difference with the closeness centrality is, in gen-
eral, more evident and mostly localised in the class VHK whereas nodes over-perform-
ing with respect to average closeness seems do not have a better access to funding with 
respect to under-performing ones. When we consider nodes with lower degree values, 
the association with funding of over-performing nodes is higher than what observe for 
CNE.

Comparing these results with those obtained in “Association between CNE and fund-
ing” section we note that the declining effect of our measure in the case of high degree 
is observed also for all the others centrality measures and perhaps it could be associated 
to certain node features that both the network structure and the FP7 dataset do not fully 
capture. From a quantitative perspective, we noted that the network is slightly disassor-
tative ( r = −0.107 ) with respect to degree—i.e., high degree nodes tend to be connected 
to low(er) degree ones. This for instance could be partially explained by the fact that the 
CNE follows a saturation-like curve, as shown in Fig. 4. In other words, the correlation 
profile of degree and CNE is not linear. Furthermore, when the network is disassortative 
the knn decreases with respect to k and for very high degree nodes the CNE is likely to 
be determined more by their own network share than by the quality of their neighbours. 
Such a theoretical observation could explain the fluctuations in the actual quality of neigh-
bours of high degree nodes and, in turn, be among the factors causing a decreasing trend of 

Table 5  Classes of degrees and relative results for Pr considering eigenvector centrality. Note that being the 
network connected the class ZK is empty

Classes Characteristic scores No. of nodes in the 
cluster

No. of over-performing nodes 
(eigenvector)

Pr

LK k
i
≤ 47 24,068 11,078 0.94

AK 48 ≤ k
i
≤ 183 4119 2024 0.67

HK 184 ≤ k
i
≤ 510 373 383 0.52

VHK k
i
> 510 341 51 0.55

Table 6  Classes of degrees and relative results for Pr considering closeness centrality

Note that being the network connected the class ZK is empty

Classes Characteristic scores # of nodes in the 
cluster

No. of over-performing 
nodes (closeness)

Pr

LK k
i
≤ 47 24,068 12,211 0.98

AK 48 ≤ k
i
≤ 183 4119 2109 0.73

HK 184 ≤ k
i
≤ 510 419 383 0.55

VHK k
i
> 510 341 49 0.34
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Pr. Such fluctuations are also expected in systems characterised by heterogenous elements 
such as the FP7 network.

Conclusions

Several studies document the advantages that being part of a network can bring to an 
organisation. Indeed, when an organisation joins a network, it expects to obtain better per-
formance due to collaborations, knowledge sharing, technology acquisitions, increased 
capabilities and so on. Moreover, it is possible to increase opportunities, to help in imple-
menting sustainable development and to assist in assimilating, utilising and reconfiguring 
external knowledge.

This paper contributes to this debate by providing a new measure that quantifies the net-
work effect through the concept of network value and the patterns of relationships around 
specific nodes. In order to test the effectiveness of the proposed measure we considered as 
a case study the network built on the whole set of participants at the FP7 initiative of the 
European Commission. The measure highlighted two main groups of organisations; those 
having a network effect higher than expected due to the presence of a valuable neighbour-
hood and those having a network effect lower than expected due to a weak neighbourhood. 
To evaluate the capacity of our measure to quantify the quality of the neighbourhood of a 
member, as well as the implication of being part of one group or another, we considered 
the financial contributions received from the European Commission. Results show that, 
for small nodes, it is crucial to be part of the group of over-performing nodes because in 
this case an organisation is almost sure to receive more conspicuous funding than if they 
had belonged to a group of under-performing nodes. Disproportionate to the node degree, 
this effect increasingly weakens until randomness, meaning that other factors beyond the 
quality of the neighbourhood gain importance. Furthermore, in the FP7 programme, high 
degree nodes are mostly research organisations or universities that are usually well organ-
ised for initiatives such as funded projects, while many small or medium degrees nodes are 
SMEs. This is not surprising since SMEs constitute the majority of enterprises in the EU. 
As reported in Staniewski et al. (2016), despite their strong motivation to set up a business, 
SMEs face many different difficulties, due to a lack of professional experience and, indeed, 
funding. In our analysis, we obtain a post-hoc information that confirm that is beneficial for 
an organisation to join a partnership with high quality nodes. This aspect is partially high-
lighted by other centrality measures, since the degree is basically the number of partners 
times the number of projects, the closeness shows communication patterns and the eigen-
vector do not discriminates classes of nodes, unless when employing more sophisticated 
cluster methodologies.

With our measure we are mostly interested in pointing out the benefit of being part of 
a network with more accuracy than the Metcalfe’s Law. When we consider our case study, 
we obtain (post-hoc) the information that the network effect act on small organisations in a 
way that the selection of a good partnership brings to better funding opportunities. In sum-
mary, our measure presents two main advantages. First, it provides an overall information 
on the network more accurate than the Metcalfe’s Law. Indeed, it provides a macro meas-
ure that can be considered as a baseline in order to express the benefit of being part of the 
network. For instance, an organisation willing to join a network could potentially choose 
among alternatives on the basis of various centrality measures among which the network 
effect. Second the CNE displays and interesting micro feature. Namely, when a node has 
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joined a network, it can evaluate its network share in a way that is more accurate than the 
Metcalfe’s Law, since it can compute the value with respect to the real number of links in 
the network, as well as it can compare its performance with nodes having the same class of 
degree.

Under these perspectives, the measure was not conceived in order to be the determinant 
of some endogenous characteristic as, for instance, the amount of funding, but to draw to 
attention on the fact that being part of a network is not beneficial on its own but the poten-
tial benefit also depends on the pattern of connections in which the node is embedded.

Such attempt to determine a measure for the network effect still has some limitations. 
The first is that networks can exist in a large assortment of forms, possibly mutating their 
nature over time; they can represent systems at different levels of scale (micro, meso and 
macro), and they can have different scopes. Furthermore, members behaviours are difficult 
to categorise, information and processes stemming from connections are particularly het-
erogeneous, different management styles are possible, and so on. The second issue is that, 
in many real cases, the network structure is not available or it is impossible to retrieve.

From a methodological perspective, further research should be devoted to the applica-
tion of the proposed measure in other domains in order to analyse its potentialities as well 
as its effectiveness. In all such cases, contextualisation will be particularly important in 
order to reveal the correlations of our measure with the case under observation. More in 
general and coherently with the correlation analysis discussed in “Comparison with other 
centrality measures” section, we remark that the CNE should not be considered as substi-
tute to other centrality measures but rather as a new element able to enrich the set of tools 
that allow scientist and practitioners to capture the many nuances elicited by the structure 
of complex networks.

From an empirical perspective, our case study could be enriched by performing a longi-
tudinal analysis of the whole series of Framework Programmes, including H2020. A longi-
tudinal analysis could provide interesting insights on the evolution of the network structure 
and on the process of growth in terms of new organisations getting funds for their project. 
A potential research effort pursuing such direction could be related to studying the assor-
tativity of the FP7 network (i.e., the tendency of similar nodes to connect) that we find to 
be (against our expectations) slightly negative and equal to r = −0.107. The tendency of 
high degree nodes to connect to low degree ones more than expected at random could be 
reverted in previous/future snapshots indicating the propensity of nodes to form clubs of 
prominent elements to get funding for their projects.
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