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Abstract
We studied the research performance of 69 countries by considering two different types of 
new knowledge: incremental (normal) and fundamental (radical). In principle, these two 
types of new knowledge should be assessed at two very different levels of citations, but 
we demonstrate that a simpler assessment can be performed based on the total number of 
papers (P) and the ratio of the number of papers in the global top 10% of most cited papers 
divided to the total number of papers  (Ptop 10%/P). P represents the quantity, whereas the 
 Ptop 10%/P ratio represents the efficiency. In ideal countries, P and the  Ptop 10%/P ratio are 
linked to the gross domestic product (GDP) and GDP the per capita, respectively. Only 
countries with high  Ptop 10%/P ratios participate actively in the creation of fundamental new 
knowledge and have Noble laureates. In real countries, the link between economic and sci‑
entific wealth can be modified by the technological activity and the research policy. We dis‑
cuss how technological activity may decrease the  Ptop 10%/P ratio while only slightly affect‑
ing the capacity to create fundamental new knowledge; in such countries, many papers may 
report incremental innovations that do not drive the advancement of knowledge. Japan is 
the clearest example of this, although there are many less extreme examples. Independently 
of technological activity, research policy has a strong influence on the  Ptop 10%/P ratio, 
which may be higher or lower than expected from the GDP per capita depending on the 
success of the research policy.
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Introduction

It is widely accepted that research, development, and innovation (RDI) play a central 
role in the economic development of countries. Indeed, dramatic technological changes 
generated by RDI can be observed over the period of a few years in the devices that we 
use every day. Numerous publications have linked RDI with economic progress, and the 
Organization for Economic Co‑operation and Development (OECD) and diverse authors 
have coined the terms “knowledge‑based economy,” “new economy,” and “economics of 
science” to describe this link (e.g., Coccia, 2018; Dasgupta & David, 1994; Godin, 2004, 
2006; Harris, 2001).

Although these concepts apply to all countries and most high‑ and middle‑income 
countries make substantial investments in RDI and publish many scientific papers, the suc‑
cess of their research varies greatly. For example, Nobel laureates in sciences are concen‑
trated in very few countries (Schlagberger et al., 2016), which suggests that, in the others, 
independently of how many papers are published, their research never reaches scientific 
achievements at the Nobel level. Even in countries with Nobel laureates in the natural sci‑
ences, which one might suppose to be the most advanced in research terms, the number 
of papers that have to be published to be awarded a Nobel Prize varies enormously, and 
this variability becomes still greater if research institutions are included in the comparison 
(Rodríguez‑Navarro, 2011). These observations lead to the conclusion that, regarding the 
real contribution of countries to the advancement of science, their efficiency in produc‑
ing these advancements, which is independent of size, might be as important as the total 
amount of research that they perform.

Research efficiency has been investigated (Rodríguez‑Navarro, 2011) and Sandström 
and Van den Besselaar (2018) studied the potential causes of differences in research effi‑
ciency among countries. However, before drilling down into the details of what makes a 
research system more or less efficient, the economic factor must also be considered. Many 
studies have demonstrated that scientific wealth correlates with economic wealth (e.g., 
Allik et al., 2020; Cimini et al., 2014; Cole & Phelan, 1999; Docampo & Bessoule, 2019; 
Gantman, 2012; King, 2004; May, 1997; Mueller, 2016; Rahman & Fukui, 2003; Rousseau 
& Rousseau, 1998), which suggests that countries with medium or low GDP per capita 
might contribute very little to scientific progress. Such countries may have insufficient 
economic resources to fund and maintain a competitive research system or to develop the 
efficient functional structures required to perform research efficiently and compete success‑
fully with richer countries in the advancement of science. In contrast, in the OECD coun‑
tries, which with few exceptions are homogeneous economies with similar levels of growth 
and development, research outputs may cause economic growth or vice versa (Ntuli et al., 
2015).

However, the economy may not be the only factor sustaining successful research in 
high‑income countries. For example, the proportion of countries’ papers in the global top 
10% or 1% of most cited papers varies notable even among those that apparently do not 
vary greatly in economic level (Bornmann et al., 2015). Moreover, in the European Union 
(EU), although the procedures for selecting researchers and awarding funds to projects 
applied by the European Research Council are similar for all countries, the successes of 
the awarded projects varies depending on the country in which the research is carried out, 
including among countries with similar economies (Rodríguez‑Navarro & Brito, 2020b).

All this suggests that the efficiency of countries in contributing to scientific progress 
depends on their economic wealth, but also on other factors that can be subsumed into the 



2873Scientometrics (2022) 127:2871–2896 

1 3

concept of research policy. The question that thus arises is about the independent roles that 
economic wealth and research policy play in research efficiency. However, the answer to 
this question is anything but simple without prior agreement on how to measure scientific 
progress, which is still lacking.

According to the Frascati manual (OECD, 2002, pp. 30 and 34), research is “creative 
work undertaken on a systematic basis in order to increase the stock of knowledge,” includ‑
ing the presence “of an appreciable element of novelty and the resolution of scientific and/
or technological uncertainty.” Although these definitions are clear, the procedure required 
to measure such contributions to new knowledge creation is not as clear because it should 
also include the relevance of the new knowledge, which is not included in the definitions. 
It is obvious that not all new knowledge is equally relevant to science and society. There‑
fore, each of the above‑cited studies about research and economic wealth applies its own 
indicator without empirically demonstrating that it is the most appropriate, or even that a 
single indicator is sufficient. For assessment purposes, the National Science Board of the 
USA reports countries’ share of papers in four top percentiles of the globally most cited 
papers: 50, 10, 5, and 1. However, they state that “the relative impact of an economy’s S&E 
research can be compared through the representation of its articles among the world’s top 
1% of cited articles” (National Science Board, 2020, p. 12), without justifying the use of 
this percentile rather than the top 0.1% or 10%.

Another illustrative example is the adjective that it is used to qualify research with the 
greatest relevance: “excellent.” Even OECD publications about research use the terms 
“excellence” or “excellent,” omitting a numerical or level definition of where excellence 
might start (Rodríguez‑Navarro & Brito, 2018, p. 719).

Measuring contributions to new scientific knowledge creation

The brief introduction above highlights that any study that attempts to separate the effects 
of economic wealth and research policy on knew knowledge creation might be controver‑
sial without a prior agreement regarding how to measure new knowledge creation.

There are well‑established methods for research assessment based on citations (van 
Raan, 2019; Waltman & van Eck, 2019), but the lack of agreement about the most appro‑
priate indicator to measure contributions to new knowledge creation is not methodologi‑
cal but rather arises because the relevance of the new knowledge that should be measure 
remains open to interpretation.

The widely known study by Khun (1970) about scientific revolutions presents normal 
science as the product of the day‑to‑day work of researchers; in contrast, revolutionary sci-
ence is an infrequent product of research that has a much greater effect on the progress 
of science. These ideas have been extended globally and presented in multiple forms. For 
example, Chapter 1 of the textbook of Chen (2013, p. 1) begins with the statement that 
“Scientific knowledge changes all the time. Most of the changes are incremental, but some 
are revolutionary and fundamental”. Therefore, when trying to measure research effi‑
ciency, the first question that arises is whether this refers to the creation of fundamental 
(revolutionary) or incremental (normal) new knowledge.

The problem of quantifying fundamental new knowledge using bibliometric methods 
lies in the infrequency with which such papers are published. If we use top percentiles for 
research assessment (Bornmann et al., 2013), there is no fixed top percentile that separates 
fundamental from incremental new knowledge. However, researchers in many fields would 
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probably agree that less than 1 paper per 1000 is truly revolutionary. This low proportion 
implies that it would be necessary to quantify the number of papers published by a country 
that make it into the global top 0.1% or perhaps even the top 0.01% of cited papers. It is 
obvious that such values for many countries would be too low to be counted with minimal 
statistical reliability. However, this issue may be addressed by calculating the probability or 
expected frequency of such papers (Rodríguez‑Navarro & Brito, 2019).

Meanwhile, incremental knowledge provides support for fundamental knowledge, and 
from a scientific point of view, all scientific publications should be considered to report 
incremental new knowledge. In essence, there are no conceptual reasons for exclusions, 
except for the insignificant number of papers that report fundamental knowledge.

According to this reasoning, the independent effects of economic wealth and research 
policy on the scientific wealth of countries cannot be studied using a single citation indica‑
tor. At least, the total number of papers (henceforth P) and the number of papers that are 
included in a certain global top percentile (henceforth  Ptop x%) should be used.

Only two parameters of this type are needed because the percentile distribution of 
papers based on citation counts follows a power law (Brito & Rodríguez‑Navarro, 2018); 
for evaluative purposes, the exponent or scaling parameter of the power law is used to 
calculate its derivative ep (Rodríguez‑Navarro & Brito, 2018). The constant ep equals 0.1 
raised to a power that is the exponent of the power law, which is calculated by fitting a 
power law to the number of papers in six or more top percentiles. Using the constant ep the 
following equations apply (Rodríguez‑Navarro & Brito, 2019):

The probability that of a country’s paper will appear in  Ptop x% is

The expected frequency of such a paper is

And thus

According to Eq. 3, when only  Ptop 10% and P are known,  Ptop 10%/P is a proxy of ep.

Incremental innovations and possible failure of some citation metrics

This reasoning about papers that report incremental and fundamental knowledge assumes 
that the aim of the publications considered is to achieve the progress of scientific knowl‑
edge. However, this is not always true because a significant amount of global research is 
addressed toward improving technological processes and products rather than the advance‑
ment of science per se. Although the results of such research are patented, a significant 
amount is also published in scientific journals. This issue is highly relevant because, in 
advanced countries, the volume of such research may be very high. In fact, most of the 
improvements that continuously appear in the devices that we use every day are incremen-
tal innovations; if such new knowledge is published, it should not be included in the value 
of P used in Eq. 2 and 3. In general, patents of incremental innovations are less cited than 
those more technologically important (Bakker, 2017; Carpenter et  al., 1981); the same 
occurs if the innovation is published (Shibata et al., 2009).

(1)e
(2−lg x)
p

(2)P ⋅ e
(2−lg x)
p

(3)ep = Ptop 10%∕P
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For example, consider the field of rechargeable lithium batteries, which has 
become very important because of their use in electronic devices and electric vehi‑
cles (Goodenough & Kim, 2010). The improvements in this type of batteries over the 
last 30–40 years have been spectacular, and the number of papers in this field exceeds 
200,000. Fundamental innovations have been achieved in this area, as illustrated by the 
three Nobel Prizes in chemistry awarded in 2019. However, as mentioned above, very 
few papers in this field report fundamental research. One such paper reporting an inno‑
vation regarding the positive electrode of the battery (Padhi et al., 1997) lies in the top 
0.01% of all papers published in the field (up to and including its year of publication) or 
in the field of chemistry in the WoS (SU = chemistry) in its year of publication; another 
similar paper on the electrolyte of the batteries (Croce et al., 1998) is in the top 0.1% of 
cited papers based on the same criteria. Because these fundamental papers pursue the 
advancement of science, many papers related to them by citation or topic are also highly 
cited.

However, in the field of rechargeable lithium batteries, there is also a huge amount 
of papers that report incremental innovations that address construction details of the 
batteries or their applications to different devices, for example, “An implantable power 
supply with an optically rechargeable lithium battery” (Goto et  al., 2001). Papers of 
this type are cited in patents but normally receive a low number of citations in scien‑
tific journals. Therefore, if we could isolate this type of publication, their corresponding 
constant ep (and  Ptop 10%/P ratio) would be low.

This reasoning is a conjecture that can be explained numerically. Consider a techni‑
cal field with 100,000 publications per year and that there is a highly regarded annual 
X Prize that expert reviewers assign to the best paper; normally one in the top 0.005% 
of cited papers. Now, consider an advanced country that publishes 15,000 papers per 
year and that, on average, is awarded an X Prize every two years. However, because 
this country is highly focused on technology, 10,000 out of these 15,000 papers address 
incremental innovations in devices in the field. The constant ep when considering the 
total number of publications (15,000) is 0.05, so this advanced country looks like a 
developing country. Indeed, applying Eq.  2 (with x = 0.005%), we calculate that, on 
average, this country will be awarded with one X Prize every 26  years. This predic‑
tion is far from reality, which implies that the bibliometric prediction fails. This failure 
occurs because this calculation considers that all the poorly cited papers report research 
that addresses advances of scientific knowledge that underpin the field in this imaginary 
example. However, this assumption is not true because 10,000 papers address technical 
details regarding the production of devices.

If we could separate these two groups of papers, viz. the 10,000 technological papers 
with an ep constant of 0.015 and the 5000 scientific papers with an ep constant of 0.12, we 
could perform this calculation correctly. Because the technological papers do not count 
toward the X Prize, they should not be included in the calculations with Eq.  2 regard‑
ing fundamental research; indeed, on the basis of these technological papers, the country 
would be awarded with an X Prize every 6900 years. Meanwhile, based on the 5000 sci‑
entific papers, the country would receive an X Prize every two years, which is the actual 
observation.

This conjecture distinguishing fundamental and incremental papers is actually a hypoth‑
esis that can be tested empirically. If it is correct, then there will be countries with high‑
technology industries and frequent Nobel laureates in which the standard bibliomertric 
indicators do not reveal this success (“Incremental knowledge can serve either scientific or 
technological progress”).



2876 Scientometrics (2022) 127:2871–2896

1 3

Aim of this study

Many studies have demonstrated that scientific wealth depends on economic wealth (Allik 
et al., 2020; Cimini et al., 2014; Cole & Phelan, 1999; de Moya‑Anegón & Herrero‑Solana, 
1999; Docampo & Bessoule, 2019; Gantman, 2012; King, 2004; May, 1997; Mueller, 
2016; Rahman & Fukui, 2003; Rousseau & Rousseau, 1998; Satish, 2021; Vinkler, 2018), 
and in recent times, e.g. last 50–60 years, all the scientific achievements that have been 
awarded with Nobel Prizes have come from rich and highly developed countries, with Fed‑
erico Leloir from Argentina being perhaps the only exception to this general rule. All this 
raises many questions. For example: Do only rich countries contribute to the progress of 
knowledge? What is the threshold economic level that allows countries to build a research 
system that contributes to the progress of knowledge? How important is research policy in 
the capacity of countries to contribute to the progress of knowledge?

Against this background, the aim of this study is to investigate the independent effects of 
economic wealth and all other factors, which we subsume into research policy, on the suc‑
cess of countries in creating new knowledge. In the first part of the study, we avoid fixing a 
single level of citation to measure such success but rather consider all possible levels, from 
the total number of papers to the top 0.01% of cited papers: P,  Ptop 10%,  Ptop 1%,  Ptop 0.1%, and 
 Ptop 0.01%. We also study the corresponding size‑independent indicators  Ptop 10%/P,  Ptop 1%/P, 
 Ptop 0.1%/P and  Ptop 0.01%/P.

In the final part of this study, we address the hypothesis described in the previous sec‑
tion by considering the number of triadic patent families as an indicator of industrial and 
technological activity. It is worth noting that we use this number exclusively as a reason‑
ably indicator but do not establish any numerical relationship between the numbers of pat‑
ents and technological publications. This will require further studies.

Overall, our aim is not to answer the questions posed above for specific countries, but 
rather to generate a general model based on a large number of countries. In some scatter 
plots we indicate specific countries, but this is only to document our reasoning or discuss 
the results. Analysis of specific countries lies beyond the scope of this study.

Methods

Bibliometric data

Our study takes advantage of the large amount of rigorous information provided by the Lei‑
den Ranking for universities in terms of the citation‑based distribution of papers in global 
top percentiles. Here, we use the number of papers in total and in a series of top percentile 
indicators, from the top 10% to the top 0.01%. This approach takes advantage of the suita‑
bility of top percentiles for research assessment (Bornmann et al., 2013) and the simplicity 
of their mathematical treatment because the results of all percentile counts are linked by a 
simple power‑law function as described above (“Measuring contributions to new scientific 
knowledge creation”). It is worth noting that percentile evaluations are validated against 
peer review (Rodríguez‑Navarro & Brito, 2020a; Traag & Waltman, 2019). To obtain the 
level of a country from the data in the Leiden Ranking, we aggregated the recorded P and 
 Ptop x% data of the universities belonging to that country (Supplementary Table S1).

The Leiden Ranking records full and fractional counting, but strong evidence sup‑
ports that fractional counting describes research performance more accurately, not only at 
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the address level in country and institution assessments (Aksnes et al., 2012; Rodríguez‑
Navarro, 2012) but also at the author‑level for individual assessments (Kolun & Hafner, 
2021). Waltman and van Eck (2015, p. 872) make a clear recommendation about fractional 
counting: “We therefore recommend the use of fractional counting in bibliometric studies 
that require field normalization, especially in studies at the level of countries and research 
organizations.”

The downloaded data from the Leiden Ranking 2021 (https:// www. leide nrank ing. com/; 
August 21, 2021) is an Excel file that contains the bibliometric data of 1225 universities 
from 69 countries in six research fields over eleven four‑year periods. For the purposes of 
this study, we selected the “Physical sciences and engineering” field and “fractional count‑
ing,” extracting the data for the number of papers in the four top percentiles 1, 5, 10, and 
50  (Ptop 1%,  Ptop 5%,  Ptop 10%, and  Ptop 50%). Unless otherwise stated, we selected the first and 
the last periods recorded in the Leiden Ranking: 2006–2009 and 2016–2019. The Leiden 
Ranking does not include the  Ptop 0.1% and  Ptop 0.01% indicators, so we used Eq. 2 for their 
calculation, applying  Ptop 10%/P as a proxy for the constant ep (Eq. 3). In several countries 
 Ptop 1% had to be calculated because the values reported in the Leiden Ranking were very 
low; for homogeneity, we used this calculation for all countries (Rodríguez‑Navarro & 
Brito, 2021).

The Leiden Ranking includes universities from 69 countries that have produced at least 
800 publications in the period 2016–2019, meaning that no institutions are included, and 
not all universities. However, our conclusions are extended to the whole country’s research 
system. This extension is justified because research at universities represents a high pro‑
portion of countries’ research at the highest level. For example, most Nobel laureates per‑
formed their awarded work at universities (Schlagberger et  al., 2016), most highly cited 
researchers work in universities (Bornmann & Bauer, 2015) and it is accepted that univer‑
sities play a central role in the of knowledge production system (Godin & Gingras, 2000).

However, considering the limitations of the database, we checked that our preference 
for the Leiden Ranking data did not introduce a bias into this study. For this purpose, we 
downloaded the country data from InCites (Clarivate Analytics) for the period 2016–2019, 
selecting the research areas that approximately make up the Leiden Ranking field of “Phys‑
ical sciences and engineering.” We then compared the countries’ P and  Ptop 10% values (the 
two most important parameters in our study) between the two databases. For P, the InCite 
values were approximately five times higher but highly correlated with the Leiden Rank‑
ing values. Only three countries deviated from this general trend: China, Russia, and India. 
Eliminating these countries and the USA because it was an outlier, the Pearson correlation 
coefficient was 0.96 (two‑sided p value <  10–10). For  Ptop 10% values, the Pearson correlation 
coefficient for all countries was 0.88 (two‑sided p value <  10–10).

In conclusion, for the current purposes, our preference of using the Leiden Ranking ver‑
sus the InCites data would not affect the essence of the results. Throughout this paper, we 
use the Leiden Ranking P and  Ptop x% nomenclature for the indicators (“Measuring contri‑
butions to new scientific knowledge creation”).

Triadic patent families and other data

As described in the previous section, in the analysis of incremental innovations, we con‑
sidered the industrial and technological activity of countries. The number of triadic patent 
families per country was obtained from the OECD (https:// doi. org/ 10. 1787/ 6a8d1 0f4‑ en; 
Accessed 01 October 2021). For statistical reasons, we selected 31 countries with more 

https://www.leidenranking.com/
https://doi.org/10.1787/6a8d10f4-en
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than 10 patent families per year and eliminating the countries with high annual variability 
over the last five years with respect to a regression line fit.

The number of inhabitants, GDP (current US$) and GDP per capita were downloaded 
from the World Bank (https:// data. world bank. org/, August 23, 2021). The data for Tai‑
wan, which are not recorded by the World Bank, were downloaded from https:// count ryeco 
nomy. com/ gdp/ taiwan (August 25, 2021).

Results

A few countries create a high proportion of the global new knowledge

The most remarkable characteristic of the global scientific progress is nonuniformity 
across countries. For example, Schlagberger et  al. (2016) identified 155 Nobel laureates 
from 1994 to 2014, but considering the affiliation when the Nobel Prize was awarded to 
them only seven countries accounted for three or more Nobel laureates; similarly, King 
(2004) found that only eight countries produce about 85% of the top 1% most cited pub‑
lications. To study this inequality, we investigated which countries account for 90% of the 
global values of: P,  Ptop 10%,  Ptop 1%,  Ptop 0.1% and  Ptop 0.01%. The results (Table 1) support 
the notion of scientific inequality across countries, indicating that the number of countries 
(ordered from higher to lower values of each indicator) decreases with the decrease of the 
top percentile level.

For the period 2006–2009, only 22 out of the 69 countries account for 90% of all pub‑
lished papers, whereas the number decreases to 11 countries accounting for 90% of the 
global papers in the top 0.01% of cited papers. Furthermore, with the decrease of the top 
percentile level some countries disappear while others appear in the lists. For example, 
Denmark is not in the list by P (lying in position 29, Table S2) but appears at position 11 
in the  Ptop 0.01% list. In contrast, India and Brazil are in positions 12 and 15 in the list by P, 
respectively, but are not in the list by  Ptop 0.01% (in positions 20 and 30 in Table S2). Similar 
conclusions can be drawn from the data for the period 2016–2019.

A comparison of the two periods reveals a notable improvement of research in two 
countries: China and Singapore, both of which are in the lists of countries accounting for 
90% of the five indicators (P and the four top percentiles). In the period 2006–2009, a 
comparison of the position of these countries with respect to the UK, Germany, Switzer‑
land, and other countries shows that they continuously drop in position with decreasing 
percentile value. In contrast, in a similar comparison for the period 2016–2019, China only 
switches its first position with the USA, while Singapore rises from position 22 by P to 
position 5 by  Ptop 0.01%, overtaking Germany and France.

Next, we calculated the relationship between the cumulative values of population and 
GDP of the countries accounting for 90% of the total values of the investigated indica‑
tors. Table 2 presents the results, which are similar for the two periods. Regarding the val‑
ues of P, the countries accounting for 90% of its total value contribute 75% of the global 
population and 85% of the global GDP, suggesting that population size or GDP reason‑
ably explains the number of publications. For the other indicators  (Ptop 10%,  Ptop 1%,  Ptop 0.1% 
and  Ptop 0.01%), the percent of population corresponding to the most productive countries 
decreases with the decrease of the top percentile value, approximately in parallel to the 
decrease of the number of countries. In contrast, the decrease of the percent of the total 
GDP corresponding to the countries accounting for 90% of the indicator is much lower. 

https://data.worldbank.org/
https://countryeconomy.com/gdp/taiwan
https://countryeconomy.com/gdp/taiwan


2879Scientometrics (2022) 127:2871–2896 

1 3

Table 1  Countries that together account for 90% of the counts P,  Ptop 10%,  Ptop 1%,  Ptop 0.1% and  Ptop 0.01% with 
reference to the total values for the 69 countries under investigation

P Ptop 10% Ptop 1% Ptop 0.1% Ptop 0.01%

2006–2009
 USA USA USA USA USA
 China China UK UK UK
 Japan UK China Germany Germany
 UK Germany Germany China Netherlands
 Germany Japan France France Switzerland
 South Korea France Japan Netherlands France
 France Canada Canada Switzerland China
 Italy Spain Netherlands Canada Canada
 Spain Italy Switzerland Australia Australia
 Canada South Korea Spain Spain Spain
 India Australia Italy Japan Denmark
 Taiwan Netherlands Australia Italy
 Australia India South Korea Denmark
 Brazil Switzerland Sweden
 Poland Taiwan India
 Iran Sweden Singapore
 Turkey Turkey Denmark
 Netherlands Singapore
 Sweden Iran
 Switzerland Brazil
 Israel
 Singapore

2016–2019
 China China China USA USA
 USA USA USA China China
 Germany UK UK UK UK
 UK Germany Germany Australia Australia
 Japan South Korea Australia Germany Singapore
 South Korea Australia France Singapore Switzerland
 India Japan Canada Switzerland Germany
 Iran France Singapore Netherlands Netherlands
 France Iran Switzerland France France
 Italy India South Korea Canada Canada
 Canada Canada Italy Italy Italy
 Spain Italy Netherlands South Korea
 Australia Spain Iran Iran
 Brazil Switzerland Japan Spain
 Poland Netherlands India
 Taiwan Singapore Spain
 Turkey Brazil
 Netherlands Sweden
 Sweden Poland
 Switzerland
 Russia
 Singapore
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For example, in both periods, there are 22 countries in the list by P and 11 in the list by 
 Ptop 0.01% from the list of 69 countries; the corresponding population of the countries that 
account for 90% of the total indicator is 75% for P and 38% for  Ptop 0.01% (half the number 
of countries and half the number of inhabitants). In contrast, the corresponding GDP of 
the countries accounting for 90% of the global indicator is 85% for P and 62% for  Ptop 0.01% 
(half the number of countries but only 27% lower in GDP).

In summary, the wealthiest countries create most of new knowledge.

Economic and scientific wealth

Size‑dependent analyses

Next, we investigated the dependence of P,  Ptop 10%,  Ptop 1%,  Ptop 0.1%, and  Ptop 0.01% on GDP 
across countries; Figs. 1 and 2 show plots of P,  Ptop 1%, and  Ptop 0.01% versus the GDP of 
the countries for the periods 2006–2009 and 2016–2019, respectively, excluding USA 
from Fig. 1, and USA and China from Fig. 2 because of the outlier positions of their GDP 
values.

Visual inspection of these plots reveals a clear dependence of P on GDP, albeit with 
notable dispersion of the data points; this dispersion increases for smaller top percentiles 
and is very high for  Ptop 0.01%. The Pearson and Spearman rank correlation coefficients 
confirm the existence of a correlation for both periods (2006–2009 and 2016–2019). For 
example for 2006–2009: for P, the Pearson correlation coefficient excluding the USA is 
0.81 (two‑sided p value <  10–10) and the Spearman correlation coefficient of all the coun‑
tries is 0.87 (two‑sided p value <  10–10); and for  Ptop 0.01%, the Parson correlation coefficient 
excluding the USA and China is 0.64 (two‑sided p value = 3.3·10–9) and the Spearman cor‑
relation coefficient of all the countries is 0.80 (two‑sided p value <  10–10).

These results demonstrate that economic wealth is an important determinant of scien‑
tific wealth. However, despite these correlation coefficients, it is notable that the order of 
the countries’ data points is different in each case: i.e. the relative positions of countries 
with similar GDPs change depending on the stringency of the  Ptop x% indicator considered. 
For example, in Fig. 1, the relative positions of India, Australia and the Netherlands, or the 
position of Switzerland with reference to other countries, and in Fig. 2, the change of the 
relative positions of Switzerland and Turkey, or Singapore and Iran.

To analyze the strong correlations described above, one must consider that the range 
of variation of the data across the 69 countries of this study is very high: three orders of 
magnitude in GDP and five orders of magnitude in  Ptop 0.01%; these large variations and the 
large number of countries might conceal important information. As shown above (“A few 

Table 2  Percent of the number 
of inhabitants or GDP of the 
countries that account for 90% 
of the counts of P,  Ptop 10%, 
 Ptop 1%,  Ptop 0.1% and  Ptop 0.01% 
(Table 1) with reference to the 
corresponding total values for the 
69 countries under investigation

Inhabitants GDP

2006–2009 2016–2019 2006–2009 2016–2019

P 75 76 84 86
Ptop 10% 74 71 83 82
Ptop 1% 67 68 79 78
Ptop 0.1% 43 41 73 68
Ptop 0.01% 39 37 60 63
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countries create a high proportion of the global new knowledge”) the number of countries 
that make significant contributions to the global new knowledge acquisition is low, which 
implies that studying these countries is likely to provide more accurate information than 
studying all countries.

To further investigate this issue, we ordered the countries by their number of pub‑
lications. For the period 2006–2009, we ordered the countries by their total number 
of papers (P) and selected the 22 countries publishing from 56,000 to 6000 papers (a 
range of one order of magnitude). For these countries, the correlation between P and 
GDP is very high (Fig. 3A; Pearson correlation coefficient of 0.94, two‑sided p value 
1.5 ×  10–8); the same occurs if the countries are ordered by  Ptop 10% (results not shown). 
In contrast, if we order the countries by their  Ptop 0.01% and select the first 16 countries 
(for which the indicator varies by one order of magnitude, from 13.5 to 1.2),  Ptop 0.01% 
and GDP do not show a correlation (Fig. 3B; Pearson correlation coefficient 0.38, two‑
sided p value 0.14). Similar results are obtained for the period 2016–2019.

Fig. 1  Scatter plots of P,  Ptop 1%, and  Ptop 0.01% versus GDP for the period 2006–2009. The USA is omitted 
owing to its outlier position. The plots on the right correspond to countries whose GDP is less than 1000 
US$
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In summary, GDP is a strong determinant of the value of all indicators if all the 
countries are considered. It is also a strong determinant if a small set of countries is 
selected by considering the highest values of P and  Ptop 10%. In contrast, if the set of 
countries is selected based on to the highest  Ptop 0.01% values, the value of this indicator 
is not correlated with the GDP.

Size‑independent analyses

The findings described above (Fig.  3B) raise the possibility that the determinant 
of research success at the fundamental level  (Ptop 0.1% and  Ptop 0.01%) is economic size 
measured not in terms of GDP, but in terms of GDP per capita. The rationale is that, 
across countries, only those with high GDP per capita will have the capacity to invest 

Fig. 2  Scatter plots of P,  Ptop 1%, and  Ptop 0.01% versus GDP in the period 2016–2019. The USA and China 
are omitted owing to their outlier positions. The plots on the right correspond to countries whose GDP is 
less than 1000 US$
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in research and in the other functional structures necessary for successful research. We 
therefore next investigated this possibility. However, GDP per capita is size independent 
and must be compared with size‑independent research indicators.

To maintain consistency with the analyses above, the size‑independent indicators 
 Ptop 10%/P,  Ptop 1%/P,  Ptop 0.1%/P and  Ptop 0.01%/P were used. However, according to Eq. 2 
and considering that  Ptop 10%/P is a proxy of ep, these size‑independent indicators are 
proxies of ep, ep

2, ep
3 and ep

4. This implies that, among countries in the scatter plots of 
these indicators versus GDP per capita, the relative positions of countries will always be 
the same while only the distance between them will vary (Rodríguez‑Navarro & Brito, 
2021). This also implies that all the correlation coefficients between GDP per capita and 
the indicators will be equal. Figure 4 shows the scatter plots of countries based on their 
 Ptop 10%/P ratio and GDP per capita for the periods 2006–2009 and 2016–2019. Visual 
inspection of the scatter plots for the total number of countries (left panels) indicates 
that the values of the indicator show a clear dependence on GDP per capita; the Pear‑
son correlation coefficients are 0.77 (two‑sided p value <  10–10) for 2006–2009 and 0.83 
(two‑sided p value <  10–10) for 2016–2019.

However, following a similar reasoning as in the previous section regarding the wide 
range of data when considering all countries, we divided the lists of countries into two 
groups, having GDP per capita above and below 30,000 US$. Visual inspection of the scat‑
ter plots indicates that a correlation does not exist or that it is very poor in either group 
(Fig. 4).

In summary, considering all countries, the size‑independent parameters  Ptop x%/P and 
GDP per capita are highly correlated, but taking sets of countries in narrow ranges of GDP 
per capita, the correlations are very weak or inexistent.

Patenting activity

To distinguish between countries with high versus low technological activity, we used 
the number of triadic patent families as a convenient indicator; we selected 31 countries 
with more than 10 patent families in 2018 that also showed good stability of the indicator 

Fig. 3  Scatter plots of the GDP versus P and  Ptop 0.01% of top countries ordered by these parameters (22 in A 
and 19 in B) for the period 2006–2009
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(“Triadic patent families and other data”). For analytical purposes, we divided these coun‑
tries into two sets based on the ratio of the number of patents to GDP per capita (Table S3): 
a first set of 13 countries with 3.8–0.8 patents per billion US$ of GDP and a second set of 
18 countries with 0.6–0.1. We also included the number of papers in this analysis. Japan 
and the USA were outliers based on the number of patent families, and the USA and China 
based on the number of papers.

As a first approach, we tested whether the previously observed correlation between 
GDP and the number of papers (Figs. 1 and 2) was retained in these two sets of countries 
(comprising 12 and 16 countries after omitting outliers). The finding is that the two sets 
of countries are mixed and all countries follow the same trend (Fig. 5A). In contrast, in 
the scatter plot of the number of triadic patents versus the number of papers (Fig.  5B), 
the two sets of countries behave differently. For both sets, the number of patents increases 
with increasing number of papers, but this increase is faster in the set with higher patenting 
activity with respect to GDP.

To further investigate the position of each country regarding these two products of its 
research (publishing and patenting) we used two size‑independent indicators: the  Ptop 10%/P 
ratio (publishing efficiency) and the number of patents per billion US$ of GDP (patenting 
efficiency). Figure 6 shows the distribution map of the 31 countries investigated. Japan is 
way ahead of other countries in patenting activity, while the other countries are distrib‑
uted across the whole surface of the map, albeit with a notable proportion in the lower left 
part, with 11 countries showing patenting activity ten times lower than that of Japan and a 
 Ptop 10%/P ratio slightly above or below 0.1.

Fig. 4  Scatter plot of countries according to their GDP per capita and  Ptop 10%/P ratio. Left panels, all coun‑
tries; two right panels, countries divided according to the GDP per capita: up to 30,000 and above 30,000 
US$
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If our hypothesis about the lower  Ptop 10%/P ratio in countries with high technological 
activity is correct (“Incremental innovations and possible failure of some citation met‑
rics”), countries with high technological activity might show a lower  Ptop 10%/P ratio than 
actually corresponds to their research efficiency. This may be the case of Japan, South 
Korea, and Taiwan.

Research efficiency in low patenting countries

In the absence of a convenient numerical correction of the  Ptop 10%/P ratio to account 
for technological activity (“Aim of this study”), analysis of research efficiency and its 
relationship with GDP per capita remains difficult. We therefore focus our attention on 
the 11 countries in the lower left part of the country map in Fig. 6. In these countries, 
patenting is low and it is improbable that technological activity will have a significant 
effect on the  Ptop 10%/P ratio. Considering GDP per capita, the presence in this group of 
Norway and even Spain is unexpected, so we investigated in more detail the research 
of these two countries in comparison with Portugal and Greece, including Singapore 
as a control country (the GDP per capita in 2018 of these five countries being 70,459, 
26,505, 19,978, 18,117 and 56,828 US$, respectively).

Figure 7A shows the evolution of P and Fig. 7B the evolution of the  Ptop 10%/P ratio 
through the 11 periods recorded in the Leiden Ranking. Except for Greece (where P 
decreased), P increased over time in the other four countries. In contrast, the evolution 
of the  Ptop 10%/P ratio is more complex. In Greece, the  Ptop 10%/P ratio remains quite sta‑
ble despite the decrease of P; in Norway and Portugal, the  Ptop 10%/P ratio show oscil‑
lations but remains stable overall, despite the growth of P; in Spain, the  Ptop 10%/P ratio 
remains stable over the six periods but then decreases, again despite the growth of P. 
Finally, in Singapore, the  Ptop 10%/P ratio increases in parallel with the an increase of P.

In summary, it seems that, independently of economic wealth, the research policy 
of some countries is aimed at increasing the number of papers and not to increase the 
 Ptop 10%/P ratio.

Fig. 5  GDP dependence of the number of papers (A) and relationship between the numbers of papers and 
triadic patent families (B). Black circles, high patenting countries; grey circles, low patenting countries. 
Period of evaluation, 2016–2019, GDP and patents in 2018. The USA and China are exclude because as 
outliers. Lines in B are drawn as a guide to the eye
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Discussion

As mentioned before, a large number of studies have established that the scientific wealth 
of countries depends on their economic wealth (“Aim of this study”). However, it can be 
intuitively expected that factors other than economic ones could also determine the capac‑
ity of countries to contribute to the global acquisition of knew knowledge. As explained 
in “Aim of this study”, the aim of the current study is to investigate whether other factors, 
independent of economic ones, determine the research efficacy of countries. We subsume 
all these factors into the broad term of research policy, but some of the noneconomic fac‑
tors conditioning the research performance of countries may not be related to their research 
policy (e.g. the stock of knowledge). For example, Khosrowjerdi and Bornmann (2021) 
investigated national culture and found a correlation between survival versus self‑expres‑
sion values and  PPtop 10% (equal to 100 ·  Ptop 10%/P). However, it seems unlikely that any‑
thing other than research policy could explain why, over the years, some countries have 

Fig. 6  Scatter plot of countries 
according to their P_top 10%/P 
ratio and number of triadic patent 
families per billion US$ of GDP. 
In the lower panel Japan has been 
excluded
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simultaneously increased their number of papers and the  Ptop 10%/P ratio while others have 
increased only the number of papers (Fig. 7).

Indicators of new knowledge creation

So far, there is no agreement regarding which indicator should be used to assess new 
knowledge creation. The number of papers, number of citations, and number of papers in 
the top 10% or 1% of cited papers are the indicators related to scientific wealth most com‑
monly applied in the above‑cited studies. Among these studies, two similar to the present 
one, published in the same year (2018), one used the top 1% (Vinkler, 2018) while the 
other the top 10% (Sandström & van‑den‑Besselaar, 2018) of cited papers as a reference 
standard.

Fig. 7  Temporal evolution of the number of papers and the  Ptop 10%/P ratio in selected countries
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As suggested above, this uncertainty regarding the most appropriate bibliometric indi‑
cator to use in studies of research assessment is related to the lack of consensus regarding 
the type of new knowledge to be assessed: either fundamental or incremental (“Measuring 
contributions to new scientific knowledge creation”). Although there is no fixed top per‑
centile that separates these two types of new knowledge, researchers in many fields would 
probably agree that less than 1 paper out of 1000 is truly fundamental.

This observation leads to the conclusion that a complete appraisal of the research suc‑
cess of a country cannot be achieved using a single indicator, be it based on the number of 
either citations or papers. In the case of top percentiles, a highly stringent top percentile 
(e.g. the top 0.01% or 0.1%) will capture the acquisition of fundamental new knowledge 
but will ignore thousands of papers and will not capture the acquisition of incremental new 
knowledge. In contrast, a less stringent top percentile (e.g. the top 10%) will capture the 
acquisition of incremental new knowledge, but the high number of papers at this level will 
conceal the information needed to assess the acquisition of fundamental new knowledge.

Although the assessment of only fundamental new knowledge can be informative in 
some cases (e.g. Rodríguez‑Navarro, 2011), to achieve a full assessment of research, two 
different indicators seem necessary: either P or  Ptop 10% as a reasonably indicator for the 
assessment of incremental new knowledge, and either  Ptop 0.1% or  Ptop 0.01% for the assess‑
ment of fundamental new knowledge. A single indicator, e.g.  Ptop 1%, cannot be compre‑
hensive because, if two countries have different P, the same  Ptop 1% may correspond to two 
different proportions of incremental (P or  Ptop 10%) and fundamental  (Ptop 0.1% or  Ptop 0.01%) 
new knowledge.

Applying Eq. 2 to this reasoning, the two indicators that define the activity of a coun‑
try in new knowledge creation are P and ep. The former describes the amount of research, 
and the latter the efficiency of the country in publishing papers that are highly cited (Rod‑
ríguez‑Navarro & Brito, 2018).

In summary, although the indicators for incremental and fundamental new knowledge 
are P or  Ptop 10% and  Ptop 0.1% or  Ptop 0.01%, respectively, the research performance of a coun‑
try is fully described by P and  Ptop 10%/P.

Scientific and economic wealth

Consistent with previous studies cited above, the results of the current study (Figs. 1, 2, 
5A) reveal that the number of papers (P) and  Ptop 10% correlate with the GDP of coun‑
tries, indicating that the research activity of countries is a function of their economic 
size. Although some variability exists, it is not high and remains similar in countries 
with high or low technological activity (Fig. 5A). In summary, GDP provides reasonable 
information about the total amount of new knowledge that a country normally creates.

However, because a single bibliometric indicator is insufficient to define the over‑
all research performance of a country (as shown in the previous section), a single eco‑
nomic parameter also does not suffice. The second bibliometric indicator that defines 
the research performance of a country is the  Ptop 10%/P ratio, and it is shown in “Size‑
independent analyses” that, in a broad sense, GDP per capita is an important deter‑
minant of the  Ptop 10%/P ratio. However, while GDP provides reasonable information 
about the amount of new knowledge that a country creates, GDP per capita is a poor 
determinant of research efficiency  (Ptop 10%/P ratio; Fig. 4). For example, for the period 
2016–2019, two countries with GDP per capita below 10,000 US$ (China and Malaysia) 
achieved the same  Ptop 10%/P ratio (0.11) as France, Sweden, Canada, Austria, Germany, 
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and Israel, and higher values than Italy, Norway, and New Zealand. Among all these 
countries, GDP per capita varies from 30,000 to 70,000 US$ (Table S4). Vinkler (2018) 
observed a high correlation between the GDP per capita and an indicator that we name 
 Ptop 1%/P when many countries are considered. However, if the data is fragmented as in 
Fig. 4, the correlations disappear.

These observations imply the existence of important factors that modify the eco‑
nomic dependence of the  Ptop 10%/P ratio.

Incremental knowledge can serve either scientific or technological progress

“Incremental innovations and possible failure of some citation metrics” describes how 
incremental new knowledge can play two roles, toward either scientific or technologi‑
cal advances, and that the citation functions corresponding to papers that support each 
function are different. This implies that research assessments of industrialized countries 
should consider both functions. To consider the technological activity of countries, we 
used their patenting activity as estimated by the number of triadic patent families.

Although incremental new knowledge plays the two roles described above, the analy‑
sis of the results shown in Fig.  5A reveals that the number of papers published with 
respect to GDP is independent from the patenting activity. This finding implies that, 
if two countries have the same GDP but very different technological activity, they will 
create similar amounts of incremental new knowledge but that the country with higher 
technological activity will create less incremental new knowledge that is addressed 
towards fundamental new knowledge than the country with lower technological activ‑
ity. To put this in figures, if two countries with GDP of 2000 billion US$ publish 25,000 
papers (Fig. 5A) and one has 1500 while the other has 100 triadic patent families, the 
number of papers addressed toward producing incremental innovations could be much 
higher in the former than the latter. From the opposite viewpoint, the total amount of 
knowledge created that is addressed toward the progress of fundamental knowledge 
could be much higher in the latter than in the former.

Under these circumstances,  Ptop 10% but not P will be affected by technological activ‑
ity. Therefore, it can be conjectured that, if the ratio between the number of triadic pat‑
ents and GDP is high, a low  Ptop 10%/P ratio in technologically advanced countries could 
conceal excellent scientific research (“Incremental innovations and possible failure of 
some citation metrics”).

This hypothesis can be tested based on the country map shown in Fig. 6, where the 
most notable case is Japan. It has the highest ratio of triadic patents to GDP in the world 
but its poor bibliometrics indicators fail to predict its high scientific level:

National science indicators for Japan present us with a puzzlement. How can it 
be that an advanced nation, a member of the G7, with high investment in R&D, 
a total of 18 Nobel Prize recipients since 2000, and an outstanding educational 
and university system looks more like a developing country than a developed one 
by these measures? The citation gap between Japan and its G7 partners is enor‑
mous and unchanging over decades. Japan’s underperformance in citation impact 
compared to peers seems unlikely to reflect a less competitive or inferior research 
system to the degree represented (Pendlebury, 2020, p. 134).
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Japan therefore confirms our hypothesis, which is also confirmed by two other cases: 
Germany and France. According to their position in Fig. 6  (Ptop 10%/P around 0.11), it 
should be almost impossible for these countries to be repeatedly awarded Noble Prizes 
in natural sciences, as is the case (Schlagberger et  al., 2016). In two other countries 
(Sweden and Israel), the number of Nobel laureates is low because they are small coun‑
tries, but their low  Ptop 10%/P ratios around 0.11 are incompatible with their position in 
terms of the number of Nobel laureates. More recently, the success of Japan’s research 
has been demonstrated by bibliometric methods (Rodríguez‑Navarro & Brito, 2022).

In summary, the hypothesis that technological activity could mislead the bibliometric 
assessment of the scientific wealth of countries is consistent with the empirical data.

Therefore, analysis of the country map shown in Fig. 6 should be performed by con‑
sidering the  Ptop 10%/P ratio and patenting activity simultaneously. However, our data 
cannot distinguish between two hypothetical types of countries: those that publish a sig‑
nificant amount of their patented technological advances, and others that do so very 
seldomly.

Even with these caveats, the map in Fig. 6 supports an interesting analysis: Singapore 
shows a very high  Ptop 10%/P ratio but low patenting activity, suggesting that its research 
strategy is focused on the advancement of knowledge and revolutionary innovations and 
that the  Ptop 10%/P ratio describes its real scientific performance. Australia follows the 
same strategy, albeit with lower success than Singapore. The USA and the UK show 
intermediate patenting activity but high  Ptop 10%/P ratios, suggesting that, in addition to 
patenting, these countries are simultaneously focused on the advancement of knowledge 
and revolutionary innovations. Consequently, in comparison with Singapore, their real 
scientific level might be higher than suggested by their  Ptop 10%/P ratios. On the opposite 
side of the map, South Korea and Taiwan show high patenting activity but low  Ptop 10%/P 
ratios that conceal a probably high scientific level. Two countries (Switzerland and the 
Netherlands) show high  Ptop 10%/P ratios and patenting activity, which implies outstand‑
ing scientific levels or low publishing activity of technological advances.

In the lower left part of the map, countries have low patenting activity and low 
 Ptop 10%/P ratio, which might reveal a real low research performance. This applies to at 
least 10 countries: Russia, Brazil, the Czech Republic, Hungary, India, Spain, New Zea‑
land, Norway, Portugal, and Greece.

Further research is needed to achieve a numerical correction of the  Ptop 10%/P ratio in 
countries with high technological activity and a culture of publishing incremental inno‑
vations in scientific journals. Applying such a correction would increase the accuracy of 
scientometrics and may address its criticisms (Marginson, 2021).

Research policy also counts

In the discussion above about the research map of countries (Fig.  6), we considered 
GDP but GDP per capita or the dependence of the  Ptop 10%/P ratio from GDP per capita 
is not considered; if this consideration is introduced other features of research in each 
country appear. For example, the position of Brazil among the countries in the lower left 
of Fig. 6 can be explained by its low GDP per capita, but the same cannot be said for 
Norway or even Spain. In these cases, neither high patenting activity nor low GDP per 
capita can explain the low  Ptop 10%/P ratio, and these two cases are not isolated. Indeed, 
by the same reasoning, many differences in the  Ptop 10%/P ratios between pairs of coun‑
tries cannot be explained, e.g. Germany and the Netherlands. Furthermore, the countries 
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shown in Fig. 6 were selected because their numbers of triadic patent families are sta‑
tistically robust. The  Ptop 10%/P ratios of the omitted countries with respect to those in 
Fig. 5 exhibit high variability that cannot be explained by their patenting activity. All 
these cases suggest that, for similar GDP per capita, factors other than technological 
activity acts on the  Ptop 10%/P ratio of countries, i.e. on the creation of fundamental new 
knowledge  (Ptop 0.01% or  Ptop 0.1%). Currently, it is reasonably to believe that the main fac‑
tor is research policy, as mentioned at the beginning of “Discussion”; especially, in the 
case of the evolution of indicators in Fig. 7.

All these observations raise an interesting question about the effects of research pol‑
icy on a country’s research performance at the fundamental level  (Ptop 0.01% or  Ptop 0.1%), 
because this level is not normally considered in studies on the links between economic 
and scientific wealth.

More closely related to our question regarding the effects of research policy on coun‑
tries’ research, Linda Butler, almost 20 years ago, tried to study the consequences of the 
Australian research policy on the quality of research outputs: “the academic response 
to the linking of funds, at least in part, to productivity measures undifferentiated by 
any measure of quality—publication numbers jumped dramatically, with the highest 
percentage increase in the lower impact journals” (Butler, 2004, p. 389). This finding 
was interpreted as a decline of Australian research, but more recently van den Besselaar 
et al. (2017) revisited the Australian case, showing that Butler’s finding was incorrect. 
This study, and another study by Schneider et al. (2016) calculated the  Ptop 10%/P ratios 
and showed that the Australian ratio has increased monotonically since the mid‑1990s, 
consistent with the high Australian  Ptop 10%/P ratio found in Australian herein (Fig. 6).

In relation to the current question, the Norwegian model of research funding has 
also been described (Sivertsen, 2018) and studied, with contradictory interpretations of 
its effects on research results (Schneider et  al., 2016; van den Besselaar & Sandström, 
2017). In Schneider et al., (2016, Fig. 7), the  Ptop 10%/P ratio for Norway increased from 
the mid‑1990s until approximately 2009, after which it seems to have remained steady at 
around 0.11. We found approximately the same ratio, and the high contrast between the 
low  Ptop 10%/P ratio but high GDP per capita for Norway suggests that Norwegian research 
might have an efficiency problem. Further supporting this possibility, Fig. 7 shows that the 
evolution of P and the  Ptop 10%/P ratio for Norway during the 11 evaluation periods, reveal‑
ing that P increases notably while the  Ptop 10%/P ratio remains almost constant, oscillating 
around 0.1. Because the GDP increased very little during the period 2006–2016, it seems 
that research policy in Norway is aimed at only increasing the number of papers but not the 
efficiency of research. Indeed, Portuguese and Norwegian research show similar evolutions 
even though the GDP per capita of Portugal is at least 3.5 times lower than that of Norway.

Wrong research policies lead to scientific stagnation, the case of Spain

As considered above, it seems that in most cases research policy is the main factor that 
explains the differences between countries described herein, including as research pol‑
icy the scientific culture discussed by Godin and Gingras (2000). Probably many factors 
that differ among countries affect the researchers’ attitude or country’s research environ‑
ment. Regarding the latter, it is worth noting that research projects that are generously 
funded by the European Research Council have a greater probability of success if they 
are executed in the UK, the Netherlands, or Switzerland than if executed in Germany, 
France, Spain or Italy (Rodríguez‑Navarro & Brito, 2020b).
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Regarding the factors that can affect the research success of countries, Bornmann and 
Marx (2012) propose the “Anna Karenina Principle” that only a few factors differing in 
each case can result in the difference between countries. According to this, the causes of 
research failure are better studied case by case; the case of Spain is illustrative because, 
according to the Anna Karenina principle, its incorrect research policy (Rodríguez‑Nav‑
arro, 2009) is what has led to its failure to succeed.

In Spain, a successful research policy was initiated in the late 1980s, resulting in 
a notable growth in the number of publications, starting in 1990 (Jiménez‑Contreras 
et  al., 2003), much faster than the growth of its GDP. The specific component of the 
research policy that resulted in this growth is still under discussion (Osuna et al., 2011), 
but this is not relevant to the purpose of this study.

A change in Spanish research policy took place in the early 2000s, but in the wrong 
direction, using the impact factor of journals as a factor determining the success of 
researcher evaluations (Jiménez‑Contreras et al., 2002). As a consequence, in 2009, it 
was evident that Spanish research was characterized by sound research that produced 
unimportant discoveries (Rodríguez‑Navarro, 2009). Since then, the whole research 
policy in Spain has been characterized by the extensive use of journal impact factors 
and the position of the journal in which papers are published in lists ordered by impact 
factor (Delgado‑López‑Cózar et  al., 2021). Publication in journals in the first quarter 
of this list (Q1) is usually required for successful evaluations of individual researchers, 
although it is known that this approach is not rational for selecting the most influential 
papers (Brito & Rodríguez‑Navarro, 2019).

The second unfortunate research policy in Spain was to decrease the proportion of 
research projects that were funded in each call, even though the selection process does 
not have sufficient accuracy to establish a reasonable rejection threshold. As a conse‑
quence, many solid projects are rejected. Although this policy was made public in 2012 
being attributed to the economic crisis, it was actually established several years before, 
always based on the argument of targeting improvement: “With will, our slimed‑down 
R&D system will be able to take advantage of the crisis—and emerge from it stronger 
than ever” (Vela, 2011). While such a policy of providing more funding to better evalu‑
ated projects is reasonable, that of not funding projects below an arbitrary threshold 
based on review metrics is damaging because such all‑or‑nothing funding based on an 
arbitrary threshold will leave many reasonably projects unfunded, especially when the 
review process is based on inappropriate indicators.

These two policy measures generate risk aversion among researchers (Zoller et  al., 
2014), who will only try to publish in high‑impact journals, selecting low risk goals for 
their projects that will finally lead to poorly cited papers, or in other words, with a very 
low probability of creating fundamental new knowledge. The current results confirm 
this prediction; Fig.  7 shows that, under this policy, the number of papers has grown 
while the  Ptop 10%/P ratio first remained stable at around 0.1 but then decreased during 
the last five years.

Conclusions

This study confirms a strong link between economic and research wealth. GDP condi‑
tions the amount of research in terms of the number of publications, while GDP per capita 
conditions the efficiency in terms of the  Ptop 10%/P ratio. Although in both cases there are 
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deviations for some countries, these are much more substantial in the case of the  Ptop 10%/P 
ratio. Two country factors have strong effects on this ratio: the technological activity, 
which we estimate using the number of triadic patent families, and the research policy. The 
best example of the effect of technological activity is Japan, for which the  Ptop 10%/P ratio 
remains at the level of low‑income countries despite its high scientific success if estimated 
based on the number of Nobel laureates. GDP per capita seems to impose a limit on the 
 Ptop 10%/P ratio; possibly, no medium‑ or low‑income country can achieve a high  Ptop 10%/P 
ratio. However, among countries with similar GDP per capita and technological activity, 
the  Ptop 10%/P ratio can vary widely depending on the research policy.
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