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Abstract
We present our approach for the identification of cited text spans in scientific literature, 
using pre-trained encoders (BERT) in combination with different neural networks. We fur-
ther experiment to assess the impact of using these cited text spans as input in BERT-
based extractive summarisation methods. Inspired and motivated by the CL-SciSumm 
shared tasks, we explore different methods to adapt pre-trained models which are tuned for 
generic domain to scientific literature. For the identification of cited text spans, we assess 
the impact of different configurations in terms of learning from augmented data and using 
different features and network architectures (BERT, XLNET, CNN, and BiMPM) for train-
ing. We show that identifying and fine-tuning the language models on unlabelled or aug-
mented domain specific data can improve the performance of cited text span identification 
models. For the scientific summarisation we implement an extractive summarisation model 
adapted from BERT. With respect to the input sentences taken from the cited paper, we 
explore two different scenarios: (1) consider all the sentences (full-text) of the referenced 
article as input and (2) consider only the text spans that have been identified to be cited by 
other publications. We observe that in certain experiments, by using only the cited text-
spans we can achieve better performance, while minimising the input size needed.
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Introduction

Bibliometrics, citation analysis and scientific summaries are means that allow research-
ers to navigate scientific literature and process information faster and more efficiently. The 
exponential increase in scientific publications across fields renders the automation and 
improvement of such methods even more pertinent.

Within that realm, citation analysis approaches are being supported by machine learn-
ing algorithms to identify relations and impact of authors and publications (Ding et  al. 
2016). The identified citations can be interpreted as links to other publications, and are 
used to calculate a range of impact metrics between publications (Bornmann and Daniel 
2009; Hutchins et al. 2016; Fister et al. 2016; Chang et al. 2019), which do not however 
capture the content of a citation. Improvements in text mining and natural language pro-
cessing allow not only to identify citations in text but also to analyse the citation context, 
i.e., the text span that accompanies and explains a reference, describing the reasons for cit-
ing it. By analysing the citation context we can identify the motive for the citation (Teufel 
et al. 2006) as well as indirectly acquire information on the content of the referenced paper. 
Hence, assuming we have several citations to a specific publication, we could infer its main 
arguments, knowledge contributions or disputed claims.

However, the information we learn about a referenced paper is subjective and limited by 
the intentions, opinion and potential bias of the citing author(s). Instead, locating cited text 
spans in a referenced paper itself, i.e., finding the exact sentence(s) that are described by 
the citations, can provide us with more accurate information about the referenced knowl-
edge. Being able to identify citing-cited text spans could aid in identifying the relation not 
only between publications, but also between specific arguments and pieces of information, 
thus allowing us to monitor the evolution of knowledge in a field. Identification of cited 
text spans also allows to better assess the impact, highlights and weaknesses of a refer-
enced publication and could be used to improve citation-based metrics, as well as informa-
tion retrieval and literature navigation tools (Hassan et al. 2018).

In this work we focus on the cited text span identification, treating it as a sentence pair 
classification task. We build on our approach presented in CL-SciSumm 2019  (Chan-
drasekaran et al. 2019; Zerva et al. 2019) examining in more detail the suitability and limi-
tations of BERT (Devlin et al. 2019) for this task, compared to other architectures (includ-
ing XLNET Yang et al. 2019; CNN Kim 2014; BiMPM Wang et al. 2017). The manually 
annotated dataset for this task is rather small, which constitutes a significant limitation in 
terms of training deep neural network models, especially since they were pre-trained on the 
generic domain. We thus explore the potential of fine-tuning the models using augmented 
or unlabelled data and compare the performance of domain-tuned to generic BERT lan-
guage models. We evaluate the trained models using F-score as our primary criterion. To 
get more insights on the behaviour of each model we expand the evaluation using the mean 
reciprocal rank (MRR) (Craswell 2009) and an ‘relaxed’ F-score approach that allows us to 
consider the efficiency of each model in locating the wider area of text that a citation refers 
to Nomoto (2018).

In addition, we explore the potential value of cited text span identification for another 
important NLP task, namely, scientific summarisation. It has been claimed that since cita-
tions reveal the most important and mention-worthy information of a reference paper, 
their combination would capture all the paper’s main points and contributions (Qazvinian 
and Radev 2008). This assumption motivated citation-based extraction of scientific sum-
maries  (Cohan and Goharian 2017; Abu-Jbara and Radev 2011). However, as discussed 
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above, citing sentences might be more biased or noisy, compared to the corresponding 
cited text spans extracted from a reference paper itself (Jha et al. 2017). Hence, it has been 
proposed that cited text spans of the reference article could provide less biased information 
to support the scientific summarisation task (Cohan and Goharian 2017).

We intend to explore this scenario and compare the efficiency of using cited text spans 
for scientific summarisation, compared to using the full-text of the paper. To that purpose, 
we use an extractive summarisation approach, employing an adaptation of BERT which 
accounts for multi-sentential input (Liu and Lapata 2019). We examine two training con-
figurations for the summarisation methods: (1) using the full paper sentences as input and 
(2) using only the combination of abstract and cited text spans. We evaluate the model 
using ROUGE-1, ROUGE-2, and ROUGE-L scores. The results show that in many config-
urations, performance is comparable between two scenarios on ROUGE-1 and ROUGE-L 
scores but using cited text spans consistently yields better ROUGE-2 scores.

Related work

CL‑SciSumm shared tasks

We provide here the definitions of terms used throughout the article, related to the citation 
analysis (based on the CL-SciSumm tasks Chandrasekaran et al. 2019):

•	 Full-text The main body of a scientific publication, including the abstract but poten-
tially excluding sections related to funding, acknowledgements, etc.

•	 Citing paper (CP) A full-text paper containing one or multiple citations to a reference 
paper

•	 Reference paper (RP) A full-text paper that is being cited by one or multiple citing 
papers.

•	 Citance/citing sentence A sentence that contains a reference to a specific paper.
•	 Cited text span The exact text span (sentence or word sequence) to which a citance 

refers.
•	 Reference/cited sentence A sentence in the RP which belongs to a cited text span.

The CL-SciSumm Shared Tasks (Jaidka et al. 2016, 2017, 2018; Chandrasekaran et al. 
2019) are centred around supporting and promoting the identification of cited text spans 
and the subsequent use of those text spans for the generation of scientific summaries. The 
tasks build on the pilot TAC 2014 BioMedSumm task,1 which was the first one to provide 
annotated resources with citing and cited sentences to support biomedical article summa-
risation. They propose a set of sub-tasks addressing the different steps that could lead to a 
more efficient scientific summarisation system, informed by cited text spans.

Since 2016 the challenges in CL-SciSumm (Chandrasekaran et al. 2019) are formulated 
as follows:

Given a set of reference papers (RP) and their corresponding papers that cite them (CP), 
participants have to build systems that can address Tasks 1A, 1B and (optionally) Task 2.

1  TAC- Text Analysis Conference: https​://tac.nist.gov/2014/Biome​dSumm​/.

https://tac.nist.gov/2014/BiomedSumm/
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•	 Task 1A For each citance, identify the spans of text (cited text spans) in the RP that 
most accurately reflect the citance.

•	 Task 1B For each cited text span, identify what facet of the paper it belongs to, from a 
predefined set of facets namely: Method, Aim, Implication, Results or Hypothesis.

•	 Task 2 Generate a structured summary (of up to 250 words) of the RP.

Cited text span identification

In order to identify cited text spans, most work focuses around modelling the relation/rel-
evance between a citing and a candidate cited sentence. Hence, several approaches for cited 
text span identification aim to model this relation by calculating textual similarity func-
tions between citing and candidate cited sentences (Mihalcea et al. 2006), as a measure of 
relevance between the two. Early systems submitted to CL-SciSumm proposed similarity 
scores and features based on TF–IDF, latent semantic analysis (LSA) (Yeh et al. 2017; Cao 
et al. 2016; Nomoto 2016; Prasad 2017), or informativeness measures such as point-wise 
mutual information (PMI) (Yeh et al. 2017; Jha et al. 2017) and Jaccard similarity (Prasad 
2017). Other systems used features based on the n-gram or sentence graph overlap (Aggar-
wal and Sharma 2016; Klampfl et al. 2016) in order to represent the similarity between the 
evaluated sentence pairs.

Other noteworthy approaches, focused on more specific modelling of the relation 
between cited and citing sentences, such as the adaptation of the Word Movers Distance 
(WMD) in combination with Latent Dirichlet Allocation (LDA) to infer the relevance 
between two text spans (Li et  al. 2018). The generated features were then used to train 
supervised machine learning classifiers, including linear regression, tripartite neural net-
works, random forest (RF), and variations of support vector machine (SVM) classifiers. 
SVM and RF classifiers seemed to be better suited for the task, yielding high performance 
in the yearly challenges up to 2018 (Jaidka et al. 2018; Cao et al. 2016; Baruah and Kolla 
2018; Li et  al. 2017). Moreover, ensemble learning approaches and voting mechanisms 
applied on top of separately trained supervised classifiers, also seemed efficient on further 
improving the performance (Wang et al. 2018; Ma et al. 2018).

Nomoto (2016) advocated the use of neural networks and embeddings in order to model 
cited-citing sentence pairs. They initially proposed a combination of a TF–IDF model with 
a single layer neural network, which however did not seem to reach the performance of 
other supervised approaches. They then proposed the use of a triplet loss function (Wang 
et al. 2014) to train a neural network for the task and analysed the performance over differ-
ent input embeddings. They also proposed the complimentary evaluation based on approxi-
mately correct targets (ACTs) where the goal is to find a region that likely contains a true 
target rather than its exact location (Nomoto 2018). Their approach on evaluation inspired 
the MRR and approximate PRF analysis presented in the results (“Results and discussion” 
section).

Apart from the aforementioned approach proposed by Nomoto, the continuous improve-
ments in the field of deep learning and neural networks inspired more applications of such 
methods on this task. In CL-SciSumm 2018, there were submissions using embedding-
based similarity measures (Baruah and Kolla 2018) and neural network architectures (CNN 
and LSTM) (Li et al. 2018; Abura’ed et al. 2018; Agrawal and Mittal 2018; De Moraes 
et al. 2018) to approach the task. However, due to the small dataset size, the best perform-
ing models were still based on RF and BM25 classifiers (Jaidka et al. 2018).
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The 2019 shared task facilitated deep learning approaches by providing additional 
weakly supervised data for training (Chandrasekaran et al. 2019; Nomoto 2018). Indeed, 
while some approaches are still heavily based on hand-crafted features and similarity 
functions (La Quatra et  al. 2019), there has been an increase both in the number and in 
the performance scores obtained by deep learning methods. Beijing university (Li et  al. 
2019) proposed the use of CNN combined with tailored Word2Vec feature maps to cap-
ture the weights for each sentence pairing, which demonstrated high F-score performance. 
Other approaches using CNN to calculate the validity of citing-cited sentence pairs have 
also been used Jha et al. (2017) and Ma et al. (2019). Siamese networks have also been 
employed for this task both as a standalone approach using a fully connected regression 
layer at the output (Fergadis et al. 2019), and in combination with other positional simi-
larity features (Karimi et  al. 2017). Overall, with the availability of augmented training 
data and the evolution of deep learning approaches and robust pre-trained embeddings, the 
application of deep learning techniques for efficient cited text span identification seems 
promising (Chandrasekaran et al. 2019).

In addressing this task, we noticed that it bears resemblance to a range of other NLP 
tasks, which assess the relation between spans of text. For example, sentence similar-
ity, paraphrase extraction, question answering and inference identification are tasks that 
are often approached through identifying the relation between two sentences or passages. 
Bidirectional deep learning approaches that generate embeddings from sentence pairs to 
model relations between them, seem to be an efficient approach for such tasks (Devlin et al. 
2019; Yang et al. 2019). Models such as BERT (Devlin et al. 2019), XLNET (Yang et al. 
2019) and CTRL (Keskar et al. 2019) have been shown to produce good results for a wide 
range of sentence-pair tasks including question answering, machine translation and para-
phrase. Matching network approaches such as Siamese networks  (Nicosia and Moschitti 
2017; Neculoiu et al. 2016), Bilateral Multi-Perspective Matching (BiMPM) (Wang et al. 
2017) and other matching network proposals (Duan et al. 2018; Nie and Bansal 2017), also 
seem promising for tasks related to sentence pairing. However, with the exception of Sia-
mese networks such models have not been used for cited text span identification. We hence 
decided to experiment with methods based on BERT encoders (Devlin et al. 2019) and also 
compare with aforementioned architectures to evaluate their suitability and adaptability to 
the task.

Scientific summarisation

Scientific document summarisation is a well researched field. The study conducted by 
Luhn (1958) is the very first work on technical paper summarisation using a statistical-
based approach. His approach firstly detects descriptive words based on the frequency of 
occurrence in a document. The summary is then created by selecting sentences with high 
density of descriptive words. Later work based on this idea proposed multiple features to 
indicate sentence importance (Edmundson 1969), weights for words (Conroy et al. 2006), 
or statistical tests on word distributions (Lin and Hovy 2000).

Several studies have applied different machine learning techniques for summarisa-
tion. Typically, machine learning approaches treat summarisation as a classification task 
in which a sentence is classified into two classes: included or not included in the sum-
mary. The work by  Kupiec et  al. (1999) was among the first studies that used machine 
learning techniques for summarisation. They trained a Naive Bayes classifier with several 
features including the location and the length of a sentence, fixed phrases, the position of 
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paragraphs and word frequency features. Other work showed that machine learning meth-
ods that exploit the dependency between sentences (e.g., Hidden Markov model Conroy 
and O’leary 2001 and Conditional Random Fields Shen et al. 2007) often outperform other 
techniques.

Recently, deep learning-based approaches have been applied to the summarisation task 
and achieved remarkable results. SummaRuNNer  (Nallapati et  al. 2017) is a Recurrent 
Neural Network-based sequence model for extractive summarisation of documents. Zhou 
et al. (2018) proposed a novel end-to-end neural network framework for summarisation by 
jointly learning to score and select sentences. The work of Rush et al. (2015) was among 
the first studies that have attempted to use sequence-to-sequence models for abstractive 
summarisation. Up to now, several studies have enhanced the sequence-to-sequence model 
with copy mechanism, coverage model (See et al. 2017), and reinforcement learning (Pau-
lus et al. 2017).

Inspired by recent work on pre-training of deep bidirectional transformers for language 
understanding  (Devlin et  al. 2019), some authors have considered the use of pre-trained 
encoder for document encoding in summarisation. Liu et  al. (2019) proposed a model 
that induces a multi-root dependency tree while predicting the output summary. Liu and 
Lapata (2019) introduced a novel document-level encoder based on BERT and achieved 
state-of-the-art results on three datasets. Zhang et  al. (2019) proposed the hierarchical 
BERT to pre-train document level encoders on unlabelled data. Miller (2019) has utilised 
BERT for extractive text summarisation on a python-based RESTful service for lecture 
summarisation.

The aforementioned approaches have shown significant improvement in terms of per-
formance in automated summarisation, but they are implemented and optimised mainly for 
application on newswire datasets (CNN, DailyMail, NYT etc.). While the intention is simi-
lar the document characteristics differ between the newswire and scientific domain. Apart 
from the domain specific language and document structure, there is an important difference 
in terms of the length of documents and produced summaries between the two fields. Typi-
cally the expected summary size in the newswire domain is approximately 50 words long, 
while the corresponding scientific summaries range between 150 and 250 words. At the 
same time, the length of documents to be summarised also differs: The average document 
length in newswire corpora is approximately 700 words while for full-text scientific publi-
cations it is approximately 4000 words (specifically the documents in CL-SciSumm corpus 
are approximately 6.3 times longer than the ones in CNN/DailyMail corpora).

In extractive summarisation models, the length of the produced summary can be 
adapted by controlling the stopping criteria in algorithms such as Maximal Marginal Rel-
evance (MMR) (Carbonell and Goldstein 1998) which are used to select the sentence to be 
added in the final summary. Yet, this does not alleviate the issue arising from the differ-
ences in the document length and structure. To deal with the length of scientific summaries 
most approaches focus on identifying the characteristics of useful sentences. Related work 
has focused on argumentative zoning identification and scientific discourse (Contractor 
et al. 2012; Cohan and Goharian 2017), identification of citing sentences and their func-
tion (Saggion et  al. 2016; Mohammad et  al. 2009) as well as identification of cited text 
spans (Galgani et al. 2015) have all been proposed as methods to limit the scope of input 
for the models in an informative way. Additionally, abstracts in scientific papers, typically 
contain important information that presents the main contributions of a paper. Xu et  al. 
(2015) proposed a statistical framework to extract a scientific summary from a collection of 
citations to a paper, which they referred to as “citation summary”. Other researchers also 
utilised citation summaries to that end (Mollá et al. 2014; Galgani et al. 2012). Recently, 
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cited text spans are also used for the same purpose. Galgani et  al. (2015) combined cit-
ing and cited text spans in a form of a citation network to extract summaries in the legal 
domain and showed that their method outperformed competitive baselines. Several partici-
pating systems in the CL-SciSumm shared-tasks have explored various methods for creat-
ing summaries based on cited text spans, such as word embeddings, sentence clustering, 
CNN-based learning, and sequence-to-sequence generating (Jaidka et al. 2016, 2017, 2018; 
Chandrasekaran et al. 2019). Together these studies provide important insights into the sci-
entific summarisation task and motivate our approach. We choose to focus on examining 
the suitability of the abstract and cited text spans when used instead of the full-text as 
input to BERT based architectures that have proved efficient in newswire summarisation. 
We note that if we only take into account the abstract (approximately 150 words) and the 
cited sentences (approximately 500 words) of a scientific paper, we will obtain a relatively 
similar length to the newswire corpora (approximately 700 words), so we will not deviate 
significantly in terms of input size.

Data resources and pre‑processing

Cited text span identification

CL‑SciSumm datasets

For all experiments presented in this work we used the data provided for the CL-SciSumm 
2019 Shared task (Chandrasekaran et  al. 2019). For cited text span identification, the 
organisers provided two different datasets for training: (1) a manually annotated dataset 
comprising 40 articles and their respective citing papers, which were also used in the 2018 
CL-SciSumm challenge, and (2) an augmented dataset of 1000 articles and their respec-
tive citing papers, which were automatically annotated with a neural network approach as 
described in Nomoto (2018). Henceforth, we will refer to the first dataset as the 2019 CL-
SciSumm dataset, the second one as the 2019-AUG dataset.

Note that the 2019 dataset may contain several consecutive sentences for each annotated 
citation in the CP and may correspond to multiple, not necessarily consecutive, cited text 
spans in the RP. The 2019-AUG dataset contains strictly one citation sentence and one 
cited sentence for each instance. The statistics for the two datasets are presented in Table 1.

Table 1   Dataset statistics for 
cited text span identification

2019 2019-AUG​

Positive instances 1154 30,407
Negative instances 3058 66,089
Avg words per CP text 46 35
Avg words per RP text 29 28
Avg ref sent per citation 1.72 1.00
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All CL-SciSumm data is organised as one text file per annotated reference paper (RP) 
and the information about the citing - cited text spans is provided using the following 
format:2

Citance Number: 15 | Reference Article: C02-1025.xml | Citing Article: W03-0423.
txt | Citation Marker Offset: [‘12’] | Citation Marker: Chieu and Ng, 2002b | Cita-
tion Offset: [‘12’] | Citation Text: <S sid = “12” ssid = “12”> Such global features 
enhance the performance of NER (Chieu and Ng, 2002b).</S> | Reference Off-
set: [‘4’] | Reference Text: <S sid =“4” ssid = “4”>In this paper, we show that the 
maximum entropy framework is able to make use of global information directly, and 
achieves performance that is comparable to the best previous machine learning-
based NERs on MUC6 and MUC7 test data.</S> | Discourse Facet: Results_Cita-
tion | Annotator: Aakansha Gehlot |

We processed this information to generate positive training and testing instances (sen-
tence pairs between citing sentences and text spans from the RP). The CL-SciSumm data is 
generated using a subset of the ACL anthology reference corpus (Radev et al. 2013), which 
in turn was generated by OCR. As a result, there are erroneous words and erroneously seg-
mented sentences in the annotations. We applied a set of sentence reconstruction rules to 
the RP and CP sentences to correct segmentation errors such as erroneous sentence breaks 
after parentheses, enumeration or abbreviations. The coprus pre-processing script is made 
available as an ipython notebook3 and the details and statistics of the OCR errors addressed 
are described in the “Appendix 1”.

For the generation of negative instances, each citation sentence was paired to randomly 
selected sentences from the RP. The RP sentences to be used for the negative pair genera-
tion were further processed to filter noisy sentences. The filtering methods are described in 
detail in the “Appendix 1”. In order to keep a balance between adequate training data and 
labels, we chose a proportion of 1:4 positive to negative pairs per citance. The same pro-
cessing is applied on both the 2019 and 2019-AUG dataset.

We evaluate our methods using tenfold cross validation on the 2019 dataset, since it is 
the only dataset that was manually annotated to a gold standard.

ACL anthology reference corpus (ACL‑ARC)

The ACL Anthology reference corpus (Bird et al. 2008) was used in order to experiment 
with fine-tuning the BERT language model on a domain specific dataset, prior to training 
on the CL-SciSumm data.

We used the v2.0 version (March, 2016) and the files processed and formatted by the 
ParsCit software (Councill et al. 2008). We further processed each document to retain only 
passages marked as < bodytext > . These text passages were filtered to remove noisy ones, 
as described in the “Appendix 1”. The resulting corpus which was used for fine-tuning to 
the target domain amounted to 7,205,084 sentences.

3  https​://githu​b.com/chrys​sa-zrv/cited​-text-span-id/.

2  Text in italics corresponds to variables—annotated information.

https://github.com/chryssa-zrv/cited-text-span-id/
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Scientific summarisation

For training and evaluating our models we used two benchmark datasets, namely the CL-
Scisumm 2019 dataset and the ScisummNet dataset (Yasunaga et al. 2019). The CL-Sci-
Summ 2019 dataset has 40 research papers randomly sampled from the ACL Anthology 
reference  corpus. Note that the CL-SciSumm 2019 dataset for scientific summarisation 
contains the same 40 papers that are manually annotated in the 2019 CL-SciSumm dataset 
used for the cited text span identification and described in the previous section.

The ScisummNet dataset contains the 1000 most cited papers from the same ACL 
Anthology reference corpus and the respective human-written summaries. The 1000 papers 
have 21–928 citations in the anthology. They also fully overlap with the 1000 papers used 
as the augmented 2019-AUG dataset. For the generation of the human-written summaries, 
the 1000 papers were treated as RP. From their respective CP, 20 citances for each paper 
were selected and provided to the annotators along with the abstracts. Thus the annotators 
produced the summaries without reading the full-text.

For the experiments presented below we removed overlapping papers with the CL-Sci-
summ 2019 test dataset, resulting in a total of 978 papers. In all summarisation experi-
ments, we use the ScisummNet dataset for training and report the testing result on the CL-
Scisumm 2019 dataset.

In order to prepare the data for this task, we firstly filter out too long (more than 45 
tokens) or too short (less than 5 tokens) sentences. Any unrelated sentences, i.e., sentences 
that belong to “Acknowledgment” or “References” sections, are also removed. We then 
tokenise the text using the stanford-corenlp toolkit.4

As explained before, the training data was created using abstractive summarisation 
methods, i.e., the annotators produced their own sentences rather than copying sentences 
from original papers. These summaries, however, cannot be directly used to train extrac-
tive summarisation models. Hence we pre-process the summaries to create an extractive 
summary version of the originally provided data. To identify which sentences should be 
put into an extractive summary, we greedily selected sentences that maximise the ROUGE 
scores. To generate training data for the classifier (described in “Methods” section), we 
assigned label 1 to sentences selected in the extractive summary version and 0 otherwise, 
thus obtaining positive and negative instances.

Overview of approach

In the following sections we describe our methods and results for the cited text span identi-
fication task (“Cited text span identification approach” section) and the scientific summari-
sation task (“Scientific summarisation” section).

Regarding the cited text span identification task, we fine-tuned the BERT model (next sen-
tence prediction classifier) for the CL-SciSumm 2019 task. We compared it against BERT 
models fine-tuned on domain specific data first, as well as other architectures (XLNET, Con-
volutional Neural Network (CNN), and Bilateral Multi-Perspective Matching (BiMPM)).

Meanwhile, for the scientific summarisation task, we also fine-tuned the BERT model and 
experimented with three different types of output layers: linear, Bidirectional Long Short-
Term Memory (BiLSTM), and bidirectional transformer.

4  https​://stanf​ordnl​p.githu​b.io/CoreN​LP/.

https://stanfordnlp.github.io/CoreNLP/


3118	 Scientometrics (2020) 125:3109–3137

1 3

An overview of the methods we compare and the datasets used is depicted in Fig. 1.

Cited text span identification approach

Methods

We treat the task as a sentence pair classification task, where we have to classify a citing 
sentence and a candidate reference sentence as a valid or invalid pair. Within the context of 

Fig. 1   An overview of the methods and DNN models used and compared against each other (grey rounded 
components) for cited text span identification and scientific summarisation

Table 2   Example of valid and invalid citation pairs, extracted from document C04-1089 of the 2019 CL-
SciSumm corpus

Citing sentence Reference sentence

VALID Shao and Ng (2004) presented a method to 
mine new translations from Chinese and 
English news documents of the same period 
from different news agencies, combining 
both transliteration and context information

In this paper, we propose a new 
approach for the task of mining 
new word translations from com-
parable corpora, by combining 
both context and transliteration 
information

INVALID Shao and Ng (2004) presented a method to 
mine new translations from Chinese and 
English news documents of the same period 
from different news agencies, combining 
both transliteration and context information

While we have only tested our 
method on Chinese–English 
comparable corpora, our method 
is general and applicable to other 
language pairs
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this task, a valid pair corresponds to a citing sentence that refers to the idea mentioned in 
the reference sentence of the pair. Hence all our models are trained to output probabilities 
for each label “INVALID” or “VALID”, which are encoded as 0 and 1, respectively. An 
example is presented in Table 2.

Inspired by performance on other text matching tasks we experiment with BERT (Dev-
lin et  al. 2019) as our primary model. Specifically, since BERT is pre-trained on a lan-
guage modelling (LM) and a next sentence prediction task, its architecture and learned 
embeddings can readily account for textual sequence pairs and be adapted to citing-cited 
sentence pair identification.

Our main approach uses the bert-base-uncased model, with the following setup: 12 lay-
ers, hidden vectors of size 768 and 12 self-attention heads.5 We specifically adapted the 
“NextSentencePrediction” pre-trained model and fine-tuned on the CL-SciSumm 2019 
dataset. We compare that to the use of other network architectures as well as the use of 
augmented data. We refer to this as the BERT-base model henceforth.

Fine‑tuning on augmented data

The fact that BERT was pre-trained on data from the general domain, could render it sub-
optimal for application on tasks pertaining to scientific text. Hence, we investigate the 
potential of using unlabelled or machine generated data to fine-tune the pre-trained BERT 
model prior to training on the 2019 dataset. We explore three different approaches using 
augmented data to improve performance: 

1.	 Using a BERT model pre-trained on domain-specific data: We use the SciBERT model 
(Beltagy et al. 2019), which is pre-trained on a collection of 1.14M documents from 
Semantic Scholar (Ammar et al. 2018). Specifically the collection consists of 18% papers 
from the computer science domain and 82% from the broad biomedical domain. Assum-
ing that the vocabulary of the SciBERT model (scibert-scivocab-uncased) is closer to 
the task, we compared its performance to BERT (without further fine-tuning).

2.	 Using large, unlabelled, domain-specific data: Fine-tune the weights of the pre-trained 
BERT model on the ACL-ARC (Radev et al. 2013) and then train on the CL-SciSumm 
data as above. We henceforth refer to the resulting model as the ACL model.

	   For fine-tuning on the ACL-ARC corpus, we use the next sentence prediction configu-
ration. In each epoch we choose whether to sample a pair of consecutive or random sen-
tences with 0.5 probability respectively. We employ the fine-tuning approach described 
in (Howard and Ruder 2018) and fine-tune for 3 epochs and a batch size of 16, with an 
initial learning rate of LR = 3e − 5.

3.	 Using augmented, task-specific data: as augmented data, we refer to a dataset that was 
automatically generated either with distant supervision or after training a model on a 
specific task. In this case, we use the augmented data provided by the CL-SciSumm 
shared task 2019 (see also “Data resources and pre-processing” section). We compared 
the following approaches: 

5  For all experiments that use BERT models, the relevant code is implemented in Python, using the Pytorch 
library. All BERT pre-trained models are provided by https​://githu​b.com/huggi​ngfac​e/trans​forme​rs, version 
2.4.0, which has been verified to reproduce the outputs of the original TensorFlow implementation.

https://github.com/huggingface/transformers
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(a)	 Fine-tune the weights of pre-trained BERT as described for (2), but instead of 
consecutive and random sentences from unlabelled data we use citing-cited pairs 
that have been extracted automatically versus random pairs (denoted as 19-AUG-
FT in the results).

	   This way we intend to examine whether using the same fine tuning approach 
with a smaller but task specific corpus would provide us with a better model. 
While the 2019-AUG dataset is significantly smaller than the ACL-ARC corpus, 
the automatically generated sentence pairs are closer to the original task, and thus 
could compensate for the corpus size.

(b)	 Combine the augmented data with the manually labelled data and train BERT on 
the combined corpus, with the same configurations as for the BERT-base model 
(denoted as 19-AUG in the results).

(c)	 Use positive instances from the 2019-AUG dataset, train for 5 epochs and then 
revert to training on the manually annotated 2019 dataset with weight and learn-
ing rate decay (denoted as 19-AUG-P in the results).

Note that we apply 19-AUG (3b) and 19-AUG-P (3c) approaches on the BERT, SciB-
ERT and ACL models as well.

Comparison with other architectures

We compared the BERT base model to the following architectures.
CNN with BERT features: In this case we experimented with the use of a CNN layer that 

takes the output of the BERT pre-trained model as input features. To produce a feature vec-
tor for each token, we initially concatenated the last four layers of the BERT model and used 
2 × 2 MaxPooling (Zerva et al. 2019), which has been shown to achieve optimal performance 
according to Devlin et  al. (2019). Here we opted for maintaining the 4 × 768 dimension 
instead of concatenation. We experimented both with the BERT and SciBert embeddings. 
The CNN architecture consists of three convolution layers, followed by a fully connected lin-
ear layer. We use 3 × 3 MaxPooling after each convolution layer and a dropout of 0.1 after the 
last convolution layer.

We initially experimented with the use of the full sentence embeddings against the use 
of the [SEP] and [CLS] embeddings only, which capture the sentence and sentence pair-
ing information, respectively (see Fig.  2). As shown in the “Appendix 3” we found that 
using only the [SEP] + [CLS] embeddings results in better performance, while it consumes 
less memory and running time compared to using the full sentence embeddings. Hence, 
in Table 5 we compare the BERT base model with the CNN+BERT and CNN+SciBERT 
approaches, which both use the [SEP]+[CLS] embeddings as input.

We also experimented with the use of additional features, such as the position of a sen-
tence in a document and the section of the publication (sid and ssid offsets). However, the 
experimental results showed that these features did not help the performance. We therefore 
present those results in the “Appendix 3”.

XLNET: We compare the performance of BERT to the use of XLNET (Yang et  al. 
2019). XLNET has been shown to outperform BERT in several NLP tasks, addressing one 
of BERT’s weaknesses in the language modelling approach. Instead of masking inputs, 
XLNET uses an auto-regressive method, and learns bidirectional contexts by maximising 
the expected likelihood over all permutations of the factorisation order. It has been shown 
to outperform BERT on various tasks, including several paraphrasing tasks of the GLUE 
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benchmarks as well as question answering tasks (SQUAD) (Rajpurkar et al. 2016), RACE 
(Lai et al. 2017). To repeat the experiments with XLNET, we used the xlnet-base-cased 
model provided on huggingface transformers (Wolf et al. 2019) for Pytorch. For the hyper-
parameter setup, we used the fine-tuning configurations provided for the SQUAD dataset.

Bilateral multi-perspective matching model: With the intuition that there is probably 
some correlation or shared information between citing and cited text spans, e.g., they may 
be paraphrase of each other or they may have some inference relation, we employed Bilat-
eral Multi-Perspective Matching model (BiMPM) (Wang et al. 2017) to identify cited text 
spans. BiMPM firstly encodes two input sentences with BiLSTM and then matches the 
encoded ones in both directions (from left to right and from right to left). In the matching 
stage, the model uses four matching strategies to compare each time-step in one sentence 
against all time-steps in the other sentence.

In this work, we used GloVe pre-trained embeddings (Pennington et al. 2014) as input to 
BiMPM. We then conducted experiments with 100 epochs and a batch size of 6. Similar to 
the CNN approach, we also experimented with feature vectors extracted from BERT. Spe-
cifically, we replaced Glove embeddings by vectors resulting from 2 × 2 MaxPooling over 
the last four BERT layers. To address the issue of imbalanced training data, we set different 
weights for positive and negative pairs in the loss function, including 0.4 versus 0.6 and 0.3 
versus 0.7. Even with re-weighting, the model could not learn to distinguish positive pairs; 
we therefore only report results on the GloVe embeddings.

Results and discussion

Evaluation setup

Following the evaluation metrics used in CL-SciSumm 2019 shared task, we use Precision, 
Recall and F-score as the primary performance metrics, to evaluate the predictions against 

Fig. 2   Different sentence embedding configurations to be used as input features for the CNN
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the gold label annotations. For these metrics, the evaluation is considered on a sentence 
level (we use the sentence ids indicated as correct to compare against the predictions).

Apart from those metrics we also want to get a better understanding of the distance 
between predictions and the gold labels (focusing on the case of false positives). Distance 
in this case can be estimated indirectly via: 

1.	 MRR By estimating the mean reciprocal rank (MRR) for each classifier we can obtain 
a measure of where a correct (gold label) sentence falls based on the range of predicted 
scores. Thus we can discriminate between models that still attribute high probabilities 
for correct citing-cited pairs and those that have a behaviour closer to random.

	   We compare the MRR performance for all systems discussed above. We note that 
a classifier might attribute the same score to several sentence pairs. Thus we consider 
two types of MRR scores, namely group rank (MRR-g) and no group rank (MRR-ng). 
Regarding MRR-g, we group pairs that are attributed same probabilities by the model 
into the same rank. For MRR-ng, we randomly permute the order of sentence pairs with 
same scores when evaluating the output. For example, if we have two sentence pairs sp1 
and sp2 and the model attributes both of them with probability pi , which is the highest 
probability score above all pairs, the pairs would be attributed a rank ri as follows:

•	 group-rank: r1 = r2 = 1;
•	 no group-rank: r1 = 1, r2 = 2 if the random probability generation is rpg > 0.5 ; 

otherwise r1 = 2, r2 = 1.

2.	 Relaxed PRF using ACT​ In this case we consider predicted cited sentences correct if 
they fall within a varying window (window size n ranging from 1 to 5) around the gold 
annotated label and repeat the Precision, Recall and F-score (PRF) evaluation. This 
evaluation approach is inspired by Nomoto (2018) who argues that examining a wider 
cited area is important in getting a broader picture of how such models perform. They 
refer to this approach as approximately correct targets (ACT).

We use 10-fold cross validation on the 2019 dataset for all reported results below. We 
also present the performance on the 2019 test dataset for CL-SciSumm shared task in 
the “Appendix 2” as a point of reference.6 For each fold, the results for Precision, Recall 
and F-score were generated by the following procedure. We firstly generate all possible 
citing-cited sentence pairs for each RP and then apply the trained models on each pair. 
We rank the output for each pair based on the score for the ’VALID’ class, and choose 

Table 3   Performance on the 
2019 dataset for the BERT base 
model and k ranging from 1 to 5

Bold values correspond to the highest obtained performance for each 
metric

k Recall Precision F-score

1 0.173 0.113 0.137
2 0.162 0.192 0.176
3 0.149 0.259 0.189
4 0.133 0.299 0.184
5 0.121 0.337 0.178

6  The performance on 2019 CL-SciSumm test data was calculated by the CL-SciSumm 2019 organisers 
and we do not have access on the gold labels to further analyse those results.
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the top k pairs to return as positive instances. We initially evaluate the BERT base model 
on 2019 dataset for k = [1, 5] as shown in Table 3 and report results for k = 3 for the rest 
of the configurations, since we obtain the best F-score value for this k.7 

Fine‑tuning on augmented data

In Table 4 we present the performance for the BERT models, firstly using BERT-base on 
2019 CL-SciSumm dataset and subsequently for the different fine-tuning combinations 
mentioned in “Fine-tuning on augmented data” section.

We can observe that fine-tuning the BERT-base model on the ACL-ARC corpus prior to 
training on the 2019 dataset yields the best performance and outperforms both BERT-base, 
SciBERT, and the 19-AUG-FT model. In comparison, the 19-AUG-FT approach does not 
perform as well as the ACL one. We identify two potential reasons for the difference in 
performance: (1) the limited size of the 2019-AUG augmented data compared to the ACL-
ARC corpus and (2) the noise in the generation of the 2019-AUG data. The noisy data 
could explain the low performance when combining the 2019 dataset with the 2019-AUG 
one. Indeed, the automatically generated pairs for the 2019-AUG dataset, are limited to 
one reference sentence per citation. We have seen that the 2019 manually annotated dataset 
often has multiple reference sentences paired to each citation sentence (>20%), thus we 
can assume that the same would be true for the 2019-AUG data, hence this would account 
for a portion of false negatives. We tried to alleviate this by experimenting with the use 
of only the positive instances, but that approach also proved to be insufficient. With the 
19-AUG-P approach however, i.e., when we used only the positive instances for the first 5 
epochs, and then continued training only on the 2019 CL-SciSumm dataset with decaying 
learning rate, we can see that both the ACL and the BERT models get an improvement in 
performance. The combined ACL + 19-AUG model obtains better performance, indicating 
that the combination of the two types of domain specific datasets is beneficial. On the other 
hand, we noticed that in all those models the ability to discriminate between valid/invalid 
instances in terms of the predicted score, actually worsened (leading to high MRR-g scores 
and low MRR-ng scores). In fact, when applied on the SciBERT model, the classifier pre-
dicted very similar and low scores for all pairs, leading to reduced F-score performance.

Table 4   Performance on the 2019 dataset for the BERT base model and the fine-tuned approaches

Bold values correspond to the highest obtained performance for each metric

Model Precision Recall F-score MRR-ng MRR-g

BERT-base 2019 0.149 0.259 0.189 0.285 0.697
BERT-base 19-AUG​ 0.144 0.277 0.189 0.156 0.633
BERT-base 19-AUG-P 0.168 0.265 0.206 0.165 0.687
ACL 0.159 0.289 0.205 0.293 0.747
ACL 19-AUG​ 0.155 0.255 0.193 0.179 0.751
ACL 19-AUG-P 0.172 0.277 0.213 0.181 0.752
SciBERT 2019 0.118 0.220 0.154 0.252 0.695
SciBERT 19-AUG​ 0.085 0.101 0.092 0.125 0.789
SciBERT 19-AUG-P 0.103 0.156 0.135 0.185 0.658
19-AUG-FT 0.148 0.271 0.191 0.192 0.688

7  We noticed similar patterns for the rest of the algorithms tested.
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We intend to further experiment with augmenting data in future work, looking into dis-
tant learning and instance re-weighting approaches that could help us take better advantage 
of such domain-specific resources.

Comparison with other architectures

In Table 5 we present the comparison with other architectures for the 2019 dataset.
With the exception of CNN+SciBERT no other model outperforms the BERT-base 

approach. In terms of the XLNET architecture, this could be owed to the fact that XLNET 
did not use the next sentence prediction task during the training of the language model. 
While in the XLNET paper it is specified that using the next sentence prediction for pre-
training did not add any significant performance boost, perhaps in this specific task the 
information captured by the BERT language model using the next sentence prediction task 
is beneficial. We note however, that XLNET obtains a high score for the MRR-g metric, 
indicating that part of its performance drop is due to the fact that many pairs obtain the same 
high-positive score (i.e., the model does not learn to discriminate between different pairs 
that well). In interpreting the results, it has to be noted that we experimented only with the 
hyper-parameters specified in the supplement of the XLNET paper and optimised only for 
the number of epochs. Thus, further experimentation could lead to improved performance.

The CNN model used with BERT embeddings as input features, obtained comparable 
performance, even surpassing BERT-base when using the SciBERT embeddings. This 
result opposes the performance of SciBERT presented in Table 4. Since in the initial archi-
tecture the [CLS] embedding is used for the final prediction, while in this CNN configura-
tion we use [CLS]+[SEP] embeddings, we speculate that SciBERT captures more accu-
rately the sentence information, hence the performance boost. We present a further analysis 
of the CNN configurations in the “Appendix 3” and we intend to further explore the poten-
tial of the CNN for this task in future work.

Relaxed PRF using ACT​

As pointed out by Nomoto (2018), ACTs allow us to consider the efficiency of the models 
in a less strict citation resolution task. In Fig. 3 we can observe the F-score performance of 
a selection of the presented approaches on the 2019 dataset. We noticed that for most mod-
els performance increases at a comparable rate as we widen the window of valid ACTs. 
Interestingly, the increase for the 19-AUG-FT model (purple line, with triangle marks) is 
significantly greater and for w ≥ 2 outperforms all other models. We attribute this to the 

Table 5   Performance on the 
2019 dataset for the XLNET, 
CNN and BiMPM models

Bold values correspond to the highest obtained performance for each 
metric

Model Precision Recall F-score MRR-ng MRR-g

BERT-base 0.149 0.259 0.189 0.285 0.697
XLNET 0.104 0.188 0.134 0.225 0.731
CNN+BERT 0.145 0.263 0.187 0.260 0.685
CNN+SciBERT 0.148 0.271 0.191 0.265 0.694
BiMPM 0.035 0.070 0.047 0.096 0.315
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fact that the 2019-AUG data used for fine-tuning that model was generated with a method 
that aims to optimise performance in the “approximate” targets rather than the exact anno-
tated data. This observation could help alleviate the impact of noise from the augmented 
2019-AUG data, discussed in the previous sections, and incorporating ACT’s in the train-
ing process could aid to achieve better performance.

Discussion on multi‑cited text spans

Our observations on the training set show that RP sentences are repeatedly cited from dif-
ferent CP citing sentences. Table  6 shows that half of the RP sentences are cited twice 
while the others are cited from 3 to 17 times in the 2019 dataset. We observed that this fact 
might bias our models in favouring specific sentences, but it also significantly affects the 
calculated performance in the case of missing sentences of the RP that are frequently cited.

As shown in Table 7 all models are prone to predicting the same RP multiple times. 
However, there appears to be a direct relation between the performance of the model and 
the percentage of repeated predictions. Specifically, it seems to be one of the main obsta-
cles in the performance of the BiMPM model, since it consistently favoured the same 
RP sentences. Also, comparing the BERT-base model to the fine-tuned versions (ACL, 
SciBERT and 19-AUG-FT), we can see that fine-tuning helps to avoid the repetitive RP 
predictions. Even in the case of the 19-AUG-FT model, which has lower F-score perfor-
mance than BERT-base, the proportion of repeated RP sentences in the predictions is sig-
nificantly lower. The same pattern, although less pronounced, we can observe between the 
CNN+BERT and CNN+SciBERT models.
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Fig. 3   Relaxed F-score performance for a window size up to 5 for on the 2019 CL-SciSumm dataset

Table 6   The number of RP 
sentences that are repeatedly 
cited

Dataset 2 times >2 times

2019 162 170
2019-AUG​ 2996 2001
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Scientific summarisation

Methods

We formulate the summarisation task as a binary classification problem as well. The 
classifier needs to classify sentences provided as input into two classes: included or not 
included in the summary. The trained model outputs a probability for each class and we 
can then rank sentences based on how likely they are to be included in the final sum-
mary. From the ranked list, we add sentences into the final summary one by one, using 
Maximum Marginal Relevance (MMR) and ensuring that there is no tri-gram overlap 
between the current summary and the sentence to be added. In this way, we avoid add-
ing redundant sentences with very similar content, which would not add new informa-
tion to the summary. The process stops when the summary reaches the predefined, max-
imum length (i.e., 250 words in this task).

Following the previous tasks, we also employ BERT for scientific summarisation. 
Specifically, the BERT-based classifier that we use is similar to the one by Liu (2019). 
We maintain sentence vector encoding of BERT by using the [SEP] embeddings to 
capture features for each sentence. However the [CLS] symbols are re-purposed and 
used to signify the beginning of each sentence. Hence, in order to model multiple sen-
tences, we capture features for all sentences ascending each [CLS] symbol. An odd 
sentence is assigned a segment embedding EA while an even sentence is assigned a seg-
ment embedding EB . Finally, a linear layer is added to the BERT output to predict a 
score for each sentence (1 is included, 0 is not included). Besides the linear layer, we 
also experiment with a bidirectional transformer layer and a Bidirectional Long Short-
Term Memory (Bi-LSTM) layer.

The small size of the CL-SciSumm dataset rendered it harder to train a deep neu-
ral model. To address this issue, we train all of our models using the data from Sci-
SummNet  (Yasunaga et  al. 2019). The benefit of this approach is that we can take 
advantage of its large size. The drawback, however, is that all summary sentences in 
SciSummNet were taken from the original papers, which makes them all subjective sen-
tences. We therefore apply simple heuristics (for example, change “our” to “their”) to 
convert these subjective sentences to objective ones after generating a summary.

Table 7   Proportion of repeated 
RP predictions in each model 
configuration for the 2019 
CL-SciSumm dataset

1 2 3–5 6–10 11–20 >20

BERT-base 0.59 0.18 0.16 0.06 0.02 0.00
ACL 0.60 0.20 0.15 0.04 0.01 0.00
19-AUG-FT 0.57 0.20 0.17 0.05 0.01 0.00
BERT 19-AUG-P 0.64 0.17 0.14 0.03 0.01 0.00
ACL 19-AUG-P 0.64 0.18 0.13 0.03 0.01 0.00
SciBERT 0.63 0.19 0.14 0.03 0.01 0.00
XLNET 0.55 0.18 0.19 0.06 0.01 0.00
BiMPM 0.40 0.20 0.18 0.13 0.06 0.03
CNN+BERT 0.57 0.14 0.18 0.08 0.03 0.01
CNN+SciBERT 0.58 0.16 0.13 0.09 0.03 0.01
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Results and discussion

Evaluation setup

Regarding the scientific summarisation task, we evaluated our systems by calculating 
ROUGE-2 score (Lin 2004) when matching the generated summaries against the provided 
summaries by the CL-SciSumm 2019 shared task. We use the ROUGE-2 score as the 
main determinant for performance since it is the most commonly used one and it has been 
claimed to have better accuracy for summarisation tasks (Lin 2004). We complement the 
evaluation using ROUGE-1 and ROUGE-L scores, in order to get a comprehensive over-
view of the performance for each model.

All models use bert-base-uncased model with 50,000 training steps on a single GTX 
1080Ti GPU. To prevent over-fitting, we set the dropout to 0.1. Learning rate is 0.002 with 
warming-up on first 10,000 steps to reduce the primacy effect of the early training samples. 
The models accumulate the gradients every two steps.

Results

Table 8 shows the results of our models on different settings. The first and second blocks 
of the table show the results where the models select sentences from full papers and from 
a combination of abstracts and citances, respectively. Following Yasunaga et al. (2019), we 
also present the results with augmented abstract setting where the models start by incor-
porating the full abstract as an initial summary and continue by adding sentences to it. 
For comparison purposes, we also show the results of BertSum (Liu and Lapata 2019) in 
both extractive and abstractive settings in the last block of the table.8 We also present the 

Table 8   ROUGE F1 results on CL-SciSumm 2019 data

Bold values correspond to the highest obtained performance for each metric
*indicates systems with augmented abstract

Setup Method ROUGE-1 ROUGE-2 ROUGE-L

Full text  Linear 47.85 22.50 45.32
 Linear* 44.12 19.65 41.75
 Transformer 47.49 21.58 44.86
 Transformer* 43.90 19.39 41.62
 Bi-LSTM 47.64 21.38 44.88
 Bi-LSTM* 43.64 19.18 41.33

Abstract + Citances  Linear 47.19 24.78 44.47
 Linear* 45.57 24.46 43.06
 Transformer 46.16 23.54 43.36
 Transformer* 44.51 23.15 41.95
 Bi-LSTM 46.84 24.18 43.96
 Bi-LSTM* 45.03 23.81 42.47

Other systems  BertSumExt 41.66 22.34 38.93
 BertSumExtAbs 41.33 20.80 38.48

8  Those results were obtained by running the publicly released source codes on the same data.
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performance on the 2019 CL-SciSumm test dataset in the “Appendix 2” as a point of refer-
ence (see footnote 6). 

We can see that models with linear layers outperform other models in both scenarios. 
More importantly, we note that linear models that use only the cited text spans and the 
abstract of the paper obtained the best ROUGE-2 score while maintaining comparable 
performance on ROUGE-1 and ROUGE-L scores. We thus show that the combination of 
abstracts and cited text spans is a valid substitute to using the full text and can simplify the 
summarisation task when it comes to summarising long scientific documents.

Based on our observations, most of the summary sentences are selected from the begin-
ning of the input document. Indeed, when we calculated the ROUGE scores for each 
abstract on its own, we obtain the best ROUGE-2 score (25.54), although the ROUGE-1 
and ROUGE-L scores are lower than those in our proposed methods. This result may be 
explained by the fact that the abstract aims to communicate the main ideas described in the 
paper.

For models that selected sentences from a combination of abstracts and citances, aug-
menting them with the abstract yields lower ROUGE scores although the difference is not 
significant. The same behaviour can be observed in the case of selecting sentences from 
full texts, i.e., augmenting abstracts does not help to improve the performance. However, 
in these cases, the differences in ROUGE scores are bigger, indicating that augmenting 
abstracts possibly adds more noise to the models. This aligns with our observations on the 
CL-SciSumm dataset, which showed that only 15.98% of the sentences are selected/modi-
fied from the abstract while the majority of them (68.95%) are from the body of the paper.

Models that select sentences from abstracts and citances achieved the highest ROUGE-2 
scores among all of the models. In interpreting these results, we need to keep in mind that 
the training data—ScisummNet was created in a similar way, i.e., the human annotators 
only read abstracts and cited text spans of papers in order to produce their summaries.

Conclusions

We have presented approaches to identify cited text spans and generate scientific sum-
maries that build on pre-trained encoders focusing mainly on BERT-based models. For 
both the tasks of cited text span identification and scientific summarisation we examined 
the potential for adapting architectures that have proved to be efficient in the generic and 
newswire domain and explored methods for adapting them to scientific publications. We 
compared our methods on a range of different architectures, training configurations and 
input variations to assess their robustness and potential, especially when applied to small 
annotated datasets, such as the one provided for cited-text span identification in the CL-
SciSumm shared tasks.

For the cited text spans, we have based our experiments on BERT and compared with 
other architectures, as well as domain fine-tuning approaches. Overall, using BERT-based 
architectures outperformed both BiMPM and XLNET, which have both been shown to 
perform well in sentence similarity and inference tasks. We attribute this to the fact that 
the BERT language model was trained using the next sentence prediction task alongside 
label masking. In terms of fine-tuning, the use of additional domain specific dataset for 
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fine-tuning prior to using the manually annotated data helped to improve the performance. 
It appears that while fine-tuning on large, unlabelled data is better in terms of strict F-score 
performance, fine-tuning on the automatically augmented task-specific data produces better 
performance when approximate targets are considered. Since the use of approximate tar-
gets can still produce meaningful results, we intend to further pursue the direction of aug-
menting data, focusing more on distant learning and instance weighting techniques, which 
could help to improve performance in this task.

We have demonstrated the suitability of cited text spans as a replacement for the full 
text of a publication, when used as input to a BERT-based classifier for scientific summa-
risation. We have showed that indeed, such an approach can reduce the input size (and thus 
time) needed to generate scientific summaries, while maintaining and even further improv-
ing efficiency (by ROUGE-2 metric).

We also compared different summarisation layers used on top of the BERT-based sum-
marisation model and found that there is no statistically significant improvement when 
using BiLSTM or transformer layers, in terms of the obtained F-score performance. We 
hence use a fully connected linear summarisation layer. Based on the experimental results 
a fully connected summarisation layer that selects sentences from the abstract and the cited 
text spans is the optimal configuration and obtains comparable (and even better) ROUGE 
scores to those obtained for newswire articles.
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Appendix 1: OCR pre‑processing

As mentioned in “Data resources and pre-processing” section both the 2018 dataset, the 
2019 augmented dataset, and the ACL anthology corpus are derived using OCR methods. 
As such we observed several errors both in terms of sentence splitting and word tokeni-
sation. Our pre-processing efforts aimed to correct some of the observed error patterns, 
focusing mostly on the sentence splitting errors. We present the main pre-processing rules 
below, and in Figs.  4 and 5; the full pre-processing code is made available as a Python 
notebook.

All CL-SciSumm datasets were processed during the training instance generation to 
remove the following errors:

http://creativecommons.org/licenses/by/4.0/
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Fig. 5   Example of the processing approach for the ACL-ARC XML output. The high-lighted parts are the 
ones used for the fine-tuning data

Fig. 4   Examples of the pre-processing outputs for the CL-SciSumm dataset
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•	 Erroneous splitting at periods (“.”) The sentence splitting appeared to consistently split 
sentences where a period symbol was followed by a non alphabetical character.

•	 Erroneous splitting after comma (“,”) Refers to erroneous splitting after commas, 
where the next sentence did not start with a capital letter.

•	 Erroneous splitting within parentheses (“(, )”) Refers to erroneous splitting when there 
is an extra parentheses left bracket and in the following sentence there is a correspond-
ing (unpaired) right bracket.

•	 Erroneous splitting after “...” or “...”.

For the generation of negative instances, sentences were further filtered to remove noisy 
sentences. The percentages in the filters presented below were determined by testing 
against a small sample of 5 documents from the CL-SciSumm corpus, that were manually 
inspected for sentence validity.

Filtered sentences fulfil one or more of the properties below:

•	 Contain more than 30% of tokens whose lemmas do not correspond to known words 
(compare against WordNet lexicon Miller 1995).

•	 Contain more than 20% of alphabetical single characters.
•	 Contain less than 10% of tokens whose lemmas correspond to known words (compare 

against WordNet lexicon Miller 1995).

Examples of sentences filtered/corrected in prepossessing are presented in Fig. 4.
Additional corrections and filtering measures for the ACL anthology corpus (see also 

Fig. 5) involved filtering for sections with text and restoring erroneously split parts of text 
because of page or column breaks.

•	 Select only the < bodytext > elements. This effectively means ignoring footnotes, fig-
ures, tables, page numbers etc.

•	 Apply nltk sentence splitter,9 to properly split larger chunks of text.
•	 If the first word of a “bodytext” element is lower-cased, check the last sentence of the 

previous bodytext. If it does not end with a punctuation mark, concatenate the two.
•	 Lemmatise text and verify whether the lemma of the first word of each chunk is a valid 

one (compare against WordNet lexicon Miller 1995). If not, and if the previous sen-
tence does not end with a punctuation mark or ends with a dash (“-”), concatenate the 
sentences and reconsider the lemma validity.

•	 Lemmatise text and verify whether the lemma of the first word of each chunk is a valid 
one (compare against WordNet lexicon Miller 1995). If not, and if the previous word 
does not ends with a dash (“-”), remove the dash, concatenate tokens and reconsider the 
lemma validity.

•	 Maintain only parsed documents with confidence > 0.6 based on the provided confi-
dence measures.

9  https​://www.nltk.org/api/nltk.token​ize.html.

https://www.nltk.org/api/nltk.tokenize.html
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Appendix 2: Performance on 2019 test data for the CL‑SciSumm 
challenge

For Task 1A (cited text span identification) we submitted 11 runs. We can see that similarly 
to our experiments in “Fine-tuning on augmented data” section the ACL model seems to 
outperform other approaches. However, with the exception of the BiMPM model (run 10, 
most systems show a significant drop of performance when applied on the testing data, 
pointing to weak generalisation of the models. Still, the ACL model outperformed other 
submissions in the 2019 CL-SciSumm task (Table 9).

For Task 2, we submitted only one model which augments the original abstract of the 
paper using sentences from the full papers to create the summary. Table  10 shows the 
results obtained from the submitted system on the testing data. The best score is obtained 
with the abstract-based evaluation, which can be explained since we opted for an abstract 
augmenting approach.

Table 9   Submitted system and 
obtained performance for each 
run in Task 1A (cited text span 
identification)

Bold values correspond to the highest obtained performance for each 
metric

Run System Sent. Ov. (F1) R-SU4 (F1)

1 BERT 0.093 0.06
2 ACL 0.126 0.075
3 BERT 19-AUG​ 0.097 0.062
4 BERT 19-AUG-FT 0.11 0.062
5 BERT 19-AUG-FT [OV] 0.12 0.072
6 ACL 19-AUG-FT 0.118 0.079
7 CNN+SciBERT 0.078 0.048
8 BiMPM 2019 [OV] 0.074 0.051
9 BiMPM 19-AUG​ 0.012 0.018
10 BiMPM 2019 [OV] top-2 0.11 0.073
11 BERT top-2 0.062 0.052

Table 10   Submitted system and 
obtained performance in Task 2 
(scientific summarisation)

Bold values correspond to the highest obtained performance for each 
metric

2: R-2 (F1) 2: R-SU4 (F1)

Abstract 0.514 0.295
Community 0.106 0.062
Human 0.265 0.180
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Table 11   Results for plain 
embedding concatenation, feature 
based approach for BERT and 
SciBERT

Bold values correspond to the highest obtained performance for each 
metric

Model Extra features Recall Precision F-score

BERT SID + SSID 0.187 0.095 0.126
SID 0.197 0.107 0.139
PLAIN 0.235 0.124 0.163

SciBERT SID + SSID 0.167 0.085 0.113
SID 0.183 0.096 0.126
PLAIN 0.203 0.104 0.137

Appendix 3: Feature‑based approach with CNN: initial experiments

In this section we present the output of a set of experiments performed with the CNN + 
BERT/SciBERT embedding configurations in order to determine the optimal among the 
configurations to use for further experiments. The experiments focus on two different 
hypotheses: 

1.	 Examining whether the use of additional features capturing the position of the citing 
and cited sentences would help the performance. The underlying assumption here is 
that passages in certain sections, such as introduction or conclusions might be cited 
more often, or that citing sentences found in the methods of the CP are more likely to 
cite sentences from the corresponding section in the RP. For this set of experiments we 
encode the sentence ids (sid) and the section ids (ssid) for each sentence and concatenate 
them as features in the linear layer of the CNN. We compare adding the sentence ids to 
using only the BERT features (PLAIN) in Table 11.

2.	 Examining whether the use of [CLS], [CLS]+[SEP], or the full BERT embedding vec-
tor is more beneficial as input features for the CNN configuration. We have seen that 
CLS captures the core information about the relation between the two sentences which 
is the information of interest in this task, hence we assume that focusing only on the 
sentence instead of token embeddings might be more beneficial, while it also reduces 
the dimensionality of the feature vectors. The results of the evaluation using only the 
[CLS] and [CLS] + [SEP] embeddings can be observed in Table 12.

We note that these experiments were evaluated on the development set (not used dur-
ing training) consisting of 8 documents of the CL-SciSumm 2019 dataset. The ids of the 
papers used for validation are: C00-2123, C04-1089, I05-5011, J96-3004, N06-2049, P05-
1004, P05-1053, P98-1046.

 
We conclude that the addition of SID and SSID features does not contribute to the per-

formance. Moreover, we notice that using the combination of [CLS] and [SEP] embed-
dings as input is better than using full sentence embeddings for both systems. Hence we 
use this combination for the tenfold cross validation experiments presented in the main 
manuscript.
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