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Abstract Funding is one of the crucial drivers of scientific activities. The increasing

number of researchers and the limited financial resources have caused a tight competition

among scientists to secure research funding. On the other side, it is now even harder for

funding allocation organizations to select the most proper researchers. Number of publi-

cations and citation counts based indicators are the most common methods in the literature

for analyzing the performance of researchers. However, the mentioned indicators are

highly correlated with the career age and reputation of the researchers, since they accu-

mulate over time. This makes it almost impossible to evaluate the performance of a

researcher based on quantity and impact of his/her articles at the time of the publication.

This article proposes an intelligent machine learning framework for scientific evaluation of

researchers (iSEER). iSEER may help decision makers to better allocate the available

funding to the distinguished scientists through providing fair comparative results,

regardless of the career age of the researchers. Our results show that iSEER performs well

in predicting the performance of the researchers with high accuracy, as well as classifying

them based on collaboration patterns, research performance, and efficiency.
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Introduction

Research grants are known as one of the crucial drivers of scientific activities that can

influence the size and efficiency of the Research and Development (R&D) sector and its

productivity (Jacob and Lefgren 2011). They can also affect the performance of researchers

through providing them with a better access to the research resources (Lee and Bozeman

2005). Policies on R&D activities have evolved over the past 50 years (Elzinga and

Jamison 1995; Sanz Menéndez and Borrás 2000). Several studies specifically analyzed

different aspects of the relationship between funding and research performance (Ebadi and

Schiffauerova 2013). Funding agencies put a lot of efforts on selecting the best candidates

for allocating grants, as well as on evaluating the performance of researchers in regards to

the amount of funding that they have been receiving. On the other hand, the growing

number of researchers worldwide has made the competition for securing the limited

financial resources even harder. For example, the contest for receiving research funding is

on the rise in Canada, especially among the academic researchers, mainly due to the

changes in federal funding policies, lack of university operating budgets, and increasing

research costs (Polster 2007). Researchers’ demand for funding cannot be fully satisfied by

the finite financial capacity of funding agencies. However, the case could be even worse for

young researchers, since their senior counterparts are more known within the scientific

community that might help them in securing (more) money for the research (Ebadi and

Schiffauerova 2015c).

Peer review is the oldest method that has been being used for evaluating researchers and

their grant proposals. Most of the funding agencies use a committee of independent

researchers to review the researchers’ proposals for funding and to select the most

appropriate researcher(s) through a competitive process. However, the peer review process

has been widely criticized in the literature due to the potential biases since accuracy of the

procedure is highly dependent on the selected experts. For example, preferences of peers

can affect the final decision, or they can act as a gatekeeper for new research interests as

peers may not come into an integrated conclusion (King 1987). Despite the aforesaid

drawbacks, the great advantage of peer review process is that the impact of the proposed

research is assessed quite easily and accurately (Allen et al. 2009). For this important

reason, it has still remained as one of the most popular techniques in scientific evaluation.

One way to overcome the limitations of the expert review is combining it with quantitative

performance indicators (Butler 2005; Hicks et al. 2004) in order to achieve an accurate and

fair evaluation, since it cannot be reliable enough as a single indicator. For this purpose,

citations and publications count based indicators are commonly used as quantitative

measures of researchers’ performance.

One of the reasons that scientists publish their work in the form of scientific papers is

that in this way, they can secure their priority in discoveries (De Bellis 2009). According to

the review of literature done by Tan (1986), performance evaluation of individual

researchers and research departments are in most cases at least partially based on publi-

cation counts measures. Due to the relatively easy access to the required data and sim-

plicity of the calculation, publication count measures are still widely used to analyze the

productivity of researchers or research institutes (Van Raan 2005). This includes, but is not

limited to, using publication counts to a large extent for measuring the productivity of

individual researchers as well as the productivity of the departments (e.g. Porter and

Umbach 2001; Dundar and Lewis 1998; Creamer 1998a, b; Bell and Seater 1978).
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However, publication counts have some drawbacks, e.g. different nature of work in various

scientific disciplines (Wanner et al. 1981), which might affect the accuracy of the analysis.

Apart from the rate of publications, papers impact and visibility should be also taken

into the consideration in scientific evaluation. Being first introduced by Gross and Gross in

(1927), citation count based indicators are commonly accepted as a proxy for the impact of

a scientific publication (Gingras 1996). In general, the mentioned metrics count the number

of citations received by an article after the date it is published, and papers with higher

number of citations are thus assumed to have higher impact. However, due to the several

drawbacks of citation counts, they are not considered by some researchers (e.g. Seglen

1992) as a good measure of the impact of publications. For example, articles of famous

researchers are likely to be cited more. In addition, a weak work may receive many

citations, not because of its quality, but due to an error in methodology or results discussed

by other researchers (Okubo 1997). Nevertheless, citation counts have been widely in use

as a significance index of the mean impact of a paper, especially at the aggregate level

(Gingras 1996). Some examples are, using citation analyses to evaluate the performance of

individual researchers (e.g. Garfield 1970), to evaluate the quality of books (e.g. Nicolaisen

2002), or to analyze the performance of researchers in various scientific fields and aca-

demic departments (e.g. Buss 1976).

Publication and citation counts based measures have been widely used for research

evaluation in the forms of bibliometrics or statistical analysis (e.g. McAllister and Narin

1983; Peritz 1990; Payne and Siow 2003; Huffman and Evenson 2005; Jacob and Lefgren

2011). The ease of use and suitability of the available databases for applying bibliometric

indicators (Luukkonen-Gronow 1987) are some of the reasons for their common use in

scientific evaluation. However, such indicators are faced with some limitations in assessing

scientific activities, e.g. narrow scope of the study, simplified assumptions and/or indica-

tors. The scenario is almost the same for statistical analyses where in most of the cases a

simplified input–output analysis is performed. Recent progress in information technology

and the availability of large scale highly accurate integrated digital data have brought new

opportunities for scientific evaluation. Powerful computers and complex algorithms have

made it possible to come up with new and more accurate solutions.

Scientific collaboration is also one of the important drivers of research progress that

supports researchers in generating novel ideas, and influences their scientific activities.

Different aspects of collaboration have been studied in a vast number of different disci-

plines such as computer science, sociology, research policy, and philosophy (Sonnenwald

2007). Several studies assessed the impact of collaboration patterns and network positions

on scientific activities and performance of the researchers (e.g. Eslami et al. 2013; Beaudry

and Allaoui 2012; Abbasi et al. 2011), and found a positive relation in most of the cases

which highlights the influencing role of collaboration in stimulating scientific activities. In

addition, through scientific collaboration researchers can get involved in new research

projects which might enable them to get access to new financial resources and thus, might

result in higher research performance (Ebadi and Schiffauerova 2015d).

Machine learning systems, in particular, have attracted the attention of data analysts in

various scientific fields and applications such as stock market, health systems, credit

scoring, fraud detection, etc. The ability of automatic learning from data in large scale,

instead of manual data manipulation and analysis, has made these potent and modern

techniques attractive, not only throughout the computer science field, but also in many

other data driven research studies. Hence, machine learning and data mining are expected

to be the drivers of the next wave of innovation (Manyika et al. 2011). A very limited

number of studies used machine learning techniques in the field of scientific evaluation for
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predicting the number of citations. Fu and Aliferis (2010) used machine learning tech-

niques to predict the number of citations of biomedical publications. They used support

vector machine (SVM) algorithm to learn the input data which contained a number of

bibliometric features. In a recent study, Fu et al. (2013) proposed a computer system for

identifying the instrumental citations in biomedical publications. They used bibliometric

and content based features to train a supervised machine learning model. Their results

suggest a high accuracy of the proposed model in classifying the instrumental citations.

In this article, we employ machine learning techniques and propose an integrated

framework, named iSEER, for predicting the performance of researchers, as well as their

deserved level of funding. We had two main motivations for applying machine learning

techniques in scientific evaluation: (1) Since machine learning algorithms are highly data

driven, they will often result in more accurate solutions. Moreover, they can be applied in

large scope high dimensional data analysis projects and benefit from the variety of the

features, as well as the richness of the data, to provide highly accurate tailored solutions,

and (2) We believe machine learning and automatic evaluation can help decision makers as

a complementary tool that makes the final decisions, with regard to the funding allocation

and performance evaluation, less subjective. A shorter version of this paper was presented

in the 15th International Conference on Scientometrics and Informetrics (ISSI) in July

2015 (Ebadi and Schiffauerova 2015a). The remainder of the paper proceeds as follows:

The next section presents the data and methodology; ‘‘Results’’ section presents the per-

formance evaluation results of iSEER; ‘‘Conclusion’’ section concludes; and limitations

and some directions for the future work are presented in the last section.

Data and methodology

Data

The data for this research was collected in five phases. Funding has a determinant role in

scientific activities. It is expected that past funding not only affects the current activities of

a researcher, but also his/her future level of research money. Hence, as the first phase, we

selected Natural Sciences and Engineering Research Council (NSERC) of Canada as the

source of funding data. NSERC is the main federal funding organization of the country,

covering almost all the Canadian researchers in natural sciences and engineering (Godin

2003). In addition, one of our other motivations for such selection was the availability of

NSERC funding data to the public. Moreover, full names of researchers (both first and last

names) are listed in NSERC that helped us to perform the entity disambiguation, which

will be explained later in this section. Therefore, the NSERC funding data was extracted

and stored in a database in the first phase. Several preprocessing and cleaning modules

were coded in JAVA and were applied on the collected data to improve the quality of the

data. For example, the special characters in the data (e.g. French characters) were auto-

matically detected, and corrected. We also removed students1 from the funding data, as our

purpose was to focus on professional researchers. In addition, for the team grants, the

funding amount was equally divided between the principal investigator (PI) and all the co-

researchers who were mentioned in the same record. To validate this assumption, we held

more than 30 interviews with researchers in our funding database, who were randomly

selected through a stratified sampling method, where almost all of them confirmed the

1 The NSERC database originally contains both scholarships and grants.
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assumption of the equal funding division between PI and co-researchers. The resulted

funding database contains 379,891 records of researchers, including 102,452 PIs. Since we

were interested in the total amount of annual funding for each distinct researcher in the

database, we further aggregated the funding database by merging the records for a given

researcher in a given year, and adding up the amounts. This step made the set of (re-

searcher, year) unique for each year. The final funding database contains 228,417 records

of funded researchers, including 41,024 distinct researchers, within the period of

1996–2010. The funded researchers received the total amount of $18,934,771,899 within

the examined period.

Information about the researchers’ publications was required for us to be able to assess

their performance. In the second phase, Elsevier’s Scopus2 was used to collect researchers’

publication data for the period of 1996–2010, including but not limited to the title of the

article, co-authors, year of publication and annual citations. Since the data coverage of

Scopus was better after 1996, we focused on 1996–2010 time interval. We only collected

articles in which NSERC support was acknowledged.3 For this purpose, a list of keywords

(different formats of the way NSERC can be written and spelled) was used as the input and

a full text search was automatically performed on the articles. This filtration was a crucial

step. The common procedure in the literature is extracting all the articles that were pub-

lished by a given researcher. Such method suffers from an over-estimation of a given

researcher’s number of publications since researchers usually have several sources of

funding at a time. Our procedure was based on the assumption that NSERC grantees

acknowledge the source of funding in their article. NSERC policies and regulations require

researchers to mention the source of funding in their publications. To validate this

assumption, we held more than 30 interviews with randomly selected funded researchers

where almost all of them confirmed that they do acknowledge NSERC in their articles.

After performing various automatic data processing and cleaning stages, e.g. parsing

affiliations and correcting special characters, the final publication database contains

144,156 distinct articles where 7056 researchers published only one paper. The papers, on

average, were cited 2.8 times within the examined time interval.

Having collected the funding and publications databases, the third phase was integrating

the mentioned datasets. One of the most important challenges here was matching records in

publication database with researchers in NSERC funding database. Since different names

and formats were used in Scopus publication data, the entities, i.e. different authors, should

have been identified. We faced with two particular problems: (1) To verify whether ‘‘Alan

Smith’’, ‘‘A. Smith’’, ‘‘A. J. Smith’’, and ‘‘Alan J. Smith’’ are all pointing to the same

person in funding and publication databases or not, and (2) To find out whether ‘‘Alan

Smith’’ who is affiliated with the University of Toronto is the same author as the one at

McGill University. A JAVA program was coded to perform this crucial task. We had the

advantage of the availability of the clean and complete names in NSERC funding dataset,

as well as current and past affiliations of the authors, available in Scopus database. Using

machine learning methods, the coded semi-automatic JAVA program employed a simi-

larity measure, based on various factors such as names of researchers and their affiliations,

to identify and detect entities. We decided to go with a semi-automatic design as the entity

2 Scopus is a commercial database of scientific articles that has been launched by Elsevier in 2004. It is now
one of the main competitors of Thomson Reuter‘s Web of Science.
3 We developed a new data extraction methodology which involves a combined use of Google Scholar and
Scopus. The main idea is to use the full text search available in Google Scholar and then to search the results
in the Scopus database and collect the target articles.
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disambiguation task is highly complicated. Thus to minimize the error margins, the pro-

gram asked user to confirm if the records match, for the cases with the similarity score

lower than a pre-defined threshold. The integrated database contains 174,773 records of

disambiguated researchers within the period of 1996–2010.

We decided to include two measures for the visibility and impact of publications: (1)

Citation based measure which was collected in the second phase, and (2) Rank of journals

in which the articles were published. Both measures reflect the impact of publications with

a minor difference. Citations based indicators show the impact of the publication on the

scientific community and on the subsequent research, whereas journal impact factor or

journal rank indicators reflect the respectability of the journal, that is the visibility and the

level of contribution perceived by the authors and the reviewers of the paper. Therefore,

the fourth phase was dedicated to collecting the journal ranking information for which we

selected SCImago Journal Rank (SJR). SCImago was chosen for two main reasons. First, it

provides annual data of journal ranks that enabled us to perform a more accurate analysis,

since we considered the rank of the journal in the year that an article was published, and

not its impact in the current year. Second, SCImago is powered by Scopus that makes it

more compatible with our articles database. The collected information was added to the

integrated database.

In the final phase of the data gathering procedure, Pajek4 was used to construct the co-

authorship networks of the collected authors for each year of the selected time interval. For

this purpose, two-mode co-authorship networks (De Nooy et al. 2011) of authors were first

constructed in which both articles and authors are present as the network nodes (Fig. 1a).

Next, the constructed two-mode networks were converted to one-mode networks in which

two given authors are connected to each other if they have jointly published an article

(Fig. 1b). Four network structure variables, i.e. betweenness centrality, degree centrality,

clustering coefficient, and eigenvector centrality, were calculated at the individual level of

researchers, for each of the authors in the created one-mode networks. The calculated

measures were added to the final database. In the final database, we considered only the

records for which all the selected measures were available. The size of the final database is

117,942 records. In the next section, the methodology, variables and proposed intelligent

framework are introduced and discussed in detail.

Methodology and models

One of the characteristics of iSEER is that it considers various influencing factors of

different types and performs the evaluation at the individual level of researchers. As

depicted in Fig. 2, the feature space includes variables representing funding, collaboration

pattern among researchers, and profile of researchers, as well as their performance. These

selected variables are provided to iSEER where the model is trained and outputs are

generated. In particular, iSEER covers two types of machine learning models, one for

classifying researchers based on their research performance, and the other one for pre-

dicting their number of publications as well as their deserved level of funding. In the rest of

this section, we will further discuss the mentioned models and their variables.

4 Social network analysis software, for more information see: http://vlado.fmf.uni-lj.si/pub/networks/pajek/.
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Classification of researchers

Classification is categorizing a new instance (in our case, a new researcher) based on a

labeled training dataset. Therefore, we should have a correctly labeled dataset to be able to

train the model based on that, and to identify the label (category) of the given data. iSEER

performs three types of classification:

• Classifying researchers based on their research performance, i.e. quantity and impact of

the papers (Task C1)

• Classifying researchers according to their efficiency (Task C2)

• Classifying researchers based on their rate of collaboration (Task C3)

The only difference in aforementioned tasks is in calculating and assigning the label. To

perform Task C1, a label was generated based on both quantity and impact of researchers’

publications in a 3-year time window. For this purpose, various indicators and different

weights for quantity and impact of the papers were tested. The final research performance

indicator, with the most robust results, has three levels (i.e. low, normal, and high per-

formance) in which a relatively higher weight was given to the visibility of the papers, i.e.

number of citations and the impact of the journal. The same approach was taken for Tasks

C2 and C3. Efficiency of the researchers (Task C2) was evaluated by calculating the cost of

article indicator for each of researchers in the database, and by comparing it with the

average cost. The final label contains three levels representing low, normal, and high

efficiency. For calculating researchers’ collaborative behavior index (Task C3), as

Fig. 1 a A sample two-mode co-authorship network. b The converted one-mode co-authorship network

Fig. 2 General schema of the solution
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explained earlier, several combinations were tested where finally the measure was calcu-

lated based on the degree centrality (will be defined later in this section) and the average

number of co-authors of researchers in a 3-year time window. This label has also three

levels reflecting low, normal, and high collaborative behavior of researchers. All the labels

were automatically calculated and generated by a JAVA program.

A number of bibliometric features were used as the input to the classification model.

High-performing researchers are generally expected to improve (or at least maintain) their

performance level. Apart from personal characteristics, one reason is that productive

researchers might work on relatively more research projects which will result in higher

number of publications. Moreover, they have on average better access to financial

resources that can affect their performance and collaboration pattern in future. Therefore,

we included past performance measures, in terms of both quantity and impact of publi-

cations, in the classification model. Moreover, funding is known as one of the main drivers

of scientific activities that can be used by researchers to expand their current activities, to

get involved in more projects, to find new partners, to purchase the required equipment,

etc. Hence, past funding record of researchers was also added to the model. Different

scientific disciplines follow different collaboration patterns as well as various funding

allocation procedures. In addition, publication and citation habits might be also different in

various scientific fields. For example, citing habits and the rate of citations may vary across

different scientific fields such that in some scientific fields authors publish articles more

frequently, or the published papers contain more references (MacRoberts and MacRoberts

1996; Phelan 1999). As another example, a lower productivity, in terms of number of

publications, is expected from engineers as they are also involved in some other activities,

e.g. engineering design (Gingras 1996). Or, in humanities most of the papers are single-

authored while in engineering most of the papers have more than one author. In order to

stand for such variations, scientific field of researchers was also added to the model. To

detect the research domain of the funded researchers, we coded a program implementing

Latent Dirichlet Allocation (LDA) technique5 to extract keywords from the title of the

articles, and to categorize articles, and therefore their authors, based on the topics of the

articles. We then checked and refined the automatically generated categories. This resulted

in 8 different categories, i.e. engineering, mathematics, natural sciences, social sciences,

art, health, applied sciences, others. The extracted categories were converted to numerical

values, ranging from 0 to 7, to be used in iSEER.

Researchers play different roles in their surrounding and global collaboration networks.

These roles can bring various advantages to researchers (e.g. better access to knowledge

sources, political factors, and awareness of potential projects) that might enhance or harm

their scientific performance, as well as their level of funding. To account for these effects,

we included three network structure indicators, i.e. betweenness centrality, clustering

coefficient, and degree centrality, in the model. Betweenness centrality is a more global

network measure which focuses on the role of intermediary nodes (researchers) in a

network and is defined based on the role that a node plays in the existence of paths between

any two other nodes as follows (Borgatti 2005):

bck ¼
X

i 6¼k 6¼j

rijðkÞ
rij

ð1Þ

5 Machine learning technique for topic modeling, first introduced by Blei et al. (2003).
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In Eq. (1), rij is the total number of shortest paths from node i to j, and rij(k) is the number

of shortest paths from node i to node j that contains node k. Researchers with high

betweenness centrality can bridge different communities, control the flow of information

and have higher control over the other researchers in the network, in terms of setting

project priorities, or knowledge diffusion. Therefore, we expected betweenness centrality

to play an important role in scientific activities, thus, it was included in the model.

In graph theory, degree of a given node is calculated as the number of ties that the node

has (Diestel 2005). Degree centrality of node i is defined based on the node i degree, where

the values are normalized between 0 and 1 as follows:

dci ¼
degree of node i

highest degree in the network
ð2Þ

In our co-authorship network, researchers with high degree centrality can be more active

as they have higher number of direct connections (Wasserman 1994). In addition, in co-

authorship networks, degree centrality can be regarded as a proxy for the number of direct

collaborators of a researcher. Having more direct collaborators might facilitate the

researcher’s access to diverse sources of skills and complementary expertise which will make

him/her more productive, or may affect his/her level of funding. Therefore, we expect this

measure to play a determinant role in scientific activities, hence, it was added to the model.

Clustering coefficient shows the tendency of the nodes to form a cluster together and

counts the number of triangles in a given undirected graph to measure the level of clus-

tering. Therefore, it is in fact the likelihood that two neighbors of a node are also connected

to each other (Hanneman and Riddle 2011). Theoretically, clustering coefficient is defined

based on a local clustering coefficient (lcc) for each node within a network. The definition

of lcc is (Watts and Strogatz 1998):

lcci¼
number of triangles connected to node i

number of triples centered on node i
ð3Þ

The denominator in Eq. (3) counts the number of set of two edges that are connected to the

node i (triples). The numerator counts the number of three nodes that are all connected to

each other. The overall clustering coefficient is calculated by taking average of the local

clustering coefficient of all the nodes within the network. Hence,

CC ¼
Pn

i¼1 LCCi

n
ð4Þ

In Eq. (4), n denotes the number of vertices in the network. This measure returns a value

between 0 and 1 such that it gets closer to 1 as the network interconnectivity increases

(higher cliquishness). In co-authorship networks, researchers with high clustering coeffi-

cient form tightly connected clusters which might enable them to produce higher quality

works through the tight inter-connections in their groups and using the internal referring

among the team members. Clustering can also affect the rate of publications. It was shown

in the literature that cliquishness might affect the rate of publications negatively hence

limiting knowledge creation (e.g. Eslami et al. 2013), which might be due to the exchange

of redundant information between closely related communities/clusters (Cowan and Jonard

2003). Hence, we included this measure in the model as well.

After selecting the variables, we needed to take into consideration the time effect. In the

literature, 3-year (e.g. Payne and Siow 2003; Beaudry and Allaoui 2012) or 5-year (e.g.

Jacob and Lefgren 2011) time windows have been considered for the funding to take effect.
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In addition, co-authorship networks, and therefore collaboration patterns, evolve over time.

This evolution might reflect the growth/decay of a research subject, community, or even a

scientific field (Huang et al. 2008). We tested both 3-year and 5-year time windows for the

variables in our model and found better results for the 3-year time window. Hence, to

account for the time effect, we considered a 3-year time window for all the selected

variables. For example, to assess the performance of a given researcher in 1999 his/her

amount of funding was summed up over 1996–1998. The complete list of variables is

shown in Table 1.

Figure 3 shows the entire classification process in iSEER for all the above mentioned

tasks, i.e. task C1, C2 and C3. As seen, data is first preprocessed and cleaned. For this

purpose, several JAVA programs were coded to check the data for redundancy, out of

range values, impossible combinations, errors, and missing values, and then the target

features (variables) were selected, and data were filtered based on the records that con-

tained all the required data. The resulted data, containing all the potential features, were

sent to the data preparation block where at first all the features (except the label) were

normalized to a value between 0 and 1. This was a crucial step since the features were of

different units and scales. Local Outlier Factor (LOF) algorithm was then applied to detect

the outliers. LOF, that was proposed by Breunig et al. (2000), is based on the local density

concept in which the local deviation of a given data is measured with respect to its

k nearest neighbors. A given data is outlier if it has a substantially different density from its

k neighbors. The final step of the data preparation step was optimizing attributes’ weights.

For this purpose, we used an evolutionary attribute weights optimizer that employed

genetic algorithm to calculate the weights of the attributes. The weighting procedure also

helped us in detecting the most influential attributes. The resulted data were integrated into

a single data repository, named as the target data.

After making the data ready for the analysis, a stratified 10-fold cross validation design

was used for the model validation. Cross validation is an analytics tool that is used to

design and develop fine-tuned models. It splits the data into two disjoint sets, where one

part is used for training and fitting a model (training set), while the other part is employed

for estimating the error rate of the model, i.e. test set (Weiss and Kulikowski 1991). We

used a nested 10-fold cross validation in which the data were split into 10 disjoint subsets

such that the union of the 10 folds results the original data. The method was run 10 times

and in each time, one fold was considered as the test data while the rest were regarded as

the training data. C4.5 decision tree algorithm (Quinlan 1993) was applied as the model,

where its parameters were automatically optimized inside the validation module. We chose

C4.5 method as it easily deals with the noise in the data and can handle both categorical

(e.g. scientific fields) and continuous variables. In addition, it is an easy to implement

Table 1 List of variables (features) in the classification model of iSEER

Variables

1 Scientific area of the researcher

2 Total amount of funding received by the researcher in a 3-year time window

3 Total number of publications of the researcher in a 3-year time window

4 Average number of citations received by the researcher’s articles in a 3-year time window

5 Average betweenness centrality for the researcher in a 3-year time window

6 Average degree centrality of the researcher in a 3-year time window

7 Average clustering coefficient of the researcher in a 3-year time window
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method and the results can be easily interpreted, even with limited technical knowledge. In

the next section, the prediction models of iSEER are presented.

Prediction of scientific performance and level of funding

We used the same approach as what that was already discussed in the ‘‘Classification of

researchers’’ section (classification model) to acquire the target data for the prediction

model. Based on the optimized weights, we also added some other variables to the pre-

diction model in comparison with the classification model. Same as the classification

model, we used two different proxies for the impact of the papers in the prediction model,

i.e. based on citation counts and journal ranks. Age of researchers, and their career level,

can influence their performance as well as their funding. It is argued in the literature that

older researchers in general can be more productive (Merton 1973; Kyvik and Olsen 2008)

due to several reasons, e.g. better access to the funding and expertise sources, more

established collaboration network, and better access to modern equipment. Hence, the

career age of researchers was included in the model, representing the time difference

between the date of their first article in the database and the given year. The average

number of co-authors per paper for researchers can be counted as a measure of their

average scientific team size, i.e. average number of partners. And, there are several studies

that found a positive relation between the team size and scientific output (e.g. Ebadi and

Schiffauerova 2015b; Plume and van Wiejen 2014). Thus, this variable was also included

in the prediction model, as a common proxy for researchers’ collaboration. Apart from the

network variables that were already discussed in the ‘‘Classification of researchers’’ sec-

tion, eigenvector centrality (ec) was also added to the prediction model. This centrality

measure is based on the idea that the importance of a researcher in the network depends

also on the importance of his/her connections. Hence, a researcher with high eigenvector

centrality is on average more connected to other researchers, who themselves possess

central positions. Bonacich (1972) defined the centrality of an actor based on sum of its

adjacent centralities. Being connected to other highly important researchers can bring a

strategic and diplomatic power to a researcher which makes the role interesting for our

analysis. Such researchers are connected with too many other influential and highly central

researchers, and it is hence expected that they shape the collaborations and play an

important role in setting priorities in scientific projects, and securing research funding, that

might ultimately increase their performance or financial power. The complete list of the

final variables for the prediction model is presented in Table 2.

In particular, we defined two prediction tasks in iSEER:

• To predict number of publications of a given researcher (Task P1)

• To predict the deserved amount of funding for a given researcher (Task P2)

Fig. 3 Classification model, iSEER
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To perform the first task (Task P1), we considered the number of publications of

researchers as the target variable, while for Task P2, the amount of funding was considered

as the target. Figure 4 shows the general scheme of the prediction model. The procedure

for preparing the target data is similar to the classification model that was discussed earlier.

The difference is in the algorithm, where in the prediction model we used ensemble meta-

algorithm to improve the accuracy of the prediction, as we found the prediction task to be

more sensitive than the classification task. For this purpose, bootstrap aggregating (bag-

ging) approach was employed. Bagging is an ensemble method that makes random subsets

of the data and trains them separately. The final result is then obtained by averaging over

the results of the separated models (Breiman 1996). Bagging is a nested module in which

we used weighted vote 10-Nearest Neighbor (10-NN) algorithm to train the data and to

create the model. In weighted vote 10-NN, the distance of the neighbors to the given data is

considered as the weight in the prediction such that neighbors that are closer to the given

data get higher weights. The mentioned algorithm was selected for several reasons. First of

all, it yielded the highest accuracy among all the candidate algorithms. In addition, it can

be easily updated at a very low cost to include new instances. This is a significant

advantage for the large databases of publications and authors in real life that should be

updated frequently. The ease of implementation and the limited number of parameters that

were required to be tuned in this algorithm were some other influencing factors for

selecting this model.

Data in the range of 1996–2009 were used to train and build the model. A separate

disjoint data for 2010 (prediction set) were used for testing the accuracy of the prediction

model. The final result of the prediction model for Task P1 was the predicted number of

publications for the researchers in the prediction set. For Task P2, the model calculated a

competence factor (between 0 and 1, closer to 1 more competence) that shows the wor-

thiness of a given researcher to receive funding, and used it to predict the amount of

funding of a given researcher in 2010. In the next section, results are presented and

discussed.

Table 2 List of variables (features) in the prediction model of iSEER

Attribute

1 Scientific area of the researcher

2 Total amount of funding received by the researcher in a 3-year time window

3 Total number of publications of the researcher in a 3-year time window

4 Average number of citations received by the researcher’s articles in a 3-year time window

5 Average rank of the journals in which researcher’s’ articles were published in a 3-year time window

6 Average betweenness centrality of the researcher in a 3-year time window

7 Average degree centrality of the researcher in a 3-year time window

8 Average clustering coefficient of the researcher in a 3-year time window

9 Average eigenvector centrality of the researcher in a 3-year time window

10 Average scientific team size of the researcher (average number of co-authors per paper)

11 Career age of the researcher
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Results

Classification

iSEER was provided with the input data, which was explained in the ‘‘Data’’ section, to

evaluate its accuracy in performing the three defined classification tasks, i.e. Tasks C1, C2,

and C3. Moreover, we separately tested several machine learning algorithms and compared

the accuracy of iSEER with some well-known classifiers. The test results of the top three

most accurate algorithms for each task are also listed along with iSEER results. Models

were trained and tested on the data from 1996 to 2010. Figure 5 shows the results for the

classification tasks. As it can be seen, the accuracy of iSEER is reasonably higher than the

other algorithms in performing all the defined classification tasks. Interestingly, apart from

10-NN other classifiers, i.e. Naı̈ve Bayes and decision tree, have considerably lower

accuracy than iSEER in performing Task C2. Although Naı̈ve Bayes algorithm is simple

and computationally efficient, it is based on strong attribute independence assumptions

which might be one of the reasons that this algorithm is not working very well in Task C2

classification. Decision trees are also simple and very easy to understand. However, apart

from cost of operation and their complexity, there are some concepts that decision trees

cannot learn. Moreover, since our problem is a multi-label classification, the information

gain in decision tree can be biased in favor of attributes with higher number of observations

(Deng et al. 2011), hence the algorithm might not be able to model the data accurately.

This is clearer in the accuracy results of Tasks C1 and C2. The accuracy of iSEER in Task

C3 is notably high (98.90 %). Decision Tree comes next in terms of accuracy in Task C3,

while 10-NN and Naı̈ve Bayes are coming after it respectively.

Fig. 4 Prediction model, iSEER
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To further evaluate the accuracy of the framework, we compared the confusion matrices

of iSEER and the algorithm which has the nearest accuracy to iSEER in different tasks.

Confusion matrix was introduced by Kohavi and Provost (1998), and shows the actual and

predicted classifications done by a classifier which can be used to evaluate the performance

of the classification system. Precision and recall are two of the measures that are used in

the confusion matrix. According to the definition, precision is the proportion of the total

number of correct predictions. Recall of a label, in a multi-class problem, is defined as the

ratio of correctly predicted cases for that class over the total number of predictions.

As it is seen in Table 3, although iSEER and 10-NN precision and recall are almost

comparable for the predicted high and true low cases in Task C1, iSEER has higher rates of

precision and recall in all the sub-classes. For Task C2, precision and recall rates of iSEER

is higher than the ones for 10-NN except for the precision of predicted high category for

which 10-NN is slightly higher. The high accuracy of 10-NN is not very surprising since

these classifiers work well when the size of the training data is large. In addition, in our

case, we have several features which 10-NN can benefit from to characterize each label

based on multiple combinations of the attributes which might increase its accuracy.

Analysis of the confusion matrix for Task C3 reveals that iSEER obtained again higher rate

of precision than decision tree algorithm except for the predicted low category where the

difference is almost negligible (99.55 vs. 100 %). For the recall rates, iSEER also performs

better except for the true high category where the difference is small (96.90 vs. 98.70 %).

In general and considering the performance in all the defined tasks, it can be said that

iSEER is a more accurate classifier for the subject problem. Moreover, its accuracy in

classifying low and high performing researchers is of great importance for considering it as

a complementary tool for decision makers. In the next section, we check the performance

of iSEER in researchers’ evaluation procedure.

Prediction

In this section, we present the test results of iSEER in predicting performance of

researchers (Task P1), as well as their deserved amount of funding (Task P2). We trained

the model with the data from 1996 to 2009 and used the disjoint set of data for 2010 for

Table 3 Confusion matrix of iSEER versus the best performing algorithm in Tasks C1, C2 and C3

Precision Recall

Predicted low
(%)

Predicted
normal (%)

Predicted high
(%)

True low
(%)

True normal
(%)

True high
(%)

Task C1

iSEER 94.28 78.51 84.59 94.36 79.69 82.53

10-NN 87.74 67.61 83.79 92.88 67.78 68.53

Task C2

iSEER 98.03 94.78 96.58 97.75 95.89 94.85

10-NN 92.99 90.11 97.14 96.53 89.72 87.06

Task C3

iSEER 99.55 98.32 97.17 99.70 98.16 96.90

Decision
tree

100 92.77 91.48 96.15 96.66 98.70
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predicting the target variables and testing the accuracy. We also compared the accuracy of

the model with several well-known machine learning algorithms, where in this section, the

test results of iSEER, along with two other algorithms that showed the highest accuracy in

predicting the target variable in each task, are presented. Figure 6 shows iSEER prediction

errors in both tasks compared with other algorithms.

We considered three error measures for comparing the performance of the mentioned

algorithms. Root mean squared error is one of the main measures for comparing the accuracy

of the prediction models and is defined as the square root of the average of the squares of

errors. According to Fig. 6, iSEER is predicting the number of publications of the researchers

(Task P1) with 1.451 average deviation between the predicted value and the real number of

publications. Normalized absolute error is the absolute error, i.e. difference between the pre-

dicted value and the real value, divided by the error made if the average would have been

predicted. The root relative squared error takes the average of the actual values as a simple

predictor to calculate the total squared error. The result is then normalized by dividing it by the

total squared error of the simple predictor and square root is taken to transform it to the same

dimension as the predicted value. As seen in Fig. 6, iSEER performs the best, according to all

the three measures, where the polynomial fit is the worst in performing Task P1. Results for

Task P2 are slightly different where linear regression and 10-NN algorithms were the two

closest algorithms to iSEER, in terms of the prediction errors. According to Fig. 6, root mean

squared error of iSEER is the lowest in Task P2 where the other two algorithms perform the

same. Although linear regression normalized absolute error is a bit lower than iSEER, its root

relative squared error surpasses iSEER. Hence, according to the results, it can be claimed that

the overall performance of iSEER is slightly better than the other algorithms. A sample of the

prediction results is presented in Appendix A.

Conclusion

In this paper, we proposed iSEER system that uses bibliometric indicators as well as

network structure features to classify researchers based on their collaboration patterns,

research performance, and efficiency. It can also predict the number of publications of

researchers along with their deserved amount of research funding. According to our results,

it is feasible to employ machine learning algorithms for classification of the researchers

based on various criteria. Moreover, it was shown that iSEER can predict the performance
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and deserved funding level of researchers, with relatively high accuracy. In addition, the

unique procedure that was presented in this research highlighted the most important fea-

tures in classifying researchers, as well as the ones in predicting their performance.

As discussed before, iSEER is able to automatically predict the amount of funding as well

as a normalized competence factor (between 0 and 1) for a given researcher. Since in real life

the amount of money is finite, the normalized competence factor can act as a complementary

coefficient, helping decision makers to set the final amount of funding for a given researcher.

The predicted funding level can be also used for comparing with the final allocated amount,

or for making intra-researchers comparisons. The predicted number of publications explicitly

shows the expected performance of a researcher in coming year(s), which might be also

helpful. Regarding the classification tasks, various applications can be considered such as,

using them in selecting the best candidate for a vacant research or academic position.

Although few researchers recently worked on citation prediction using machine learning

algorithms (e.g. Fu and Aliferis 2010; Fu et al. 2013), to our knowledge iSEER is the first

system that focuses on research performance and funding prediction, as well as classifying

researchers, using various features of different types, e.g. bibliometric and collaboration

network structure indicators. The intensive preprocessing steps along with feature selection

procedure, helped iSEER to achieve high predictive power and accuracy rate. The result of

attribute weighting module also shed light on influential attributes in predicting or cate-

gorizing the target researchers. Moreover, several features of similar nature were employed

in the model to reinforce its accuracy. For example, we used average number of citations

and average rank of the journals to represent the visibility of the papers. Another example

is the use of degree centrality and average number of authors per paper, to represent the

scientific team size of researchers. These attributes of similar nature surely empowered the

accuracy of the model by providing it with additional dimensions.

To conclude, our results show that it is feasible to design and use classification and

prediction tools to evaluate different aspects of scientific activities of researchers. It is

obvious that peer reviewing cannot be completely replaced by such tools. iSEER can help

decision makers in setting both long-run and short-term strategies in regard to the funding

allocation and/or analyzing researchers’ performance and scientific collaboration patterns

among the researchers through providing them with more accurate quantitative analysis. In

addition, since our framework is flexible, and high dimensional data and a large dataset

was used for learning the model, the results are not based on limited criteria or data.

Therefore, it can also help decision makers to establish a fairer funding allocation or

scientific evaluation system. Lastly, we believe the field of scientific evaluation can benefit

from the advancement in computer science in at least three ways as presented in this

research: (1) Sophisticated and well-tailored data gathering procedure(s) can definitely

provide the analysts with more accurate data in a very large scale, which can help them to

better analyze the inter-relations; (2) Complex computer algorithms, in form of intelligent

automatic systems, can be used to perform more accurate quantitative analysis; (3) Data

mining and machine learning can also serve as a tool for selecting the important factors

(variables) in a study, no matter what evaluation method is used afterwards.

Limitations and future work

We were exposed to some limitations in this paper. First, we selected Scopus for gathering

information about the NSERC funded researchers’ publications. Scopus and other similar

databases are English biased thus non-English articles are underrepresented (Okubo 1997).
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Since Scopus data coverage was better after 1996, we chose the time interval of 1996–2010

for our analysis. Although Scopus is confirmed in the literature to have a good coverage of

articles, as a future work it would be recommended to focus on other similar databases to

compare and confirm the results.

Furthermore, we were exposed to some limitations in measuring scientific collaboration

among the researchers, as we were unable to capture other links that might exist among the

researchers, e.g. informal relationships. These types of connections are never recorded and

thus cannot be quantified, but there are certainly some knowledge exchange occurring

during such associations that could affect the network performance. In addition, there are

also some drawbacks in using co-authorship as an indicator of scientific collaboration since

collaboration does not necessarily result in a joint article (Tijssen 2004). An example could

be the case when two scientists cooperate together on a research project and then decide to

publish their results separately (Katz and Martin 1997). Hence, future work can address

this issue by taking other types of collaboration networks into the consideration. For

assessing the impact of the papers based on citations count, we did not account for self-

citations, negative citations, or special inter-citation patterns among a number of

researchers. This can be addressed in future works. In addition, we used citation based

indicators along with SJR journal rank for representing and assessing the impact of

research. Of course, other respective variables can be added to the model to measure the

impact more accurately. That is, iSEER can be easily expanded to include more influencing

factors, or to be tailored for other scientific domains/projects.

Appendix: Sample of prediction results

Variables are listed in Table 4 and samples of the predictions for both prediction tasks are

presented in Tables 5 and 6. The real value of the target variable is highlighted in light grey

where the respective predicted value is highlighted in dark grey.

Table 4 Description of the variables

Variable Description

Discip Scientific area of the researcher

sumFund3 Total amount of funding received by the researcher in a 3-year time window

noArt3 Total number of publications of the researcher in a 3-year time window

avgCit3 Average number of citations received by researcher’s articles in a 3-year time window

avgIf3 Average rank of the journals in which researcher’s articles were published in a 3-year time
window

btwn3 Average betweenness centrality of the researcher in a 3-year time window

deg3 Average degree centrality of the researcher in a 3-year time window

clust3 Average clustering coefficient of the researcher in a 3-year time window

eigen3 Average eigenvector centrality of the researcher in a 3-year time window

teamSize Average number of authors per paper for the researcher

careerAge Career age of the researcher

Scientometrics (2016) 107:477–498 493

123



T
a
b
le

5
S

am
p

le
o

f
iS

E
E

R
p

re
d

ic
ti

o
n

re
su

lt
s,

T
as

k
P

1

P
re

d
ic

te
d

n
o

ar
ti

cl
es

n
o

A
rt

su
m

F
u

n
d

3
av

g
If

3
av

g
C

it
3

te
am

S
iz

e
b

tw
n

3
cl

u
st

3
d

eg
3

ei
g

en
3

ca
re

er
A

g
e

d
is

ci
p

n
o

A
rt

3

0
.3

6
1

0
0

.0
4
1

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.7

3
7

2
0

1
.1

0
2

0
0

.0
1
3

0
.2

7
9

0
.0

2
8

0
.0

0
0

0
.0

0
0

1
.0

0
0

0
.0

0
5

0
.0

0
0

0
.6

3
2

3
1

3
.8

6
5

7
0

.0
4
4

0
.0

5
4

0
.0

0
5

0
.0

0
1

0
.0

5
9

0
.1

2
5

0
.0

2
7

0
.0

0
0

0
.7

3
7

1
1

3

1
.1

0
3

0
0

.0
1
0

0
.0

6
8

0
.0

8
3

0
.0

0
0

0
.0

0
0

1
.0

0
0

0
.0

0
7

0
.0

0
0

0
.7

3
7

3
1

1
.2

0
6

1
0

.0
7
2

0
.1

3
2

0
.0

2
0

0
.0

0
2

0
.0

1
6

0
.4

0
9

0
.0

2
0

0
.0

0
0

0
.5

2
6

0
6

6
.7

0
3

4
0

.1
6
7

0
.2

4
6

0
.0

8
0

0
.0

0
2

0
.0

5
5

0
.1

5
8

0
.0

3
9

0
.0

0
0

0
.7

3
7

1
2

6

1
.0

3
0

4
0

.0
3
2

0
.1

1
5

0
.0

1
7

0
.0

0
1

0
.0

1
8

0
.4

5
5

0
.0

1
8

0
.0

0
0

0
.7

3
7

0
6

4
.1

2
0

3
0

.0
6
1

0
.1

3
6

0
.0

4
1

0
.0

0
2

0
.1

8
5

0
.1

0
9

0
.1

3
4

0
.0

0
0

0
.7

3
7

1
1

5

0
.0

0
0

0
0

.0
1
2

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.2

6
3

0
0

5
.0

4
7

3
0

.1
3
7

0
.1

4
1

0
.0

4
1

0
.0

0
1

0
.1

3
3

0
.1

6
3

0
.0

5
0

0
.0

0
0

0
.6

8
4

0
1

5

494 Scientometrics (2016) 107:477–498

123



T
a
b
le

6
S

am
p

le
o

f
iS

E
E

R
p

re
d

ic
ti

o
n

re
su

lt
s,

T
as

k
P

2

P
re

d
ic

te
d

F
u

n
d

su
m

F
u

n
d

su
m

F
u

n
d

3
av

g
If

3
av

g
C

it
3

te
am

S
iz

e
b

tw
n
3

cl
u

st
3

d
eg

3
ei

g
en

3
ca

re
er

A
g

e
d

is
ci

p
n

o
A

rt
3

$
4

1
4
,9

3
6

$
5

3
,5

1
5

0
.2

0
5

0
.1

8
9

0
.0

9
2

0
.0

0
2

0
.0

0
8

0
.2

2
2

0
.0

0
9

0
.0

0
0

0
.5

7
9

1
0

.0
9
6

$
7

0
,8

3
2

$
6

9
,7

8
6

0
.0

2
3

0
.1

4
1

0
.0

1
0

0
.0

0
2

0
.0

0
0

0
.6

0
0

0
.0

0
5

0
.0

0
0

0
.4

7
4

1
0

.0
1
9

$
6

0
,7

5
0

$
5

1
,8

8
0

0
.0

1
1

0
.1

3
2

0
.0

1
9

0
.0

0
2

0
.0

0
0

0
.4

4
4

0
.0

0
8

0
.0

0
0

0
.7

3
7

2
0

.0
1
9

$
1

8
3
,3

0
1

$
2

3
9
,3

3
1

0
.0

7
2

0
.1

5
0

0
.0

4
2

0
.0

0
1

0
.0

1
6

0
.4

0
9

0
.0

1
1

0
.0

0
0

0
.5

2
6

0
0

.0
5
8

$
7

8
,9

3
8

$
4

9
,9

1
8

0
.0

2
3

0
.1

7
8

0
.0

1
9

0
.0

0
0

0
.0

0
1

0
.5

0
0

0
.0

0
4

0
.0

0
0

0
.6

8
4

1
0

.0
1
9

$
1

5
8
,6

8
9

$
1

5
9
,6

0
0

0
.0

7
3

0
.1

4
0

0
.0

1
0

0
.0

0
1

0
.0

0
7

0
.4

0
0

0
.0

0
5

0
.0

0
0

0
.5

2
6

1
0

.0
1
9

$
1

3
1
,3

1
3

$
1

1
4
,4

2
1

0
.0

4
2

0
.0

9
6

0
.0

7
0

0
.0

0
2

0
.0

4
8

0
.2

5
7

0
.0

1
4

0
.0

0
0

0
.7

3
7

0
0

.0
7
7

$
1

1
7
,8

0
6

$
8

8
,2

8
0

0
.0

4
3

0
.1

0
1

0
.0

2
9

0
.0

0
1

0
.0

0
1

0
.3

3
3

0
.0

0
4

0
.0

0
0

0
.7

3
7

0
0

.0
1
9

$
8

5
,0

1
8

$
5

8
,8

0
0

0
.0

2
2

0
.0

8
0

0
.0

1
9

0
.0

0
1

0
.0

0
0

0
.0

0
0

0
.0

0
1

0
.0

0
0

0
.3

6
8

0
0

.0
1
0

$
7

4
,2

1
1

$
1

0
6
,7

5
0

0
.0

1
7

0
.0

5
1

0
.0

7
4

0
.0

0
1

0
.0

0
0

1
.0

0
0

0
.0

0
4

0
.0

0
0

0
.1

0
5

0
0

.0
1
9

Scientometrics (2016) 107:477–498 495

123



References

Abbasi, A., Altmann, J., & Hossain, L. (2011). Identifying the effects of co-authorship networks on the
performance of scholars: A correlation and regression analysis of performance measures and social
network analysis measures. Journal of Informetrics, 5(4), 594–607.

Allen, L., Jones, C., Dolby, K., Lynn, D., & Walport, M. (2009). Looking for landmarks: The role of expert
review and bibliometric analysis in evaluating scientific publication outputs. PLoS One, 4(6), e5910.

Beaudry, C., & Allaoui, S. (2012). Impact of public and private research funding on scientific production:
The case of nanotechnology. Research Policy, 41(9), 1589–1606.

Bell, J. G., & Seater, J. J. (1978). Publishing performance: Departmental and individual. Economic Inquiry,
16(4), 599–615.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. The Journal of Machine Learning
Research, 3, 993–1022.

Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. Journal
of Mathematical Sociology, 2(1), 113–120.

Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27(1), 55–71.
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.
Breunig, M. M., Kriegel, H., Ng, R. T., & Sander, J. (2000). LOF: Identifying density-based local outliers.

ACM Sigmod Record, 29(2), 93–104.
Buss, A. R. (1976). Evaluation of Canadian psychology departments based upon citation and publication

counts. Canadian Psychological Review/Psychologie Canadienne, 17(2), 143.
Butler, L. (2005). What happens when funding is linked to publication counts? Handbook of quantitative

science and technology research (pp. 389–405). NewYork: Springer.
Cowan, R., & Jonard, N. (2003). The dynamics of collective invention. Journal of Economic Behavior &

Organization, 52(4), 513–532.
Creamer, E. G. (1998). Assessing faculty publication productivity: Issues of equity. ASHE-ERIC higher

education report, volume 26, number 2. ERIC.
Creamer, E. G. (1998). Assessing faculty publication productivity: Issues of equity. ASHE-ERIC higher

education report, volume 26, number 2. ERIC.
De Bellis, N. (2009). Bibliometrics and citation analysis: From the science citation index to cybermetrics.

Lanham: Scarecrow Press.
De Nooy, W., Mrvar, A., & Batagelj, V. (2011). Exploratory social network analysis with Pajek (27th ed.).

Cambridge: Cambridge University Press.
Deng, H., Runger, G., & Tuv, E. (2011). Bias of importance measures for multi-valued attributes and

solutions. Artificial neural networks and machine Learning–ICANN 2011 (pp. 293–300) Springer.
Diestel, R. (2005). Graph theory, vol. 173 of. Graduate Texts in Mathematics.
Dundar, H., & Lewis, D. R. (1998). Determinants of research productivity in higher education. Research in

Higher Education, 39(6), 607–631.
Ebadi, A., & Schiffauerova, A. (2013). Impact of funding on scientific output and collaboration: A survey of

literature. Journal of Information & Knowledge Management, 12(04), 1350037.
Ebadi, A., & Schiffauerova, A. (2015a). A computer system for automatic evaluation of researchers’

performance, 15th International Society of Scientometrics and Informetrics Conference (ISSI 2015),
425–435.

Ebadi, A., & Schiffauerova, A. (2015b). On the relation between the small world structure and scientific
activities. PLoS One, 10(3), e0121129.

Ebadi, A., & Schiffauerova, A. (2015c). How to receive more funding for your research? Get connected to
the right people! PLoS One, 10(7), e0133061.

Ebadi, A., & Schiffauerova, A. (2015d). How to become an important player in scientific collaboration
networks? Journal of Informetrics, 9(4), 809–825.

Elzinga, A., & Jamison, A. (1995). Changing policy agendas in science and technology. In Sheila Jasanoff
(Ed.), Handbook of science and technology studies. London: Sage.

Eslami, H., Ebadi, A., & Schiffauerova, A. (2013). Effect of collaboration network structure on knowledge
creation and technological performance: The case of biotechnology in Canada. Scientometrics, 97(1),
99–119.

Fu, L. D., & Aliferis, C. F. (2010). Using content-based and bibliometric features for machine learning
models to predict citation counts in the biomedical literature. Scientometrics, 85(1), 257–270.

Fu, L. D., Aphinyanaphongs, Y., & Aliferis, C. F. (2013). Computer models for identifying instrumental
citations in the biomedical literature. Scientometrics, 97(3), 871–882.

Garfield, E. (1970). Citation indexing for studying science. Essays of an Information Scientist, 1, 133–138.

496 Scientometrics (2016) 107:477–498

123



Gingras, Y. (1996). Bibliometric analysis of funded research. A feasibility study. Ottawa: Report to the
Program Evaluation Committee of NSERC.

Godin, B. (2003). The impact of research grants on the productivity and quality of scientific research. No.
2003. INRS working paper.

Gross, P. L. K., & Gross, E. M. (1927). College libraries and chemical education. Science, 66(1713),
385–389.

Hanneman, R. A., & Riddle, M. (2011). Concepts and measures for basic network analysis. In J. Scott, & P.
J. Carringon (Eds.), The SAGE handbook of social network analysis (pp. 340–367). Thousand Oaks,
CA: Sage.

Hicks, D., Tomizawa, H., Saitoh, Y., & Kobayashi, S. (2004). Bibliometric techniques in the evaluation of
federally funded research in the United States. Research Evaluation, 13(2), 76–86.

Huang, J., Zhuang, Z., Li, J., & Giles, C. L. (2008). Collaboration over time: Characterizing and modeling
network evolution. Proceedings of the 2008 international conference on web search and data mining,
pp. 107–116.

Huffman, W. E., & Evenson, R. E. (2005). New econometric evidence on agricultural total factor pro-
ductivity determinants: Impact of funding composition. Iowa State University, Department of Eco-
nomics, Working paper, 3029.

Jacob, B. A., & Lefgren, L. (2011). The impact of research grant funding on scientific productivity. Journal
of Public Economics, 95(9), 1168–1177.

Katz, J. S., & Martin, B. R. (1997). What is research collaboration? Research Policy, 26(1), 1–18.
King, J. (1987). A review of bibliometric and other science indicators and their role in research evaluation.

Journal of Information Science, 13(5), 261–276.
Kohavi, R., & Provost, F. (1998). Confusion matrix. Machine Learning, 30(2–3), 271–274.
Kyvik, S., & Olsen, T. B. (2008). Does the aging of tenured academic staff affect the research performance

of universities? Scientometrics, 76(3), 439–455.
Lee, S., & Bozeman, B. (2005). The impact of research collaboration on scientific productivity. Social

Studies of Science, 35(5), 673–702.
Luukkonen-Gronow, T. (1987). Scientific research evaluation: A review of methods and various contexts of

their application. R&D Management, 17(3), 207–221.
MacRoberts, M. H., & MacRoberts, B. R. (1996). Problems of citation analysis. Scientometrics, 36(3),

435–444.
Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big data:

The next frontier for innovation, competition, and productivity. McKinsey Global Institute.
McAllister, P. R., & Narin, F. (1983). Characterization of the research papers of US medical schools.

Journal of the American Society for Information Science, 34(2), 123–131.
Merton, R. K. (1973). The sociology of science: Theoretical and empirical investigations. Chicago:

University of Chicago press.
Nicolaisen, J. (2002). The J-shaped distribution of citedness. Journal of Documentation, 58(4), 383–395.
Okubo, Y. (1997). Bibliometric indicators and analysis of research systems: Methods and examples (Vol.

1997/1). Paris: OECD Publishing.
Payne, A. A., & Siow, A. (2003). Does federal research funding increase university research output?

Advances in Economic Analysis & Policy, 3(1), 1–22.
Peritz, B. C. (1990). The citation impact of funded and unfunded research in economics. Scientometrics,

19(3–4), 199–206.
Phelan, T. (1999). A compendium of issues for citation analysis. Scientometrics, 45(1), 117–136.
Plume, A., & van Wiejen, D. (2014). Publish or perish? The rise of the fractional author. Trends Journal of

Sciences Research, 38.
Polster, C. (2007). The nature and implications of the growing importance of research grants to canadian

universities and academics. Higher Education, 53(5), 599–622.
Porter, S. R., & Umbach, P. D. (2001). Analyzing faculty workload data using multilevel modeling.

Research in Higher Education, 42(2), 171–196.
Quinlan, J. R. (1993). C4. 5: Programs for machine learning, Morgan Kaufmann.
Sanz Menéndez, L., & Borrás, S. (2000). Explaining changes and continuity in EU technology policy: The

politics of ideas.
Seglen, P. O. (1992). The skewness of science. Journal of the American Society for Information Science,

43(9), 628–638.
Sonnenwald, D. H. (2007). Scientific collaboration. Annual Review of Information Science and Technology,

41(1), 643–681.
Tan, D. L. (1986). The assessment of quality in higher education: A critical review of the literature and

research. Research in Higher Education, 24(3), 223–265.

Scientometrics (2016) 107:477–498 497

123



Tijssen, R. J. (2004). Is the commercialisation of scientific research affecting the production of public
knowledge?: Global trends in the output of corporate research articles. Research Policy, 33(5),
709–733.

Van Raan, A. F. (2005). Fatal attraction: Conceptual and methodological problems in the ranking of
universities by bibliometric methods. Scientometrics, 62(1), 133–143.

Wanner, R. A., Lewis, L. S., & Gregorio, D. I. (1981). Research productivity in academia: A comparative
study of the sciences, social sciences and humanities. Sociology of Education, 54, 238–253.

Wasserman, S. (1994). Social network analysis: Methods and applications. Cambridge: Cambridge
University Press.

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684),
440–442.

Weiss, S., & Kulikowski, C. (1991). Computer systems that learn. California: Morgan Kaufmann Publishers.

498 Scientometrics (2016) 107:477–498

123


	iSEER: an intelligent automatic computer system for scientific evaluation of researchers
	Abstract
	Introduction
	Data and methodology
	Data
	Methodology and models
	Classification of researchers
	Prediction of scientific performance and level of funding


	Results
	Classification
	Prediction

	Conclusion
	Limitations and future work
	Appendix: Sample of prediction results
	References




