
Vol.:(0123456789)

Science & Education
https://doi.org/10.1007/s11191-024-00517-z

1 3

SI: EPISTEMIC INSIGHT & ARTIFICIAL INTELLIGENCE

The Practical Epistemologies of Design and Artificial 
Intelligence

William Billingsley1 

Accepted: 27 March 2024 
© The Author(s) 2024

Abstract
This article explores the epistemological trade-offs that practical and technology design 
fields make by exploring past philosophical discussions of design, practitioner research, 
and pragmatism. It argues that as technologists apply Artificial Intelligence (AI) and 
machine learning (ML) to more domains, the technology brings this same set of epistemo-
logical trade-offs with it. The basis of the technology becomes the basis of what it finds. 
There are correlations between questions that designers face in sampling and gathering 
data that is rich with context, and those that large-scale machine learning faces in how 
it approaches the rich context and subjectivity within its training data. AI, however, pro-
cesses enormous amounts of data and produces models that can be explored. This makes 
its form of pragmatic inquiry that is amenable to optimisation. Finally, the paper explores 
implications for education that stem from how we apply AI to pedagogy and explanation, 
suggesting that the availability of AI-generated explanations and materials may also push 
pedagogy in directions of pragmatism: the evidence that explanations are effective may 
precede explorations of why they should be.

1  Reflective Practice and Technology Design

In some fields, “the aim is not to find the truth, but to improve some characteristics of the 
world in which people live”. This characterisation comes from Rittel and Webber’s (1973) 
formulation of wicked problems: the muddy, intertwined, hard-to-define problems that 
planners and designers face in their practice. Hypotheses become hard to define because 
every design situation involves interpretation of what the underlying problem is. Solutions 
become hard to generalise because every situation is imbued with unique context. Experi-
ments become hard to conduct because every implemented solution has consequences: the 
world after your design has been implemented is, perhaps subtly or perhaps dramatically, 
different than it was before. The designer, however, “has no right to be wrong”, because 
poorly implemented designs can cause real and lasting harm. This is contrasted with the 
“tame” problems that science has traditionally tackled, in which problems are definable 
and separable, hypotheses are falsifiable, and experiments are permitted to fail.
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The cost of failure is a common and sometimes wry lament in many practical fields. 
“When mankind lands on Mars, it will be heralded as a triumph of science. If something 
goes wrong on the way, it will be blamed on engineering failure” (Billingsley, 2015). When 
designing for social contexts, not only is the cost of failure present, it may also be infea-
sible for the designer to model the trajectory of their design before it launches. Designers 
describe this as the “envisioned world problem” (Hoffman et al., 2010). The designer can 
only conduct their investigations in the world that exists now, but their design will operate 
in an envisioned world that does not exist yet: the one in which it has been implemented 
and may be being used in unexpected ways.

Usually, this results in unexpected user experience problems, but it can also result in 
uses for a technology that the designer did not originally envisage, with its own conse-
quences. Interviewed in 2015, Evan Williams, co-founder of Twitter (now X) described 
that “there was this path of discovery … where over time you figure out what it is” 
(Lapowski, 2013/2019) . First envisaged as a tool for people to share short status updates 
with a small group of friends, Twitter evolved to have much broader influence on society 
from global journalism (McGregor & Molyneux, 2020) and politics (Parmelee & Bichard, 
2011) to the social dangers faced by children and youth (Bozzola et al., 2022).

Fundamentally, designers are faced with a tension: the situations and participants they 
study are rich with unique context that limit how safe it is to generalise their findings or 
predict the impact of any change, but their practice requires them to do so as the products 
and technology they create are intended to be used more broadly and express a design goal. 
Design fields have faced this tension down the ages and developed their own ways of know-
ing and ways of learning (Cross, 1982), which are typically based on reflective practice. In 
doing so, they gather principles from experience and seek ways to judiciously abstract and 
generalise them, but without the claims of abstract truth that might be seen in the sciences. 
Observations stem not from clean experimentation, but from reflecting on situated practice 
with all its context and complexity, so are more tentatively applicable when seeking to 
bring them to another context. Schön (1983, 1984, 1987), discussing design pedagogies 
and how students learn their practice within studios, advocates reflective practice for its 
ability to leave the high ground of theoretically solvable problems, and enter the “swampy 
lowlands, where situations are confusing messes … and usually involve problems of great-
est human concern” (1983, p42). James (1907), writing much earlier on the philosophy of 
pragmatism, makes a similar contrast with theoreticians: “The more absolutistic philoso-
phers dwell on so high a level of abstraction that they never even try to come down”.

Technology design grapples with these issues in a heightened form. Computer programs 
are considered more complex for their size than any other human construct (Brooks, 1986). 
They are also a remarkable mixture of abstract theory and human context. A program’s 
internal workings are described in an abstract manner (a programming language) so pre-
cisely that it can be executed by a machine, but most computer programs are not created 
for their own abstract beauty, but to achieve some real-world goal. So, alongside their engi-
neering complexity, they also carry the rich context and ambiguities of design. Influential 
AI researcher Herbert A. Simon (1969) described the need for “sciences of the artificial”  
to explore this, including a chapter proposing a science of design that was later revised and 
republished separately (Simon, 1988). His work led to some debate as to what attempting 
to make design more scientific offered to the design community (Schön, 1983, pp. 47–49; 
Dorst & Dijkhuis, 1995; Meng, 2009). In my own view, the tension between Simon’s and 
Schön’s arguments reflects this dual nature of technology design: that it is so precisely 
described but founded in imprecise human context. This dual nature extends into how prac-
titioners are taught within universities. As well as learning about programming language 
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theory and engineering techniques (computer science), students are also often taught their 
practice using studio methodologies inspired by design studios (Tomayko, 1991; Docherty 
et al., 2001; Hundhausen et al., 2008).

Modern software is commonly developed using agile methodologies, which make 
use of a cycle of iterative cycles of development and evaluation. SCRUM, one of the 
more popular methodologies, describes this aspect in terms of industrial process control 
(Schwaber, 1997), but action researchers (Lewin, 1946) might also recognise it as a cycle 
of simultaneous action and reflection, strategists might recognise its similarity to Boyd’s 
(1976) Observe-Orient-Decide-Act (OODA) loop, and designers might recognise agile 
development’s similarity to design thinking cycles (Lindberg et al., 2011).

In technology design, the question of epistemology can seem esoteric. Academic papers 
submitted to design and technology venues do not typically declare their philosophical 
stance or ground their methodology in it. (It can be a barrier occasionally and unpleasantly 
encountered when navigating the criticisms of journal reviewers who come from other 
fields.) Questions of how to establish design approaches as valid academic methods 
of inquiry do routinely arise (Zimmerman et  al., 2007; Herriott, 2019), along with the 
question of how to apply rigour to design experiments and investigations (e.g. Zimmerman 
et  al., 2010; Mettler et  al., 2014; Frauenberger et  al., 2015). Design science (March & 
Smith, 1995) considered the distinction between research activities and research outputs 
within these action and reflection loops and Hevner et  al. (2004) attempted to describe 
criteria for evaluating design science research.

However, running through the literature, there is a recognition that the discussion of 
the epistemology of design is post hoc: reflective practice is ancient, inevitable, and ongo-
ing. James (1907) describes pragmatism as “nothing essentially new”, and later simply that 
“the pragmatist clings to facts and concreteness, observes truth at its work in particular 
cases, and generalises”. Archer (1995), considering the question of design research rigour 
largely through the lens of action research, concludes with a remark about the artificiality 
of the question. “All this has been well understood for a long time. What is new, perhaps, 
today is the introduction of a new quality to be sought for in research: the elusive quality of 
Research Assessment Exercise-worthiness”.

2  Large‑Scale AI Is also Pragmatic

In the last 20 years, AI has been applied to many fields of inquiry. In 2005, a report for 
the United States government (PITAC, 2005) coined the idea of computational science 
as a “third pillar” of science alongside theory and experimentation, though much of that 
characterisation centered on simulation and high-performance computing (e.g. Dongarra 
et  al., 2007; Skuse, 2019). Recently, we have witnessed the rise of machine learning 
based on very large deep learning models: multi-layered neural networks that are 
developed through unsupervised learning (Bengio et al., 2021). For instance, the natural 
language model GPT-3 (Brown et al., 2020) contains 175 billion parameters that were 
trained on 300 billion tokens (approximately, words) of data. This produced a pre-trained 
model that could then be adapted to new tasks through “few shot” learning: that is, it 
only requires a few examples of a new task to train the model to be able to perform it. 
However, specialised models can also be created by more extensive “fine tuning” using 
large quantities of data from other domains.
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Within computer science itself, Codex (Chen et al., 2021) is a language model originally 
derived from GPT-3 that was fine-tuned by training it with 50 million examples of computer 
programs from open-source software projects on GitHub. Despite having no formally designed 
internal model of how a computer works, this trained language model performed well enough 
at code generation to pass first-year university computer science exams (Finnie-Ansley 
et al., 2022). Whereas we might instruct students how to use algorithmic thinking in writing 
a program (Knuth,  1985/2018), a generative language model reflects inductive reasoning: 
given the prompt of the question, what is the most likely text of a successful answer. The 
Codex model was made available as a commercial programming assistant under the brand 
name GitHub Copilot; more recently, this has also begun incorporating GPT-4. Although 
programming has, perhaps inevitably, been one of the first application areas, researchers are 
exploring other kinds of data it can generate. Language models have, for instance, proven 
adept at understanding and generating chemical molecular structures (Flam-Shepherd et al., 
2022) and researchers are working on Codex-like tools for chemistry (Ahmad et al., 2022).

The use of large learning models changes the kind of reasoning we are effectively 
employing in part of our work. When a simulation or traditional computational science 
technique is applied to a scientific task, it can be argued that the machine is simply a tool 
of the researcher, enabling them to capture their theory as a model and examine its impli-
cations (Diallo et al., 2013). However, a model containing billions of parameters, learned 
through unsupervised learning on training data, brings in questions about the samples that 
the model was trained on and their generalisability. For example, deep learning models 
reflect biases from their training sets (Dale, 2021), and investigations into the reasoning 
abilities of GPT-3 on vignettes can be confounded by whether it may have encountered the 
text of similar vignettes in its training set (Binz & Schulz, 2022). For very large models, 
the training data is typically public data. For example, Codex’s use of open-source software 
repositories published on GitHub is essentially an exceptionally large convenience sample.

These questions about sampling, context, and generalisability are similar questions that 
design research has faced over the years. Learning from experience and therefore the use of 
available samples from experience has its basis in pragmatism. In the biases that we see in 
how AI performs, it is evident that the training data is not neutral and is filled with context 
that might or might not generalise to new situations. Its use, therefore, represents a post-
positivist view that although no sample is objectively generalisable, nonetheless useful 
insights can be gleaned from it if they are treated judiciously. The use of large convenience 
samples of public data is a surprisingly close match to a catchphrase of advice given to 
user experience design practitioners: “recruit loosely but grade on a curve” (Krug, 2006).

Moreover, as a technology artifact, very large deep learning models are inevitably devel-
oped using the iterative practices of technology design. It stands to reason, then, that if a model 
is the product of a pragmatist process, its output will stand on the same philosophical feet.

The way technology is iterated and refined based on how it practically performs can be 
seen in the literature on its development. For example, the paper “Attention is all you need” 
(Vaswani et  al.,  2017/2023) introduced the Transformer architecture that underpins many 
modern large language models. This replaced recurrence and convolutions (elements of 
previous machine learning model architectures) with layers using a new technique the authors 
called “self-attention”, because the new technique “allows for significantly more parallelisation 
and can reach a new state of the art in translation quality after being trained for as little as 12 
h on eight P100 GPUs”. Large language models have continued to be iterated and developed 
by testing their practical performance. GPT-4’s development is also described in an arXiv 
preprint (OpenAI: Achiam et al., 2023). Like many large language models, it was pre-trained 
on a very large corpus of text to be able to predict the next word in a document. However, 
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it was also fine-tuned using reinforcement learning from human feedback (Cristiano et  al., 
2017), which is an iterative mechanism whereby the model adjusts some of its parameters 
from human feedback on the perceived quality of its output. Mitigations for some of its 
harmful responses were also developed iteratively, using a panel of fifty domain experts to test 
the model by attempting to produce harmful responses, and improving the model in response. 
Before its release, OpenAI tested GPT-4’s performance on a suite of human tasks, including 
examinations and programming challenges, and compared its performance with GPT3.5.

Once it has been created, technology has a capacity to be unreasonably effec-
tive. “Unreasonably effective” is a phrase that was originally coined in mathematics, 
remarking on the seemingly surprising fact that so many distinct aspects of physics can 
be modelled using similar simple equations and terms (Wigner, 1960). Why, for exam-
ple, should circles and the density function of the Gaussian distribution of populations 
have the value pi in common. The phrase has been taken up in technology, noting the 
broad applicability of machine learning techniques when given a sufficient amount of 
data (Halevy et al., 2009; Sun et al., 2017). In this article, however, I wish to use the 
phrase “unreasonably effective” in a literal sense that there is a triumph of the prag-
matic. That is, technology can prove effective at a task before its users understand why 
it should be.

Among research users of technology, literature can also be found recommending the 
adoption of technology based on its practical effectiveness. For example, Lemon and Hayes 
(2020) recommend the use of Leximancer (a well-developed text analysis tool that uses 
co-occurrence to extract concept maps from text) for triangulation in qualitative research 
because they found the tool to be effective in practice in helping the researcher refine and 
add nuance to their conceptual models.

At the time of writing, large language models (such as GPT-4) are proving effective at 
many different tasks. For academics researching the details, perfectly reasonable explana-
tions for why this is the case emerge, but for most users of the technology the evidence of 
its effectiveness, rather than a reasoned argument for its soundness, comes first. An episte-
mology a user is implicitly selecting when they apply a large pre-trained machine learning 
model, then, is pragmatism.

3  Epistemology in Design Research

Research students are often taught that there are links between metaphysical paradigms and 
research methods that can be more affiliated with them (Williamson, 2018; Cecez-Kecmanovic 
& Kennan, 2018; Gallifa, 2018). For example, positivism takes the view that there is an 
objective reality independent of the observer and that the empiricist’s role is to uncover positive 
truths about this reality. Comte is seen as the founder of modern positivism, although Comte 
himself claimed “no originality for this conception of knowledge” but that it stems from the 
scientific practices of Bacon, Descartes, and Galileo (Mill, 1865). Popper (1962) refined this 
with the notion that a hypothesis typically cannot be positively verified but only supported 
through attempted falsifications. This view of metaphysics lends itself to experimentation and 
questions of the reproducibility and external validity of an experiment, as findings are expected 
to be truths that can be applied outside the experiment’s confines. Interpretive paradigms take 
a more relativist view: that our understanding of social reality is constructed and understood 
through subjective experience. This inevitably leads to a different view of validity, as it implies 
a lesser expectation that findings from one investigation will be easily or directly applicable 
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to another. Ethnographies and qualitative methods are often more closely affiliated with this 
philosophical stance. Post-positivists take the view that there is an objective reality but that 
observations of it cannot be fully reliable, so the truths and rules that we derive from empirical 
research are more like instruments. To use Cartwright’s (1999) famous example, stating that 
“aspirin cures headaches” speaks to a capacity that aspirin has in some circumstances, rather 
than a universal law. From a post-positivist perspective, empirical research is always in a middle 
ground where the generalisability of its findings is qualified.

Within pragmatism, this tension between subjectivity and objectivity could be argued 
to flow from philosophical discussions of the mind-body problem: whether we can explain 
physical things from mental things and what physical things can tell us about experience. 
James (1907) and Dewey (1908; Leonov, 2018) refer to this question in their work. James 
particularly was motivated by observing that we never experience either mind or reality in 
isolation, but only one through the other.

Design has to consider this tension between subjectivity and objectivity because of its 
nature. It is deeply interested in how its designs will be used by people in context, and there-
fore in their subjective experience. It is also aware that design situations are rich with context, 
with many more variables than it would be possible to describe or model (Cash et al., 2022). 
However, it cannot solely be interpretivist because designs have design goals. Woods (1998) 
describes designers as experimenters whose “products and prototypes embody hypotheses 
about what will be useful”. In a sense, like James and Dewey, design is less interested in the 
subjective or the objective in isolation than it is in the combination of the two.

Although it has not always couched the question in philosophical terms, design fields have 
long grappled with the question of when the cognitive work performed by designers counts 
as research and when it does not. In 1836, the artist John Constable gave a lecture to the 
Royal Institution, in which he asked “Why … may not landscape be considered a branch of 
natural philosophy, of which pictures are but experiments?” A century and a half later, Sir 
Christopher Frayling (1993) considered this question and this quotation in a seminal paper 
considering what research in art and design should mean. He introduced a distinction between 
research into design (researching the practice of other artists), research for design (the “small 
r” research that a designer undertakes to design their project), and research through design 
(new insights and knowledge that is discovered through design work and applicable beyond 
the artifact being designed). Frayling considered research for design to be the “thorny” one 
of the three, where the thinking is entirely embodied in the artwork and the goal is the art 
rather than the knowledge or understanding. Frayling also recognised a secondary motivation 
for not considering this last category research proper: “we feel that we don’t want to be in a 
position where the entire history of art is eligible for a postgraduate research degree”. This 
also expresses a view that Frayling attributes to Picasso, that research must find something.

Frayling’s middle category, Research through Design (RtD), has been taken up as a 
methodology in research, especially in technology design (Zimmerman et al., 2010). The 
attractiveness of this to technologists can easily be seen from designer Bruce Archer’s 
(1995) exploration of design research and its similarity to action research: “There are cir-
cumstances where the best or only way to shed light on a proposition, a principle, a mate-
rial, a process or a function is to attempt to construct something, or to enact something, 
calculated to explore, embody or test it”.

The growth of this approach has naturally led to questions over where it sits in com-
parison to scientific research. Herriott (2019) suggests that the action of designing artifacts 
and observing outcomes is little different from experimentation and that there is only a 
weak claim to there being special designerly ways of knowing. (I note, however, this bears 
similarity to William James’s comments that pragmatism is nothing new.) Galdon and Hall 
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(2019, 2021), following observations by Jones (1992, p10), consider the distinction as one 
of timing: science concerns itself with the present and investigations into what is, while 
design speaks to the future and is primarily forced to treat as real imagined things that have 
not been implemented yet. They also propose that design trades off accuracy for “access to 
areas that are partial and yet-to-be and not-fully formed. Therefore, our output is probabilis-
tic, and research is always preliminary in its nature” (2021). Goldkuhl (2011) draws a simi-
lar conclusion about timing—identifying pragmatism as the key epistemology of Research 
through Design and characterising it through a phrase from Dewey (1931): “An empiricism 
which is content with repeating facts already past has no place for possibility and liberty”.

The theme that prototypes embody designers’ hypotheses for the future and how it 
will be used recurs within the literature. As Flores et al. (1988) express it, “technology 
is not the design of physical things; it is the design of practices and possibilities to be 
realised through artifacts” .

In education, design has been used as a research method for many years, often as “design 
experiments” or “design-based research”. As is appropriate, it has often advanced through 
critical reflection on its uses and shortcomings. “Design experiments” as a term is some-
times credited to Allan Collins (1990), who sought to propose a more systematic meth-
odology for technology innovation in education as “major problems with current design 
experiments prevent our gaining much information from them”. His proposed improvements 
included inter-disciplinary teams, including teachers as co-investigators, and a greater focus 
on design revision and understanding the failures of designs rather than only seeking posi-
tive results. Brown (1992) noted a “trade-off between experimental control and richness and 
reality” when moving between laboratory studies and situated studies in classrooms. Brown 
wrote from an education and psychology perspective but used a technology analogy for the 
process of taking an education intervention from development into widespread use, liken-
ing it to the “alpha, beta, and gamma phases of software development”. Cobb et al. (2003) 
described this kind of research as “design-based” in the conclusion of their article describ-
ing how to carry out design experiments, and the term “design-based research” appears to 
have been adopted shortly after (e.g. Barab & Squire, 2004). Design-based research’s posi-
tion in relation to other methodologies has often been reflected upon. Cobb et al. (2003) saw 
design experiments as a pragmatic, iterative, and reflective way of generating theory, but 
“relatively humble” theory about why a design works and how it can be adapted to new con-
texts, rather than grander but more abstract theories of learning. More recently, Hoadley and 
Campos (2022) described it as its own tradition, contrasted with qualitative and experimen-
tal research. They note that in design-based research, hypotheses take the form of “design 
conjectures”, as it “attempts to understand the world by seeking to change it”, using itera-
tion and reflection to explore topics where interventions cannot simply be cleanly specified 
based on theory (in the manner of a scientific experiment), but must be implemented in 
complex social settings where participants have their own agency.

4  Samples and Context

Questions of research tend to come back to what is found, and questions of rigour tend to 
come back to questions of reliability and understanding the limits of the findings. As we 
have seen, design research often finds itself working with one set of participants, situated 
in all their rich context, as it proposes and tests design conjectures, but then having to make 
preliminary or probabilistic inferences about what might be useful in future contexts, to 
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future users, or to other similar use cases. When facing questions about reliability or rigour, 
design research inevitably finds itself dealing with pragmatist and post-positive considera-
tions of what subjective observations drawn from one context can tell us about another.

With the present focus on AI, I would argue that large-scale machine learning encoun-
ters a corresponding situation. Each document or item of data the machine learning model 
was trained with came from a particular context, but the purpose of training the model is so 
that it can then be applied to different documents, tasks, and contexts. The kinds of models 
that designers and AI produce are, of course, very different and they consider this proba-
bilistic inference in different ways. (For example, in AI development the error of a model’s 
predictions can be measured and quantified.) However, in both cases, there is a need to 
draw inferences from one context to apply what is learned to another. This leads each field, 
in different ways, to adopt a sense of pragmatism and iteration in how samples are chosen 
as they seek to make this process effective.

In design, a question researchers and practitioners face (for example when conducting 
usability tests) is how many participants to test with and whom. Cash et al. (2022) consider 
this question in research, noting that in a design, rich with context, there are typically far 
more variables than it is possible to enumerate. Citing Lynch (1999) and Wacker (2008), 
they argue that therefore samples are typically only defined in terms of the factors already 
known to affect the concepts being studied, what they call the “previous literature conven-
tion”. In other words, early in the research process, it might be impossible to know what 
factors a representative sample would need to be representative of. As more is discovered 
about the problem, more is discovered about what factors are important to consider in sam-
pling. This creates an effective cycle (Cash, 2018) as the sampling that a designer will 
engage in changes as their theory development moves from discovery to description.

From a practitioner perspective, similar effects can be seen. Designers of new products 
may make more use of convenience samples as they engage in need-finding and grap-
ple with coarse-level usability issues, whereas refinement of existing products has more 
capacity to consider sampling variables as there is greater knowledge of the problem being 
addressed and its stakeholders. Practitioners in interaction design are also taught that the 
point to stop recruiting new usability test participants is when they feel they have reached 
“saturation”: that is when they are gleaning few additional insights from new participants. 
In any case, contexts are assumed to be rich (so only probabilistically generalisable—find-
ings must be drawn judiciously), and there is assumed to be a sliding scale of the relevance 
of a sample to another context. As practitioner Krug (2006) expresses, it “recruit loosely, 
but grade on a curve”.

Design is also unusual in its generation of personas. As a technology has more users 
than a designer can fully conceptualise and each user has more characteristics than 
could be enumerated, Cooper (1999, p. 123) proposed the notion of personas: a smaller 
number of simplified distillations of users and their needs that a designer can use in 
thought experiments. Each persona becomes an imaginary character, and scenarios 
can be written about how that character might interact with the technology. These are 
intended to be grounded in valid research about users and their utility depends on their 
credibility (Pruitt & Adlin, 2006). However, in practice, the content of personas is not 
only generated from user research: they may also come from designers’ ideas to fill in 
gaps and possibilities (Chang et al., 2008). What I find interesting here is that it is an 
example where human design practice has attempted to mitigate problems of context 
and sampling by artificially generating additional data.

The sliding scale of context, data augmentation, and saturation all have apparent corre-
lations in machine learning. Data in a large model such as GPT-4 is assumed to be highly 
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dimensional: recall that it contains billions of parameters, and it is initially unknown what 
those parameters will end up corresponding to. Internally, machine learning models use 
“sparse” representations, pruning connections within the neural network where the connec-
tion weights are close to zero. A machine learning model is a highly engineered machine for 
learning context and what the sliding scale of relevance of one aspect to another should be.

Augmentation and refinement of training data, rather than the traditional empirical 
approach of seeking a representative sample, are also commonplace. The creators of 
GPT-3 (Brown et al., 2020) took the CommonCrawl dataset of nearly a trillion words, 
filtered it for similarity to known high-quality corpora, used fuzzy de-duplication of 
documents within the dataset, and then supplemented it with other known high-quality 
training corpora. As described earlier, GPT-4 (OpenAI: Achiam et al., 2023) was fine-
tuned after its initial training in order to improve the quality of its responses. The prac-
tice of augmenting training data to mitigate biases and known flaws is not limited to 
text-based machine learning. For example, working with images, Taylor and Nitcshke 
(2018) report on rotating, cropping, and flipping images within a training dataset to cre-
ate new examples, so that a neural network will learn to be rotation and position invari-
ant in how it detects objects. Questions of saturation and the necessary size of a train-
ing dataset are also common as developers of models consider the accuracy of models 
against their training time, number of parameters, and size of the dataset, to optimise 
cost and accuracy trade-offs in the creation of the model.

In each case, the approach to sampling and context is pragmatic and iterative. As insights 
from one context will only probabilistically transfer to another, they attempt to refine and 
optimise that inference process as more is discovered about the problem over time.

Design and AI also share the characteristic that they do not usually seek to generalise 
a single finding but to model the problem as a whole. A trained AI model represents a 
complex understanding of how each (digested) aspect of its training data relates to each 
other. The learned model is then applied as a whole when the AI is asked to perform a 
task. I would argue that this is also true of design: it is comparatively rare for a designer 
to take just a single conclusion from one study and apply it to another context, in the 
manner of a scientific finding. Rather, they take the increased understanding of the con-
text and outcomes of each situation that they have gathered in their practice and use that 
multi-factored understanding when proposing designs.

Compared to human-conducted pragmatic inquiry, however, AI can process much 
larger quantities of data. The models it produces can also be explored, for example by 
researchers investigating its biases or the best ways to augment training data to mitigate 
them. This makes AI-conducted pragmatic inquiry amenable to optimisation, as well as 
opening an endless array of new possibilities for how each generated model can be used.

5  Implications for Education

AI has had many touch points with education over many decades. Doroudi (2022) describes 
AI and the learning sciences as having been intertwined since the 1960s, as many of the 
early AI pioneers were cognitive scientists who were interested in human as well as arti-
ficial intelligence. Although, he also describes how those fields have grown further apart 
in recent years, as AI in education communities gradually moved from “trying to bridge 
between human and machine learning” to “applying state -of- the- art AI (mostly machine 
learning) in service of education”.
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On a practical level, the recent growth in the accessibility and use of AI has signifi-
cant, sweeping, and open-ended implications for how we should conduct education. 
Markauskaite et  al. (2022) consider the problem that the skills and capabilities that stu-
dents will need in their careers are likely to be altered—for instance requiring them to be 
able to understand, interpret, and adapt AI output as it is used in human organisations. 
The release of ChatGPT and its uptake by students and teachers prompted many academ-
ics to rapidly explore the perceived risks and benefits of generative AI to education. For 
example, Adeshola and Adepoju (2023) conducted topic and sentiment analysis of social 
media posts to analyse people’s views, while Baidoo-Anu and Ansah (2023) based part of 
their study on asking ChatGPT itself to discuss the issue, as well as exploring academic, 
news, and social media articles. Uses in adaptive learning, language training, and speed-
ing up the production of content and provision of feedback have been seen as benefits. 
Biases, inaccuracies, and privacy issues have been identified as risks. In an opinion piece, 
Sharples (2023) considered generative AI’s current limitations—for example that students’ 
conversations with it tend to be short and isolated from each other—and considered new 
educational roles it could take on if it evolves to become more social. There has also been 
rapid research on the risks to academic integrity of students misusing generative AI. Hsiao 
et al. (2023) conducted workshops with academics, to identify ways of redesigning written 
assignments to be more robust against the misuse of generative AI—a process that also 
helped some participants recognise where their existing assessment designs “prioritised 
knowledge telling over promoting knowledge transformation”. Gorichanaz (2023) exam-
ined social media posts on Reddit to understand the student perspective of being accused of 
using generative AI to cheat, including the experience of false accusations. His paper also 
saw assessment redesign as possibly being a more effective approach to handling genera-
tive AI than relying on detection.

In this article, however, I wish to focus more narrowly on the direct application of AI in 
pedagogy. In that setting, the choice of AI model ties in to questions of how it should know 
what it knows and how students should think about the topic. Particularly, an AI can reflect 
certain or uncertain reasoning in how students’ thinking is modelled and in how explana-
tions and feedback are given.

From as early as researchers were able to build AI models, they started using them in 
education. Early applications of AI in education often used “classical” AI models that 
work deterministically, rather than machine learning models. The design of these models 
considered both the problem and the pedagogy. For example, SOPHIE (Brown et  al., 
1975) was a reactive learning environment that modelled students’ debugging process with 
electronic circuits—modelling the measurements that students had (virtually) made and 
the conclusions they could therefore draw from this, to engage in a dialogue leading the 
student through a problem-solving experience. John Seely Brown pursued these ideas with 
a view to “cognitive apprenticeships” (Collins et al., 1989), where AI could teach students 
ways of thinking needed to solve complex problems. Intelligent Tutoring Systems (ITSs) 
arose as an area of research within AI in education and tended to involve models of the 
domain alongside models estimating what concepts and processes students do and do not 
understand, to best know how to advise them. For example, Model Tracing (e.g. Anderson 
et  al., 1995; VanLehn et  al., 2005) contained detailed rules about how an ideal student 
would progress through a problem and estimated students’ progress in understanding of this 
by observing their behaviour. Even where there is no student model (for example, because 
it is difficult for such a student model to account for learning that takes place away from 
the computer), the classical AI model of the problem would imply something about how 
the student should think about the problem. In my own designs, for instance, I observed 
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that AI-generated explanations tended to be large and unwieldy for students to navigate, 
so I advocated keeping an AI model of the problem alongside a diagram (or other visual 
model) and pruning the AI explanation to show it on the diagram. The elements shown in 
the diagram, then, represented the way the teacher wished the student to conceptualise the 
problem. This is convenient and enables students to explore problems interactively, and 
there can be a Pygmalion effect where the fact that the interface talks about the problem 
in a particular way invisibly leads the student to adopt the same conception—Slator et al. 
(1986) described this effect in text interfaces, but it seems reasonable also to apply it to 
graphical ones.

However, those classical AI models are deterministic and designed. They convey a 
defined sense of how the question should be thought about. Where large-scale machine 
learning models are used, however, we have seen that their insights are probabilistic and 
their exact internal conceptualisation of the problem is not entirely known. Explainable 
AI is a highly active area of research (e.g., Hoffman et al., 2018; Goebel et al., 2018), but 
the 175 billion parameters of GPT-3 (or the reported trillion parameters of GPT-4) are too 
many for a person to grasp even if we could investigate, measure, and label them all. This 
puts their use in pedagogy in a different space, where we can investigate and describe what 
is most important to the model, but not fully describe it in a humanly graspable way.

This is nonetheless useful. For example, Latif et  al. (2021) generated an interactive 
explorable explanation of how historical figures are connected using GPT-3 generated text 
to augment the visualisations. We can also use AI models generatively to inspect what 
the AI considered important. For example, if we ask a generative art AI to produce many 
images in the style of a famous artist, we can explore what it thinks their style is. Or we 
can also produce data science style visualisations from the model’s weights. A common 
way to explore image recognition models is to produce images highlighted with heatmaps 
of the where the AI’s attention focused, for example when classifying whether the image 
contained a toy poodle (e.g. Leventi-Peetz & Östreich, 2022).

Direct applications of large language models to AI in pedagogy have proven useful in 
recent practice. For example, Codex can generate text explanations of code that can help 
students understand programs (MacNeil et  al., 2022 August). It has also been useful for 
automatic generation of teaching materials and questions (Sarsa et  al., 2022; MacNeil 
et al., 2022, December). What is less clear is what the encoding of the pedagogy within 
the model is. Explanations and content are generated based on the corpus of examples that 
the AI has encountered, so are representative of the techniques and concepts that human 
experts use because that is what it learned from. They are clearly effective (or the teacher 
would not deploy them), but the decisions for why this is the appropriate explanation are 
left to the opaque box of the model.

As we expand the scope of what AI can be left to model and generate, this may represent 
a step towards a radical form of pragmatism in pedagogy: where explanations and examples 
are chosen because they are unreasonably effective rather than from an a priori known (to the 
teacher) model of why they should be. GPT-4 was fine-tuned using reinforcement learning 
techniques, based on human feedback of the usefulness of its responses. At the time of writ-
ing, educational applications that use generative AI have not had much time to engage in that 
kind of iterative refinement process. However, it is reasonable to expect that in the future they 
will: that educational AI will generate feedback and explanations for students and learn from 
whether or not its responses were effective. In that situation, the amount of data that the AI 
would observe over the effectiveness of its feedback is likely to give it an internal model of 
how to produce good feedback that is successful in practice but difficult to elicit or explore.
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At this point in the discussion, it may be useful to distinguish between the way an educa-
tional system thinks about the topic and the way it thinks about the student. Recently, intel-
ligent tutoring systems researchers have explored using deep learning for “knowledge tracing” 
– the process of estimating students’ skill level in the different topics in a domain (Piech et al., 
2015). These produce models of student learning that are useful and adaptable, but non-trans-
parent and require explainable AI (xAI) techniques to explore (Lu et al., 2023). It may be that 
the next stage in evolution in tutoring technology is to forgo the notion of having an explicit 
and humanly explorable model of the student at all: instead to let reinforcement loops in gen-
erative AI learn how best to respond and advise students. Internally, such an AI would learn 
some representation of student understanding, but it is unlikely to be separable from its model 
of language, how to generate advice, and other parts of its network.

A potential advantage I see in this is that it would allow a clear distinction between how we 
ask students to understand a topic, versus how we seek to understand students. We could, for 
example, supply tasks to students that model problems in a classical and positivist manner—
using the Pygmalion-like effect to lead them to see how we would like them to think about the 
problem. But we can let the AI learn pragmatically how best to help and advise them, from the 
advice it has seen in its training set (and large language model training sets include very large 
quantities of educational material) together with reinforcement loops interacting with students.

Despite the criticisms of biases in AI, there may also be equity advantages to this. A recent 
criticism of student modelling in education has been that it can lead to a “deficit” framing 
of students’ skills (Ocumpaugh et  al., 2024). Where an AI keeps a defined internal model 
of how students should think about a problem and measures students’ understanding against 
it, students’ deviations from the model are seen as shortcomings to be fixed, which can lead 
to a constant emphasis on how students are lacking. A similar effect can be seen in learning 
analytics, which may focus on classifying which students are “at risk”. There is growing rec-
ognition in the learning analytics community that students do not always feel that they are the 
beneficiaries of the analytics that is performed on their data (Selwyn, 2019). As academics, 
we naturally wish to understand how our students are learning and why. The value of educa-
tion to students, however, is in the learning rather than necessarily in being visibly analysed or 
diagnosed. From a design perspective, then, there may be practical advantages in being clear 
about what students should know, but pragmatic about what they do know.

6  Conclusion

Design and large-scale AI are fields that work with probabilistic knowledge, rich contexts, 
and attempt to draw out complex relationships between concepts rather than easily general-
ised findings. Discussions on their rigour and epistemology inevitably involve questions of 
sampling, bias, and context. They are also fields that are advanced through iterative modes 
of practice and reflection on what worked and what can be improved. These features lead 
them to take pragmatist and post-positive approaches to their subject matter.

AI, being computational, has the additional characteristics of being able to process large 
amounts of data and inherently modelling its weightings and network (at least internally) 
numerically. This makes it possible to use these models generatively and probe them for 
insights. For the teams and organisations that produce them, it is also possible for them to 
optimise the sampling, data augmentation, and model size in ways that are not practical for 
human-conducted research.
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Past conceptualisations of pragmatism, as far as Dewey and James, have spoken of 
practitioners acting and reflecting upon experience. The notions of how much experience, 
what experience, however, have tended to be qualitative. For example, the user experience 
designer stops recruiting participants when they feel they have reached saturation. In large-
scale machine learning, saturation and biases become explorable properties of the model. 
This suggests that the kinds of pragmatic inquiry that we see conducted using AI may be 
more amenable to optimisation than human-conducted pragmatic inquiry.

AI, design, and education have long been intertwined. Many of the early researchers in 
AI were also interested in human cognition and developed programs and artifacts that were 
designed to improve teaching. As education technology grew and the design of technol-
ogy-based interventions in education became a topic of research, design experiments and 
design-based research methodologies also became intertwined with education research.

More recently, education technology has grown in scope, size and depth. Generative AI 
in particular has seen very rapid uptake among teachers and students. The questions of how 
this will impact education are as unknown as design questions always are: the applications 
of AI are an envisioned world. However, we can speculate that a sense of pragmatism and 
unreasonable effectiveness may grow in our teaching, as for users, the evidence that the 
output of the AI is effective comes before the exploration of why this is the case.

In terms of epistemology, I argue that as generative AI takes on some of the functions 
of student-modelling and feedback generation, we may see an increasing sense of duality 
and delineation in how educational technology models knowledge. The learning artifacts 
and interactive tools designed by academics represent how we would like students to think 
about a problem, so the epistemology they represent will depend on the topic being taught. 
The way the AI models student understanding, however, is likely to be pragmatic, as it 
improved by its designers using the pragmatic methods of technology development and 
learns from experience using the pragmatic methods of machine learning.
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