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Abstract
This article focuses on uncertainty—ways in which scientists recognize and analyze limits 
in their studies and conclusions. We distinguish uncertainty from (un)trustworthiness—
ways in which scientific reports can be affected by conscious deception or unconscious 
bias. Scientific journal articles typically include analyses and quantifications of uncer-
tainty in both quantitative forms (e.g., error bars, ranges of predictions, statistical tests) 
and qualitative forms (e.g., alternate hypotheses, limitations of studies, questions for future 
research). These analyses of uncertainty are often incorporated into reports from scientific 
organizations and responsible scientific journalism. We argue that a critical goal of sci-
ence education should be to help students understand how science may be employed as 
an uncertain and limited, yet still useful tool for informing decisions about socioscientific 
problems. When members of the public are insufficiently prepared to understand analy-
ses and quantifications of uncertainty, the consequences are manifest in public skepticism 
about science and inadequately informed decision-making about socioscientific issues. We 
describe current design work in science education that includes a worthwhile emphasis 
on helping students to recognize and leverage uncertainty in their own data and models. 
Additional important work can enable students to develop proficiency in seeking out and 
understanding analyses of continuing uncertainty in media accounts of scientific conclu-
sions and predictions.

1  Introduction: Trustworthiness and Uncertainty in Science

Public trust in science in what has been characterized as our post truth world is a criti-
cal problem facing science education and a problem with no simple solutions (Barzilai 
& Chinn, 2020; Chinn et  al., 2020; Feinstein & Waddington, 2020; Kienhues et  al., 
2020; Oreskes, 2019). In this article, we shift focus from the question of “why” people 
should trust science to that of “how” people should trust science. We argue that there 
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are several distinct issues that require attention as people figure out how to evaluate sci-
ence and the outputs of the scientific enterprise. One issue concerns the trustworthiness 
of science, another concerns uncertainty stemming from inherent aleatory and investi-
gatory limitations of the scientific enterprise.

Both issues are important and relevant to the problem of public (dis)trust in science, 
yet these concerns are frequently conflated in the science education literature and sci-
ence education instruction. Our article tilts focus toward the issue of uncertainty not 
because we think uncertainty is more important than trustworthiness, but because we 
believe that scientific analyses of uncertainty deserve increased attention in science edu-
cation. We begin with a statement of our perspective of science followed by a discussion 
of the relationship between trustworthiness and uncertainty in the scientific enterprise. 
While acknowledging that there are many views and definitions of science, here we 
adopt the perspective that science is an international subculture (or group of communi-
ties of practice) that shares a social language, established channels of communication 
(including journals), and common knowledge and practices.

The issue of trustworthiness of scientific claims and predictions is evident in the call 
for this special issue, which draws our attention to “claims that science suffers from a 
systematic bias through sexism, racism, capitalism, colonialism and other ideological 
interests.” Cultural critics of science argue that scientific conclusions are not trustwor-
thy due to bias, unexamined assumptions, self-interest, and other sources of human-fal-
libility (e.g., Bang et al., 2012, 2018; Benjamin, 2013; Gunckel, 2022; Jamieson, 1996). 
These critics appropriately exhort scientists to acknowledge and redress culturally 
biased assumptions, beliefs, and practices.

While external critics of science often focus on trustworthiness, communications 
within scientific communities often focus on scientific uncertainty. Figure 1 helps illu-
minate the distinctions as well as the areas of overlap between trustworthiness and 
uncertainty. For example, Fig. 1 represents uncertainty as having quantitative and quali-
tative sources. The domain of scientific uncertainty that tends to be most distinct from 
trustworthiness concerns quantitative analyses of uncertainty. Both scientists and exter-
nal critics of science commonly identify qualitative aspects of scientific uncertainty. 
However, this area of overlap might be characterized differently by the two commu-
nities; whereas critics of science might call attention to unexamined assumptions as 

Fig. 1  Perspectives of (un)trustworthiness and uncertainty in science (modified from Kirch, 2012)
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reflecting conscious or unconscious biases, scientists might describe qualitative aspects 
of uncertainty as alternate hypotheses or unanswered questions.

Concerns about trustworthiness and uncertainty are not unique to science. People in all 
cultures and communities of practice have developed language and practices for dealing 
with trustworthiness and uncertainty, and there is no one community whose approaches 
are always superior. These issues are particularly important in education, where we must 
decide “whose certainty” or “whose uncertainty” should be taught, and for socioscientific 
issues, where we must make personal and collective choices about courses of actions based 
on uncertain information.

We argue that science education should enable students to enter a dialogue that attends 
to both social critiques of science as inherently untrustworthy and scientific analyses of 
how research findings are inherently limited by uncertainty—yet still worthwhile and use-
ful. We believe that an understanding of science and scientific findings as uncertain, lim-
ited, and useful is particularly critical for science education at this juncture in time, when 
humanity is faced with extraordinary threats such as climate change, degradation of water 
quality and availability, and global pandemics. This is because while science is limited 
and uncertain (and sometimes, yes, untrustworthy), it is also a uniquely important tool for 
addressing socioscientific problems.

We will also argue that a critical goal of science education should be to teach students 
how science may be employed as an uncertain and limited, yet still useful tool for inform-
ing decisions about socioscientific problems. In making this point, we note that endorsing 
consideration of scientific conclusions and predictions within discussions and debates is 
not the same as endorsing policies or actions based on those conclusions and predictions. 
Political leaders who claim that their policies are “following the science” are never merely 
following the science. They are using scientific conclusions and predictions as support for 
policies that are also based on many other political, ethical, economic, and social consid-
erations (Feinstein & Waddington, 2020).

This article focuses mostly on how science education could help students understand 
scientific analyses of uncertainty and use their understanding to inform (but not determine) 
their opinions and actions related to socioscientific issues. In several places, we discuss 
ways that instruction addressing scientific analyses of uncertainty can intersect with the 
issue of the trustworthiness of science. To make our case that science education should 
offer instructional experiences that engage students in learning how science is limited, 
uncertain, and useful, we will consider four issues.

First, making sense of scientific uncertainty requires some understanding of how the 
scientific enterprise works—particularly with respect to how scientists make claims about 
uncertainty in both settled and cutting-edge science. Thus, in Sect.  2, we discuss how 
claims about uncertainty are communicated among scientists, both in reports of settled 
science, such as science textbooks, and reports of cutting-edge science, such as scientific 
articles.

Because our argument is concerned with the interface between communities of scien-
tists and the public domain, in Sect. 3, we consider scientific claims about uncertainty from 
perspectives outside of the subculture of Western science. This discussion includes two 
parts. One focuses on evidence, often from psychology and communications fields, con-
cerning public awareness and understanding of scientific claims about uncertainty, includ-
ing differences between scientific and lay ways of perceiving uncertainty within scientific 
discourse. In addition, we discuss perspectives on scientific claims about uncertainty and 
approaches to risk and uncertainty found in other cultures. We suggest that for both sci-
entists and the public, there is a tension between two ways of responding to claims about 
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uncertainty: epistemic hubris rejects claims about uncertainty and asserts the superiority 
of favored claims; alternatively claims of uncertainty can invoke curiosity and information 
seeking.

Next, Sect.  4 discusses different ways that scientists and journalists portray scientific 
claims about uncertainty in public-facing communications. We focus on communications 
about cutting-edge science and discuss approaches including omission of uncertainty, por-
trayal of uncertainty as a source of contention or disagreement, and portrayal of claims 
about scientific uncertainty as an expected and normal part of the scientific endeavor.

Finally, in Sect. 5, we address implications for science education. Recent science educa-
tion literature documents an increasing focus on uncertainty (e.g., Chen et al., 2019; Kirch, 
2012; Manz & Suárez, 2018; Metz, 2004; Pallant et  al., 2020; Schroeder et  al., 2019). 
Much of this work foregrounds instructional approaches that encourage students to respond 
to uncertainty with curiosity and information seeking. There is less research focused on 
instruction that helps students make sense of analyses of continuing uncertainty that cannot 
be readily resolved as part of a pedagogical sequence (e.g., Chen et al., 2019). We note that 
conceptual (qualitative) uncertainty has received more attention in education and may also 
be more easily accessible for students to make sense of compared with quantitative or sta-
tistical analyses of scientific uncertainty (Mayes et al., 2014). Thus, we argue that helping 
students learn to generate and make sense of scientific quantitative analyses of uncertainty 
deserves attention and point to promising initiatives of two types:

1. Approaches to engaging students in analyzing and quantifying uncertainty in data col-
lection and in their analyses of data and models

2. Approaches to helping students evaluate scientific claims about uncertainty in media 
reports of scientific conclusions and predictions as a critical science practice that can 
be applied to inform decision-making about socioscientific issues

2  Scientific Claims About Uncertainty in Cutting‑Edge and Settled 
Science

We begin with a brief review of studies of the rhetoric of science in scientific primary 
literature—especially journal articles. We see that quantitative and qualitative analyses of 
uncertainty are pervasive in scientific primary literature, including both uncertainty that 
authors claim to resolve through their data collection and analyses, and continuing uncer-
tainty that remains to be addressed through future research (e.g., Bazerman, 1988; Latour 
& Woolgar, 1979; Strevens, 2011). We also consider how cutting-edge science, as exempli-
fied in the form and function of scientific journal articles, evolves into settled science as it 
is represented in science textbooks—what Fleck (1935/2012) referred to as “genesis and 
development of a scientific fact.”

2.1  Claims About Uncertainty in Cutting‑Edge Science

Although popular images of science can describe scientists as discovering indisputable 
facts, communication among scientists in journal articles is epistemologically far more 
complex. Students of the rhetoric of science (e.g., Bazerman, Fleck, Latour and Woolgar) 
point to ways in which scientific journal articles are organized as arguments in support of 
warranted conclusions. The stated conclusions, though, occupy only a small portion of a 
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typical article; much of an article is devoted to discussions of uncertainty in various forms 
(Guillaume et al., 2017).

Describing and reducing uncertainty: A journal article typically begins with a literature 
review that describes uncertainty in the field—continuing issues that have not been fully 
resolved. This leads to research questions or hypotheses—statements of purpose about 
how the study will address these uncertainties. The methods section describes strategies 
for managing and reducing uncertainty through data collection and analysis. The results 
and discussion sections include claims about new knowledge that reduces the uncertainty 
described in the literature review.

Claims about continuing uncertainty: Scientific journal articles rarely describe conclu-
sions as entirely certain. Instead, they include claims about continuing uncertainty that are 
reported, analyzed, and quantified in several ways, including, first, strategies for reporting 
and quantifying uncertainty in results: error bars for measurements, scatter plots, discus-
sions of possible sampling bias, statistical analyses of the strength of patterns in data, etc.; 
and second, explicit acknowledgement of study limitations: remaining sources of uncer-
tainty that could not be resolved. Finally, there are implications for future research: sug-
gestions for additional studies that could resolve some of the continuing uncertainty from 
the current study (Guillaume et al., 2017). These claims about uncertainty can encourage 
a stance of continued information seeking—identifying what we don’t know as a spur to 
future research.

2.2  Comparing Uncertainty in Cutting‑Edge Science and Settled Science

Latour and Woolgar (1979) describe the nuanced ways in which scientists communicate 
about the degree of uncertainty in scientific claims, in which conjectures or hypotheses, 
when they are supported by data and analyses, become findings that are used by other sci-
entists, with citations so that readers can establish their provenance and veracity. They fur-
ther describe how some findings become so widely used that they are accepted within the 
field as facts, no longer needing citations to support them. For instance, physicists writing 
about the effects of forces on motions of objects do not need to cite Newton to justify that 
f = ma when they invoke that relationship in an argument or explanation.

Textbooks as settled science: The contents of high school and undergraduate college 
textbooks often consist almost entirely of settled science, that is, conclusions that are so 
widely accepted in scientific communities that they no longer need qualification or justifi-
cation (Abd-El-Khalick, 2002; Chiappetta & Fillman, 2007; Knain, 2001). Thus, the text-
books follow the norms of scientific communities in presenting their conclusions without 
qualification. However, the rhetorical effect of this focus on settled science is significant 
for students. Claims about continuing uncertainty and signals about degrees of uncertainty 
that are found in the primary literature are culled out, leaving a rhetoric of conclusions that 
leads to an image of science as settled and certain. This image is problematic given that 
most of the science that can inform decisions concerning pressing socioscientific issues is 
unsettled and characterized by significant continuing uncertainty—more like journal arti-
cles than textbooks.

2.3  Cutting‑Edge Science in Socioscientific Issues

The continuing qualitative and quantitative uncertainty characteristic of cutting-edge sci-
ence has important implications for how we understand and respond to socioscientific 
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issues such as climate change and viral pandemics. The threats posed by such issues neces-
sitate timely responses in the form of societal decisions and actions. However, understand-
ing of these issues and associated predictions, for example, about what the climate will 
be like in 50 years or how high mortality rates for COVID-19 will be, is associated with 
significant uncertainties. Thus, societal decisions and actions concerning these issues must 
be taken in the context of both distrust of science and scientific uncertainty (Lee, 2012).

The community of science and related fields such as risk analysis have developed 
approaches to making predictions based on uncertain data, patterns, and models. For 
example, probabilistic approaches to making predictions include Bayesian inference (Elli-
son, 1996, 2004; Silver, 2012) and risk assessment (Eduljee, 2000; Gerba, 2006). These 
approaches to analyzing and quantifying risk are deeply embedded in fields such as engi-
neering, finance, and public health, wherein quantified risk plays a critical role in decisions 
about design, allocating resources, and planning for contingencies.

3  Perspectives on Uncertainty in Different Communities of Practice

In Sect.  2, we highlighted how specialists, working in data-rich environments, use con-
ceptual and statistical tools to analyze and communicate uncertainty. In this section, we 
compare specialists’ approaches to those of two other communities of practice. First, we 
consider members of the public, who must make judgments about uncertainty and risk 
with limited time and data. Second, we consider Indigenous communities, who may have 
deep experience with uncertainty and risk spanning many generations in the places where 
they live, but whose knowledge is encoded in language and practices unfamiliar to Western 
scientists. We consider two possible outcomes of encounters between specialists and other 
communities. The first is epistemic hubris, wherein members of one or both communities 
harden their positions and discredit alternate approaches to uncertainty and risk. The sec-
ond is information seeking, wherein uncertainty engenders curiosity and a desire for more 
information.

3.1  Differences Between Lay and Specialist Perspectives on Uncertainty And Risk

Extensive scholarship has examined how people perceive and make sense of uncertainty 
(e.g., Broomell & Kane, 2017; Budescu et al., 2012; Dieckmann et al., 2017). This work 
dates to some seminal pieces such as Tversky and Kahneman’s (1974) “Judgment Under 
Uncertainty: Heuristics and Biases” and Slovic’s (1987) “Perception of Risk.” Many of 
these studies are located within the discipline of psychology. They point to differences 
between how lay people and specialists understand and perceive uncertainty, including sci-
entific claims about uncertainty.

One prevalent finding is that lay people often pay attention to and care about different 
aspects of uncertainty compared with scientists and other specialists such as risk asses-
sors. Whereas scientists and risk assessors focus on technical and quantitative aspects of 
uncertainty (e.g., probabilities or average measurements with error bars), lay people often 
focus on qualitative issues such as credibility or on characteristics such as risk knowabil-
ity or dread (Slovic, 1987). Early on, these differences were conceived of as deficiencies 
in public understanding that science and risk communication specialists needed to fix by 
better conveying technical and quantitative information, so that the public could make deci-
sions about uncertainties and risks using the same understanding as that held by specialists 
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(Frewer, 2004; Hilgartner, 1990). This perspective has been labeled a “deficit model” of 
public understanding of uncertainty (Frewer, 2004). Over the past several decades, risk 
scholarship and practices have undergone a “cultural shift from more top-down commu-
nications to more consultative, transparent, and inclusive decision-making processes” 
(Frewer, 2004, p. 392).

Risk psychologists like Paul Slovic (1987) helped us understand that peoples’ responses 
to and decisions related to uncertainty and risk might be less related to quantified proba-
bilities of harm and more related to perceptions of things like voluntariness, dread, knowa-
bility, and controllability. Nuclear power provides a classic example of this discrepancy. 
Because risks associated with nuclear reactors “are perceived as unknown and potentially 
catastrophic” (p. 285), they are viewed as more serious by the public than by nuclear indus-
try experts. Like those who have pointed out the problems with a deficit model of public 
understanding, Slovic suggests that public perceptions of uncertainty and risk are valid, 
even though they are different from the perceptions of specialists. He argues that, “[l]ay 
people sometimes lack certain information about hazards. However, their basic concep-
tualization of risk is much richer than that of the experts and reflects legitimate concerns 
that are typically omitted from expert risk assessments” (Slovic, 1987, p. 285). Slovic and 
others warn against what Scott (2008) describes as scientism: unwarranted belief that sci-
entific methods and conclusions always lead to the best course of action. Informed citizens 
understand that, like other scientific claims, scientific claims about uncertainty and risk are 
themselves uncertain, in ways that scientists themselves do not fully understand.

While lay perceptions of risk and uncertainty have value, scholarship concerning public 
understanding has also uncovered multiple challenges that people encounter when reason-
ing about scientific analyses of uncertainty. Some of these difficulties include relying on 
cognitive heuristics to make quick and snappy judgments when making careful inferences 
from scientific analyses is possible and would be useful (Covitt et al., 2021; Kahneman, 
2011); perceiving expressions of scientific uncertainty as evidence of lower value, cred-
ibility, and usefulness (Broomell & Kane, 2017; Flemming et  al., 2015; Rabinovich & 
Morton, 2012); and confusing competing scientific hypotheses that have the potential to 
be resolved through further investigation with political, economic, or other socially rooted 
disagreements that could not be resolved through science (Dieckmann et  al., 2017; Rice 
et al., 2018).

3.2  How Epistemic Hubris Can Thwart Meaningful Consideration of Scientific 
Uncertainty

An important socially mediated barrier to productive consideration of uncertainty is epis-
temic hubris or “the expression of unwarranted factual certitude” (Barker et al., 2021, p. 1). 
Epistemic hubris is not limited to any one community; scientists and non-scientists alike 
are prone to this type of thinking. While processes such as peer review and norms for ana-
lyzing uncertainty may provide some guardrails against epistemic hubris in communica-
tions within scientific communities (e.g., Guillaume et  al., 2017); those guardrails often 
come down in communications between scientific communities and other communities. 
For example, scientific communications aimed toward public audiences often omit or over-
simplify analyses of uncertainty that are present in insider communications (Ruhrmann 
et al., 2015; Stocking, 1999). The resulting communications portray scientific claims with 
more certitude than is justified.
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In contrast, communications and expressed concerns about risk and uncertainty that 
come from “outsiders” are given less credence by Western scientists, especially if those 
communications are not conveyed using the conventions of scientific social language 
(Snively & Corsiglia, 2001). In these instances, epistemic hubris can lead Western sci-
entists to conclude that inputs from other sources are not needed and information seek-
ing in the investigatory process is prematurely concluded (Bang et al., 2018).

An example of reaching conclusions prematurely is evident in the Environmen-
tal Protection Agency’s (EPA’s) response to the Gold King Mine Spill (Beamer et al., 
2016; Gunckel, 2022). In 2015, EPA personnel and other workers accidentally breached 
a mine tailings dam and released about three million gallons of acid mine drainage into 
a tributary of the Animas and San Juan Rivers. Risk assessment conducted by the EPA 
focused on impacts on recreational users and concluded that the spill did not pose a sig-
nificant health risk (EPA, 2015; Gunckel, 2022). Gunckel further describes the case as 
follows:

However, the EPA did not take into account all of the ways that Indigenous com-
munities along the river used the water, including for farming, drinking, and spir-
itual practices (Chief, 2016). From the perspective of the Navajo farmers affected 
by the spill, the limited assumptions about who used the water and for what pur-
poses undermined the validity of the scientific model for making decisions about 
whether to use the river water to irrigate their corn. In contrast, a more culturally 
inclusive study was conducted by Chief et al. (2017) … [T]he researchers identi-
fied over 40 ways in which the Navajo community members used the water from 
the San Jan River. The researchers then investigated how lead and arsenic from 
the spill moved along the pathways that had the greatest potential to impact com-
munity members.

Further, in contrast with the EPA’s conclusion, a later study undertaken by Diné sci-
entists found ongoing detrimental impacts of the spill on the Diné people—encompass-
ing activities associated with diet, livelihood, recreation, and culture (Van Horne et al., 
2021).

The literature documents many examples of Western scientific hubris, such as “scientific 
forestry” in the nineteenth century (Scott, 2008) and the origins of the Irish potato famine 
(Fraser, 2003a, 2003b). Many of these examples involve scientists’ incomplete understand-
ing of complex systems or failure to consider traditional ecological knowledge (Snively 
& Corsiglia, 2000). Epistemic hubris can limit Western scientists’ curiosity and informa-
tion seeking, leading to failure to consider important sources of uncertainty. Thus, integra-
tion of multiple perspectives, including perspectives from outside the culture of Western 
science, has the potential to meaningfully improve the quality of scientific conclusions, 
including analyses of risk and uncertainty.

While it can be difficult to judge whose perspectives should have standing in scientific 
investigations and arguments, one heuristic approach to evaluating such merit is depth 
of experience. In cases where, in retrospect, we conclude that critics of Western science 
were correct and Western scientists were wrong, the critics often had deep and relevant 
experience with the systems and phenomena being considered—experiences that scien-
tists dismissed as unscientific traditional practice because it was not encoded in Western 
science language and practices (Bang et al., 2018; Snively & Corsiglia, 2000). Epistemic 
hubris and the case of the Gold King Mine spill reinforce the important idea that no one 
community or culture can stake a claim of possessing the best approaches to examining 
uncertainty.
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4  Public‑Facing Communications Addressing Scientific Claims About 
Uncertainty

After people who do not become scientists finish school (where they are generally exposed 
to a rhetoric of science as certain and settled facts), they continue to encounter science 
communications in their lives. These communications come in a multitude of forms and 
have various ways of addressing scientific uncertainty. Some communications are designed 
to convey settled science in interesting ways, for example, through media such as nature 
films and museum exhibits. These communications often adopt the settled and certain rhet-
oric of conclusions like that found in schools.

Other communications, however, are intended to convey information about sociosci-
entific issues, which generally involve claims from cutting-edge science that are subject 
to some combination of qualitative/conceptual and quantitative uncertainty. An example 
in which qualitative/conceptual uncertainty is more prominent comes from an April 2021 
Atlantic article that discusses four competing theories for what mechanism underlies the 
rare blood clotting problem that has been associated with receiving the AstraZeneca and 
Johnson & Johnson COVID-19 vaccines (Khamsi, 2021). This article emphasizes the 
qualitative uncertainty surrounding a conceptual unknown—i.e., which of these different 
mechanisms causes blood clotting? An example in which quantitative uncertainty is more 
prominent comes from a February 2021 New York Times article that discusses conflicting 
advice concerning whether pregnant women should be vaccinated for COVID-19 (Man-
davilli & Rabin, 2021). The source of uncertainty in this article stemmed from the fact 
that pregnant women were not initially included in vaccine trials, resulting in a lack of a 
sufficient data needed to evaluate the safety and effectiveness of COVID-19 vaccination 
for this group with standard statistical tests used in medicine. Though some articles may 
emphasize qualitative aspects of scientific uncertainty while others emphasize quantitative 
aspects, both facets of uncertainty are always present.

Note that in this article we focus on scientists and journalists producing legitimately 
intentioned communications with the aim of providing scientific information. Today, there 
are also many illegitimately intentioned communications that have aims such as disinfor-
mation and malinformation (Wardle & Derakhshan, 2018). Other scholars have addressed 
approaches for helping members of the public evaluate ill-intentioned science communica-
tions (e.g., Sinatra & Lombardi, 2020; Wineburg & McGrew, 2019), an important topic 
that is mostly outside the scope of our article. We draw a distinction between disinfor-
mation and malinformation (which are intentionally designed to deceive or mislead) and 
legitimately intentioned communications. We acknowledge that legitimately intentioned 
communications still inevitably reflect the biases and underlying aims of the communicator 
(Ebeling, 2008; Jensen, 2008; Kimmerle et  al., 2015). There is no such thing as a com-
pletely objective portrayal of science in the media. While acknowledging the inevitability 
of bias, within the domain of legitimately intentioned communications about unsettled sci-
ence written for public audiences, we observe several approaches to conveying scientific 
uncertainty.

4.1  Conveying Unsettled Science as Settled and Certain

Sometimes scientists and journalists rely on the rhetoric of conclusions that is reflective 
of settled science. This type of communication misrepresents the discourse from the 
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primary literature, winnowing out the scientific language of uncertainty and conveying 
findings and conclusions as settled (Ruhrmann et al., 2015; Stocking, 1999).

Rennie (2020) noted this type of communication approach in scientists presenting a 
series of publicly attended museum lectures concerning human genetics. She conjec-
tured that the scientists simplified their findings to make a complex topic understand-
able to the public, consequently leading the audience to assume that the science content 
was more certain than was actually the case. This rhetorical move by scientists and jour-
nalists may stem from a belief that members of the public have poor understanding of 
scientific uncertainty and/or expect that science communications will convey science as 
certain (Cordner & Brown, 2013; Frewer, 2004; Frewer et al., 2003; Landström et al., 
2015).

4.2  Conveying Unsettled Science as Contentious

Another frame sometimes adopted in public-facing communications about socioscien-
tific issues is of science as contentious and riven by disagreement (e.g., Boykoff, 2011; 
Zehr, 2000). This frame is not generally adopted in communications that either come 
from scientists themselves or that emphasize arguments and claims made by scientists 
(Rice et al., 2018).

In a study examining portrayal of climate change in print news, Rice and colleagues 
(2018) identified three types of what they call “opinion divergence” expressed in news 
articles. These included disagreements between individuals, controversies between 
groups, and skepticism expressed as prolonged opposition to an argument. These three 
“opinion divergence” frames do not usually convey specific claims about scientific 
uncertainty. For example, they may instead convey disagreements about policies that 
should be adopted in response to a socioscientific issue.

However, often—intentionally or not—these portrayals do convey information that 
audiences read as addressing inconclusiveness of scientific knowledge (Peters & Dun-
woody, 2016). Rice and colleagues (2018) provide several examples including from a 2012 
New York Times article portraying opinion divergence as controversy: “The new research 
is an attempt to resolve a scientific controversy that erupted several years ago about exactly 
how fast West Antarctica is warming.” And a portrayal of opinion divergence as skepticism 
from a 2010 New York Times article noting: “some senators challenging the notion that 
the earth is warming.” While neither of these examples conveys details of scientific claims 
about uncertainty, they both imply that uncertainty concerning warming exists.

We suggest that frames of disagreement, controversy, and skepticism that stop at 
merely describing dissension do not provide public audiences with information con-
cerning scientific claims of uncertainty that could productively be used to inform par-
ticipation in relevant debates and discussions. For example, in the controversy within 
the scientific community about warming in West Antarctica, a description of alterna-
tive hypotheses and the additional data and analyses that are being collected could help 
readers understand that both sides agree about how this disagreement could be resolved 
through further scientific investigation. In contrast, it is not at all clear what new infor-
mation might lead the senators to change their minds about global warming. Thus, the 
Antarctic ice controversy promotes information seeking in the scientific community, 
while the senators’ opposition to global warming seems to be based on epistemic hubris. 
The controversy frame does not make this distinction clear.
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4.3  Conveying Unsettled Science as Including Scientific Claims About Uncertainty

A third approach to conveying scientific uncertainty attempts to describe analyses 
of risk and uncertainty with more detail, while still aiming for accessibility to a 
public audience (e.g., Budescu et al., 2012; Dieckmann et al., 2012; Fischhoff & 
Davis, 2014; Flemming et al., 2015; Markon & Lemyre, 2013; Rice et al., 2018). 
Reports and articles produced by bodies such as the Intergovernmental Panel 
on Climate Change are examples of this type of communication (e.g., Juanchich 
et  al., 2020; McMahon et  al., 2015). We are particularly interested in how peo-
ple can make sense of thoughtfully conveyed scientific claims about uncertainty 
and use their understanding to make informed decisions that consider scientific 
uncertainty.

There is a growing body of research concerning more and less effective ways to 
convey claims about scientific uncertainty to the public (e.g., Corbett & Durfee, 
2004; Dieckmann et al., 2017; McMahon et al., 2015; Moss et al., 2008; Spiegelhal-
ter et al., 2011). These overlap with the literature concerning public perspectives of 
uncertainty discussed in the previous section. Much of this literature has a commu-
nications focus rather than an education focus. That is, it is concerned with how best 
to convey claims about scientific uncertainty given public capacity to make sense of 
these claims.

For example, some research concerning how best to communicate scientific uncer-
tainty examines how people make sense of different representations of uncertainty 
and judges which representations are most effective at conveying an intended message 
(Budescu et  al, 2009; Corbett & Durfee, 2004). In one climate-related study, Ballard 
and Lewandowsky (2015) presented people with projections for increases in tempera-
ture and sea levels that either emphasized what the level of uncertainty for the outcome 
would be at a particular time or else emphasized uncertainty in the arrival time at which 
the outcome would occur (Fig. 2). They found that people perceived the threat as more 
serious and were more likely to advocate for mitigative action in the time-uncertain ver-
sus the outcome-uncertain condition.

Other studies emphasize that different ways of representing scientific uncertainty are 
more or less effective depending on characteristics of the audience (e.g., Broomell & Kane, 
2017; European Food Safety Authority et al., 2019). For example, in a study of the interac-
tion between beliefs about science and communicated level of uncertainty, Rabinovich and 
Morton (2012) found that messages communicating high uncertainty were more persuasive 
for people who view science as a set of unanswered questions open to debate compared 
with people who view science as an endeavor to uncover objective truth. This type of study 
is reflective of approaches that are common in marketing, wherein communicators under-
take market segmentation to direct persuasive messages to different audiences based on 
characteristics of those audiences (Goyat, 2011).

Members of the scientific community have also offered strategies for decision-mak-
ing amidst uncertainty. For example, the America’s Climate Choices report provides an 
“iterative risk management approach for addressing climate change” (National Research 
Council, 2011, p. 45). Notable aspects of this approach include that it attempts to inte-
grate multiple domains (e.g., science, economics, policy, equity) and that it assumes 
decision-making will be iterative in nature—revisiting and revising decisions as both 
qualitative and quantitative facets of uncertainty are reduced over time. Another exam-
ple of an approach to decision-making amidst uncertainty is risk management, which 
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involves identification, evaluation, selection, implementation, and monitoring of 
responses to risk (Aven & Renn, 2010).

Communications research concerning how best to convey claims about scientific 
uncertainty to the public rarely addresses the possibility that the public could develop 
or improve its capacity to make sense of scientific claims about uncertainty. This 
leaves an important role for science education—it is our job to support students in 
developing science literacy. We argue that science literacy for non-scientists should 
include the capacity to evaluate scientific analyses of uncertainty that they encounter 
(usually in the media) and to use these analyses as they engage in science practices, 
including to inform personal (e.g., consumer, health) and societal (e.g., voting, partic-
ipating in public debates) actions and decisions (Feinstein, 2011; National Academies 
of Sciences, Engineering, and Medicine, 2016). Science education has a responsibil-
ity to prepare people to use science knowledge and practices to participate in discus-
sions and debates about socioscientific issues, rather than a responsibility to advocate 
for specific policy-related behaviors or positions (Kolstø, 2001a; National Research 
Council, 2012; Sadler et al., 2007).

Fig. 2  Outcome-uncertain (a) 
and time-uncertain (b) represen-
tations of scientific uncertainty 
(Ballard & Lewandowsky, 2015)
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5  Educating Students to Create and Use Scientific Analyses 
of Uncertainty

In Sect. 5, we discuss promising strategies for helping K-12 students to create and ana-
lyze claims about uncertainty, both in their own investigations and in media reports and 
articles, as they engage in science practices. We begin by reviewing literature on stu-
dents’ capacities to understand and use scientific claims about uncertainty. We then dis-
cuss both how classroom discourse can leverage uncertainty as an epistemic emotion 
(Carruthers, 2017) that prompts curiosity and information seeking, and how teachers 
and researchers have scaffolded students’ engagement in science practices such as inves-
tigations, arguments from evidence, and explanations to include analyses of uncertainty 
(National Research Council, 2012; NGSS Lead States, 2013). Finally, we discuss prom-
ising strategies for scaffolding students to interpret and use accounts of scientific uncer-
tainty in media reports.

5.1  Educational Studies of Students’ Understanding of Uncertainty

Compared with the literature base in psychology, there are fewer educational studies of 
how students make sense of and learn to make sense of scientific claims about uncertainty 
(e.g., Manz, 2015, 2018; Metz, 2004; Pallant et al., 2020; Schroeder et al., 2019). Studies 
that have been conducted, however, suggest that even young students can demonstrate sig-
nificant capacity to make sense of uncertainty in ways that reflect scientific approaches—
and that their understandings and learnings span both qualitative and quantitative aspects 
of scientific uncertainty. For example, in a study of second, fourth, and fifth graders’ con-
ceptualizations of uncertainty in investigations they had designed and implemented them-
selves, Metz (2004) found that 71% of second graders and 87% of fourth and fifth graders 
conceptualized one or more spheres of uncertainty including (a) production of a desired 
outcome as uncertain, (b) data as uncertain, (c) trends in data as uncertain, (d) generaliz-
ability of a trend as uncertain, and (e) which theory best accounts for a trend as uncertain. 
Further, “[a]mong those who had conceptualized one or more spheres of uncertainty, 80% 
of second graders and 97% of fourth-fifth graders posited a strategy to modify their study 
to address uncertainty” (Metz, 2004, p. 219).

More recently, Schroeder and colleagues (2019) conducted a study examining fifth and 
ninth grade students’ views of scientific uncertainty. Like Metz, Schroeder and colleagues 
examined the students’ conceptualizations of uncertainty in investigations they conducted 
themselves. Similar to Metz, they found that students were able to conceptualize multiple 
spheres of uncertainty. In addition, Schroeder’s study also examined students’ ideas about 
uncertainty in the context of perceptions of the work of professional scientists. In this 
domain, Schroeder found that many fifth graders thought that there should be just one cor-
rect conclusion in professional science and that any differences in conclusions must have 
stemmed from procedural errors. In contrast, more ninth graders thought that the scientists’ 
perspectives could lead to different views. Very few students in either grade suggested the 
importance of weighing evidence when comparing different conclusions. The study did 
not examine whether students could identify continuing uncertainty that extends beyond 
individual investigations. Studies like those of Metz (2004) and Schroeder and colleagues 
(2019) provide evidence that students, even young students, can conceptualize both quali-
tative and quantitative facets of scientific uncertainty.
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We found similar evidence of capacity to make sense of scientific uncertainty in a 
study we conducted of high school students who used multiple types of models (physi-
cal, conceptual, computational) to explain, predict, and develop mitigation plans for a 
case of groundwater contamination at a Superfund site in their state (Covitt et al., 2020). 
Pre-/post-assessment items in the Comp Hydro project asked students to conceptualize 
aspects of scientific uncertainty including uncertainty associated with judging the accu-
racy of a computer model. On the posttest, 46% of students were able to explain that 
scientists judge the accuracy of computer models through strategies such as calibration 
or comparing model results to results observed in the real world. For example, one stu-
dent’s response stated that to judge the accuracy of a computer model, scientists, “can 
test it and go back to the actual site and take more tests and do experiments to make sure 
that it is right. And if not they will calibrate it and keep fixing it until it is accurate.” A 
further 36% of responses indicated that scientists judge model accuracy through less 
specific methods such as testing their models or inputting more or more accurate data 
into their models. Relevant example responses included “Scientists can test other mod-
els to see how accurate the computer was,” “Test it multiple times,” and “by taking data 
in the feald [sic].”

On another Comp Hydro post-assessment question asking students to identify prob-
lems with using computer models to understand hydrologic system problems, 19% of 
students noted the problems that models may not account for uncontrolled variables 
or that models may be difficult to calibrate. One student wrote, “Computer models are 
unable to have every possible variable that a real water problem would have.” A further 
43% offered less specific but reasonable problems such as issues with model codes. An 
example of this type of response was “its [sic] hard to use a computer model in some 
real world problems because its hard to set the code and show the problem correctly.”

While the studies described above suggest that K-12 students can develop sophis-
ticated understanding of scientific claims about uncertainty, we also know that this is 
not an easy or straightforward area of science to teach. For example, in our study of 
students investigating a case of groundwater contamination, after engaging in a lesson 
demonstrating how uncertainty can be reduced through additional data collection and 
analysis (lesson described in Sect. 5.3), we asked students to analyze a contour map of a 
contamination plume and identify at which location they thought the estimated contami-
nation level shown would have the most uncertainty associated with it (Fig. 3). On the 
posttest, only 18% of students indicated that there would be higher uncertainty associ-
ated with the location that had no nearby monitoring wells (i.e., identifying uncertainty 
due to insufficient data). One student responding in this way wrote, “there aren’t very 
many wells around B so it would be hard to know exactly what the concentration would 
be.” A further 26% of students provided responses suggesting they were starting to 
develop scientific ideas and approaches to judging uncertainty (e.g., noting imprecision 
in the range of values on the contour map). A student reflecting this type of reasoning 
responded they were most uncertain about location “A [because] it could be any amount 
more than 20.”

While deciphering scientific uncertainty is challenging, we would suggest that our study 
and studies like those conducted by Metz (2004) and Schroeder and colleagues (2019) 
demonstrate that K-12 students have significant intellectual potential to make sense of 
sources of scientific uncertainty and scientific claims about uncertainty. Considering stud-
ies like these in conjunction with our knowledge of the current state of K-12 science edu-
cation raises an important question for science education. We wonder what public under-
standing of scientific uncertainty could be achieved if students’ K-12 science education 
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experiences routinely (or at least more frequently) scaffolded their capacities to analyze 
and communicate about uncertainty, incorporating claims about uncertainty into their 
arguments and explanations?

5.2  Engaging Students in Investigations that Recognize and Seek to Resolve 
Uncertainty

The studies cited above by Metz and Schroeder and colleagues come from a body of 
design-based research that leverages uncertainty to play a key role in classroom investi-
gations. Much of this work focuses on affective dimensions of uncertainty, showing how 
uncertainty can motivate students and adults to engage in information seeking (e.g., Huang 
& Yang, 2020), or to improve the quality of their science practices, including investiga-
tions, arguments from evidence, and explanations. For example, Radoff and colleagues 
(2019) describe how a student in a college physics course progressed from anxiety, to com-
fort, to excitement about feeling uncertain, coming to recognize uncertainty as an opportu-
nity for learning. Similarly, Watkins et al. (2018) analyzed how expressions of uncertainty 
prompted and sustained productive discussions in elementary and college classrooms.

Manz and colleagues have examined how students and teachers leverage uncertainty in 
classroom investigations and arguments from evidence (e.g., Manz, 2015, 2018). Manz and 
Suárez (2018, p. 771) suggest that “an essential aspect of the teachers’ work was develop-
ing a more nuanced view of scientific uncertainty.” They identified “three strategies that 
appeared to help teachers negotiate and develop this more nuanced view: beginning with 
complex phenomena, iterating on investigations, and leveraging variability in students’ 

Fig. 3  Assessment item asking students to judge uncertainty

1169Untangling Trustworthiness and Uncertainty in Science



1 3

ways of conducting investigations.” Similarly, Tekkumru-Kisa and colleagues (2021) iden-
tify ambiguity as an essential property of high-quality science tasks.

While we recognize and applaud the quality of the instruction described in these stud-
ies and endorse their approaches to including and leveraging scientific uncertainty, we also 
note a limitation to this body of work. Most of these studies focus on raising and reducing 
or resolving qualitative uncertainty within an instructional sequence of students’ classroom 
science work and investigations. There are fewer examples of approaches that enable stu-
dents to either analyze and quantify continuing uncertainty after the conclusion of their sci-
entific investigations or to judge uncertainty (including quantitative uncertainty) in reports 
of socioscientific issues. We next describe some studies that address these issues.

5.3  Engaging Students in Analyzing and Quantifying Uncertainty

Some pertinent scholarship on analyzing and quantifying uncertainty comes from research-
ers working on the borders between science and mathematics education, focusing on data 
and data modeling. We discuss three examples below.

Modeling signal and noise in measurement. Lehrer, Schauble, and colleagues report on 
a series of studies in which upper elementary students examined distributions of measure-
ments and developed approaches to modeling measurement error (Lehrer & Kim, 2009; 
Lehrer & Schauble, 2002; Lehrer et al., 2007, 2011). For example, Lehrer and colleagues 
(2011) describe a design experiment in which individual students used different tools (a 
meter stick and a 15-cm ruler) to measure the span of their teacher’s outstretched arms, 
recording a variety of measurements. The students then worked to describe two character-
istics of the distribution of measurements:

The first was a measure of the “best guess of the real measurement.” This approach 
invited students to consider a statistic as a measure of the signal of the batch of meas-
urement outcomes, here the true length of the teacher’s arm-span (Konold & Pol-
latsek, 2002; Petrosino et al., 2003). The second challenge was to design a measure 
of the “precision” of the batch of measurements, so that students were positioned to 
develop an indicator of variability. (Lehrer et al., 2011, p. 726)

Note the central role that uncertainty played in both challenges. The first challenge 
required the students to design strategies for reducing uncertainty: If each individual meas-
urement is uncertain, how can they use the distribution of measurements to produce a less 
uncertain estimate of the teacher’s arm span? The second challenge required students to 
analyze and quantify continuing uncertainty: How can they describe the variation in their 
measurements in quantitative terms? During the design experiment, the students invented, 
critiqued, and modified statistics that are clearly related to the concepts of median, range, 
and distribution as reported in scientific journals.

Reaching conclusions based on noisy data. In another set of studies, Cobb and McClain 
engaged middle school students in developing ways to represent variation and covariation 
in data and in developing arguments about warranted conclusions based on that variation 
(Cobb et  al., 2003; McClain, 1999; McClain et  al., 2000). They reported on two design 
experiments; both involved looking for patterns in “noisy” data related to socioscientific 
issues. The first involved deciding which of two drugs for treating AIDS was “better,” 
given data about T-cell counts for two treatment groups of different sizes, both showing a 
large range of measurements. The second involved characterizing the relationship between 
date and atmospheric  CO2 concentrations given multiple measurements at different times 
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over a 40-year period. In both cases, students first had to develop statistics for central ten-
dency and variability (as in the studies by Lehrer et al. described above). Then, they needed 
to use those measures to reach two kinds of conclusions. The first had to do with reaching 
consensus on the best answers to the questions posed (developing strategies for resolving 
uncertainty). Second, they had to decide how confident they were in their conclusions (ana-
lyzing continuing uncertainty).

Characterizing uncertainty based on differences in sampling. High school students 
in the Comp Hydro project adopted the role of hydrogeologists investigating and recom-
mending a remediation response to a case of groundwater contamination. Lessons pro-
vided opportunities to analyze scientific uncertainty in the context of a socioscientific issue 
requiring action. In one activity, students used selenium concentration data that had been 
collected from 15 wells at a Superfund site to create contamination plume contour maps 
by hand. They used linear interpolation and extrapolation to estimate where contour lines 
should be drawn and to explore data limitations. In the following activity, they used a Net-
Logo contour map computational model to generate plume contour maps with data from 
15, 30, and 60 wells (See Fig. 4).

These activities were designed to engage students in grappling with scientific uncer-
tainty in data. They also modeled how scientists investigating a case of contamination 
reduce uncertainty through collecting data sufficient to identify a contaminant plume’s 
boundaries and to have adequate resolution for identifying distinct contamination sources 
at a site. The Comp Hydro unit culminated with student teams making recommendations 
for responding to the groundwater contamination; teams’ recommendation plans were con-
strained by a budget limitation commensurate with that of the actual cleanup and required 
the students to account for the perspectives of various stakeholders. This experience 
engaged students both in grappling with quantitative aspects of scientific uncertainty and 
with considering scientific claims about uncertainty within the larger context of a complex 
and multi-dimensional socioscientific problem that could not be solved with science alone.

5.4  Engaging Students with Claims About Uncertainty in Media Reports 
and Articles

The studies cited above focus on fostering students’ personal and collective engagement 
with phenomena. This focus appropriately shifts K-12 science education from the rhetoric 

Data from 15 wells Data from 30 wells Data from 60 wells

Fig. 4  NetLogo contour map model outputs showing contoured contamination plume
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of conclusions to engaging students with uncertainty as they participate in science practices 
such as analyzing data and models. However, it is also essential to build students’ capacity 
to make sense of others’ reports of science associated with socioscientific issues—what 
Magnusson and Palincsar (2001) call “second-hand inquiry.”

There are notable examples of science education aimed at preparing students to make 
sense of socioscientific issues through experiences that go beyond personal inquiry. Promi-
nent in this area is Feinstein and colleague’s (2013) exhortation for science education to 
create “competent outsiders” in science who have the capacity to judge scientific claims. 
Two other veins in this domain include Sadler, Zeidler, and others’ work on socioscientific 
issues instruction (e.g., Kolstø, 2001a, 2001b; Sadler, 2009; Zeidler et al., 2009); as well 
as citizen science education that engages students in undertaking collaborative science to 
address real-world problems (Bonney et al., 2014; Phillips et al., 2019).

There is also a growing body of work concerning media literacy education within both 
science education and other disciplines of education (e.g., Cooper, 2011; Feinstein & 
Waddington, 2020; Höttecke & Allchin, 2020; Sinatra & Lombardi, 2020; Wineburg & 
McGrew, 2019). Scholars in this area study ways to support students in judging the cred-
ibility and plausibility of arguments made in media articles and reports. Focus is placed on 
helping students find and evaluate trustworthy media sources, including making judgments 
about credibility, trustworthiness, and plausibility (Sinatra & Lombardi, 2020; Wineburg & 
McGrew, 2019). A related domain of judgment involves distinguishing between scientific 
and non-scientific claims (Covitt et al., 2013; Zeidler & Kahn, 2014).

Evidence-based scaffolds for evaluating media reports of science have been forwarded. 
One example is lateral reasoning, which involves checking other sources to judge the cred-
ibility of an initial source (Stanford History Education Group, 2021; Wineburg & McGrew, 
2019). Another scaffold involves evaluating “connections between multiple lines of scien-
tific evidence and alternative explanatory models about an observed phenomenon” to judge 
plausibility (Sinatra & Lombardi, 2020). Similarly, the National Association for Media Lit-
eracy Education (2021) provides a rubric with key questions for analyzing media. These 
scaffolds highlight essential elements of media literacy.

However, our experience has been that students who encounter legitimate media sources 
often struggle to make sense of what they see and read, including scientific analyses of 
uncertainty. While our review was not exhaustive, across the work we have read, we found 
few examples of instruction that explicitly engages students in judging scientific claims 
about uncertainty in media reports and articles. Given this dearth in identified literature, 
we offer several ideas for helping students learn to judge claims about scientific uncertainty 
in science reports and media.

Engaging with media reports of quantified uncertainty. Regarding quantitative uncer-
tainty, we again borrow from the Comp Hydro project in which students studied ground-
water contamination. In the unit, we asked students to take on the role of hydrogeologists 
who needed to investigate and respond to the contamination. However, they did not take on 
this role in a vacuum. The unit interwove opportunities for students to investigate the con-
tamination themselves through using data that had been collected by scientists and techni-
cians (e.g., selenium concentrations in samples that had been collected at monitoring wells 
on the site) with opportunities for students to compare their own investigations with those 
conducted by the scientists who investigated the site.

Examples of interwoven activities included students using less complex NetLogo com-
puter models to examine how contaminants flow through groundwater systems followed by 
watching a video of the Superfund site modeler discussing how the MODFLOW compu-
tational model (Harbaugh et al., 2000) of the site was set up, implemented, and calibrated 
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(i.e., with targets for how similar observed and modeled results needed to be) to character-
ize contamination at the site. The students also worked in teams to develop remediation 
plans and then compared their plans with the actual Superfund site plan that explained how 
contamination at the site was remediated amidst continuing uncertainty.

These activities provided opportunities for students to connect their own investigations 
with the activities and reports produced by the scientists working on the Superfund site. 
Combining students’ personal investigations using second-hand data from the site with con-
sideration of reports from the scientists at the site provided the high school students with a 
window into how scientists manage, analyze, and seek to reduce scientific uncertainty. After 
participating in the Comp Hydro unit, students demonstrated significant pre-/post-improve-
ments in their capacities to make sense of data and representations characteristic of those 
found in scientific reports and articles concerning groundwater contamination, and in their 
understanding of how scientists use imperfect (i.e., characterized by uncertainty) data and 
computer models to explain and predict contamination events in groundwater systems (Covitt 
et al., 2020).

Another strategy we have envisioned, but not implemented, could engage students in 
exploring and comparing multiple ways that uncertainty is visualized in reports of scientific 
research (e.g., ranges, multiple outcomes, simulations, obscurity) (MacEachren et al., 2005; 
Spiegelhalter et al., 2011; Yau, 2017). This type of exploration and comparison, with accom-
panying scaffolding for classroom discourse, could help prepare students to more effectively 
decipher representations of uncertainty that they encounter in articles and reports about 
socioscientific issues. Given that students rarely engage in these types of activities in school 
science, the findings from the literature that we previously described of problematic public 
understanding of uncertainty seem unsurprising (Broomell & Kane, 2017; Kahneman, 2011; 
Rabinovich & Morton, 2012). Much work remains to be done to explore what kinds of strate-
gies could effectively prepare students to make sense of the scientific analyses of quantitative 
uncertainty that they will encounter after they finish their formal science education.

Engaging with media reports of qualitative/conceptual uncertainty. With regard to judg-
ing media reports of qualitative and conceptual uncertainty, scaffolds developed in the 
domain of science media literacy hold promise. For example, Goldman and colleagues 
(2019) report on a large-scale study of an intervention designed to promote ninth-grade 
science students’ use of text-based investigations. The core constructs for the intervention 
include evaluating the strength of evidence supporting claims in media accounts and limi-
tations in the models and theories used to interpret that evidence—prompting students to 
consider strategies for resolving uncertainty. We have shared scaffolds developed through 
similar work we conducted with secondary students around evaluating scientific arguments 
in media communications (Covitt et al., 2013).

Another of our curriculum projects, Carbon TIME, includes a Questions, Connections, 
Questions reading strategy, which prompts students to (a) ask questions about things that 
they find puzzling in a text or other media account, (b) make connections between the 
account and other texts or their personal experiences, and (c) ask new questions based on 
the account (Carbon TIME, 2021). This strategy prompts students both to identify areas of 
uncertainty that could be resolved by the account (the initial questions) and identify con-
tinuing uncertainty (the final questions).

Designing tools to scaffold students’ engagement with uncertainty in media reports. In 
our review of these various supports, one facet that seems to be missing is scaffolds that 
help readers focus on and evaluate explicit claims about current and continuing uncer-
tainty in media communications. Evaluation tools designed for this purpose could be inte-
grated with other media literacy supports. The basis for design could rest in and support 
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students’ growing familiarity with sources of scientific uncertainty highlighted in Fig. 1. 
For example, a tool could prompt students to distinguish between issues of trustworthiness 
and issues of scientific uncertainty. Similarly, it might prompt evaluation of how qualita-
tive uncertainty is conveyed in an article (i.e., as an unresolved question about alternative 
hypotheses shared among scientists or as a disagreement between scientists and another 
group such as climate deniers). Such a tool could scaffold readers to carefully evaluate 
the treatment of scientific claims about uncertainty in media communications—with atten-
tion to making sense of how quantitative uncertainty (including continuing uncertainty) 
is expressed and how well the scientists’ argument holds up given the types and levels of 
uncertainty that exist.

Finally, a scientific uncertainty tool could support readers in considering facets of 
uncertainty important for making sense of socioscientific issues (i.e., through considering 
how types and extent of scientific uncertainty conveyed in an article may intersect with 
other concerns to inform one’s opinion or decision-making process). This is similar to a 
scaffold for assessing costs and benefits in light of uncertain scientific predictions that is 
outlined in the America’s Climate Choices iterative risk management strategy (National 
Research Council, 2011). While the goal of designing effective approaches for teaching 
media literacy with respect to scientific uncertainty poses a significant challenge, we argue 
that achieving this goal is essential for preparing students to use science in their lives after 
school.

6  Conclusion

We began this article with a question: How should we trust science? The answer we devel-
oped focuses on a key characteristic of scientific conclusions and predictions: Commu-
nication among scientists emphasizes analyses of uncertainty as well as claims about the 
natural world. Scientific journal articles incorporate representations and quantifications of 
uncertainty. Studies of science in cultural and historical contexts document many ways in 
which specialists’ analyses of uncertainty can be incomplete, sometimes in ways that have 
profound implications for social justice or environmental sustainability. Thus, uncertainty 
plays a central role in scientific discourse—both uncertainty recognized and resolved and 
continuing uncertainty still to be addressed.

Scientific reports in the media often focus more on conclusions and predictions and less 
on uncertainty; evidence about public understanding of science indicates that this is proba-
bly necessary in some form. Today, most members of the public are insufficiently prepared 
to understand the analyses and quantifications of uncertainty in the primary literature. The 
consequences, though, are manifest in public skepticism about science and decision-mak-
ing about socioscientific issues.

The perspectives and approaches we have discussed can provide guidance concerning 
the question of How should we trust science? for science education. By supporting stu-
dents in figuring out how rather than why they should trust science, science education can 
focus its instructional aims on knowledge and practices necessary for people to use science 
productively in their lives. Those who are prepared to use science to inform their thinking 
and deciding understand that the response to “how we should trust science” should involve 
curiosity and information seeking rather than epistemic hubris.

Scientifically literate individuals recognize that science is limited, uncertain, and use-
ful. This means that not all questions (and particularly not policy-related questions) can be 
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answered with science alone, and, also, that some questions cannot be answered with science 
at all. Thus, science has an important but limited role to play in societal decision-making. 
While many scholars of science education in recent decades have focused on the fact that sci-
ence is limited, there has, perhaps, been less emphasis on the idea that science is simultane-
ously uniquely useful. Science provides powerful tools for explaining and predicting events 
in the material world to inform our responses to challenges like climate change and global 
pandemics.

Literate consumers of scientific communication understand that it is important to seek new 
information when they encounter uncertainty, and to evaluate scientific conclusions and pre-
dictions through multiple lenses including with regard to (un)trustworthiness and qualitative 
and quantitative scientific uncertainty. Untrustworthy science can and should be discounted 
and challenged, but uncertainty in science is unavoidable, and scientific characterization of 
uncertainty can be extremely useful when decision-makers have strategies for making deci-
sions amidst that uncertainty.

While (un)trustworthiness and uncertainty in science can be distinguished from each other, 
they are also related. Thus, we believe that effective approaches to developing science literacy 
will require instructional attention to both of these concerns—and will also require engag-
ing students in experiences with making sense of these concerns both separately and together. 
Current design work in science education includes a worthwhile emphasis on helping students 
to recognize and leverage uncertainty as they engage in science practices with their own data 
and models. We see this as important, but not sufficient. Students also need to develop profi-
ciency in seeking out and understanding analyses of continuing uncertainty in media accounts 
of scientific conclusions and predictions.

In this article, we have mostly addressed scholarship and instructional approaches related 
to scientific claims about uncertainty because we see these as an essential yet rarely treated 
domain in K-12 science education. There are promising efforts underway to address issues 
encompassing both trustworthiness and uncertainty in science education; we hope that this 
article will help readers to appreciate their distinctions and their importance.
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