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Business Innovation Research (SBIR) grants. However, 
the magnitudes of the effects are relatively small. Path 
analysis shows that the effect of translational research 
on regional biomedical entrepreneurship is not strongly 
conveyed through biomedical patents or clinical trials.

Plain English Summary  Can programs designed to 
speed the transformation of research results into products/
processes increase regional entrepreneurship in the bio-
medical sector? Translational research programs generally 
address the gap between basic science and clinical trials/
commercialization. We examine one such program, the 
National Institutes of Health (NIH)’s Clinical and Trans-
lational Science Awards (CTSA) program, that has sup-
ported more than 60 U.S. universities and other institu-
tions since 2006. We find that the program has positively 
affected regional biomedical entrepreneurship. Trans-
lational research also appears to increase the number of 
regional biomedical patents. The increased biomedical 
patents could not, however, be said to have “caused” the 
higher levels of regional biomedical entrepreneurship. 
Policymakers may intensify efforts to improve the utili-
zation of knowledge produced by translational research 
activity by boosting efforts to enhance the entrepreneurial 
awareness and inclination of translational researchers.
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Biomedical · SBIR · Entrepreneurship · Ecosystem

JEL Classification  L26 · O31 · R11 · L65

Abstract    This paper examines the effect of transla-
tional research on knowledge production and biomedi-
cal entrepreneurship across U.S. regions. Researchers 
have earlier investigated the outputs of translational 
research by focusing on academic publications. Little 
attention has been paid to linking translational research 
to biomedical entrepreneurship. We construct an ana-
lytical model based on the knowledge spillover theory 
of entrepreneurship and the entrepreneurial ecosystem 
approach to examine the relationship between transla-
tional research, biomedical patents, clinical trials, and 
biomedical entrepreneurship. We test the model across 
381 U.S. metropolitan statistical areas using 10  years 
of panel data related to the NIH Clinical and Transla-
tional Science Awards (CTSA) program. CTSA appears 
to increase the number of biomedical patents and bio-
medical entrepreneurship as proxied by the NIH Small 
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1 � Introduction 

Recent COVID-19 vaccine developments have dem-
onstrated the importance of the rapid transfer of sci-
entific knowledge to the clinical and commercial 
fields for public health. The first U.S. COVID-19 
vaccine utilizes a novel technology, messenger RNA 
(mRNA), developed by a biotech firm, and reduced 
the development time significantly (Zimmer et  al., 
2021). Other COVID-19 vaccines also have been 
developed by rapidly transferring new technologies 
from labs to hospitals (The Johns Hopkins Coronavi-
rus Resource Center, n.d.; Zimmer et al., 2021).

Rapid transfer between basic research and clinical 
and commercial applications has been discussed for a 
long time. The decreasing productivity—the average 
FDA approvals per R&D investment—in the pharma-
ceutical sector has, however, put this topic once again 
at the center of attention (Heller & de Melo-Martín, 
2009; Juliano, 2013; Kim, 2019; Schuhmacher et al., 
2016; Wegener & Rujescu, 2013). The slow transfer 
has been pointed out as one of the reasons for anemic 
performance (Institute of Medicine, 2013). Slow con-
nection largely comes from multiple barriers including 
risky and expensive clinical trials, data sharing issues, 
and lack of experts (Coller & Califf, 2009; Heller & 
de Melo-Martín, 2009; Institute of Medicine, 2013).

In response to this policy concern, the National 
Institutes of Health’s (NIH) Clinical and Translational 
Science Awards (CTSA) program has been provid-
ing over $500 million annually to more than 60 U.S. 
universities and non-profit research institutions since 
2006 to help address those obstacles (Kim, 2019; 
Llewellyn et al., 2018). Through the improvement of 
translational research conditions, the CTSA program 
desires to increase the speed and volume of the trans-
fer of scientific knowledge into more practical appli-
cations (NIH, 2006).

Scholars have analyzed the contribution of the 
CTSA program to increasing academic publica-
tions (Kim, 2019; Kim et  al., 2020; Liu et  al., 2016; 
Llewellyn et  al., 2018; Schneider et  al., 2017). How-
ever, the literature has yet to address whether and how 
this specific translational research program contributes 
to the biomedical business. Also, the earlier apprais-
als were generally restricted to the funding of recipient 
institutions and did not comprehensively consider other 
factors surrounding translational research and their 
interactions. As translational research aims to facilitate 

the transfer of basic research into more practical forms 
of knowledge, it is important to examine its contribu-
tion to the biomedical enterprise, beyond the publica-
tion performance of the grant recipients.

We examine the effect of translational research on 
biomedical knowledge production and biomedical 
entrepreneurship. Based on the knowledge spillover 
theory of entrepreneurship and entrepreneurial eco-
system approach, we construct an analytical model 
and test it across all 381 U.S. metropolitan statisti-
cal areas (MSAs) using 10  years of panel data. The 
NIH CTSA program is utilized as an approximation 
for translational research while the NIH Small Busi-
ness Innovation Research (SBIR) program serves as 
an approximation for biomedical entrepreneurship.

The results indicate a positive association 
between CTSA funding and regional SBIR grants, 
but the magnitude is relatively small. CTSA funding 
increases biomedical patents, but it does not increase 
the number of clinical trials conducted regionally. 
Biomedical patents have a positive relationship with 
SBIR grants, whereas clinical trials do not. Path anal-
ysis reveals that the effect of the CTSA funding on 
SBIR grants is not strongly conveyed through either 
biomedical patents or clinical trials. We thus conclude 
that translational research through the CTSA program 
has had a limited impact on exploitable knowledge 
production and regional biomedical entrepreneurship.

The rest of the paper is organized as follows. Sec-
tion 2 presents background on translational research, lit-
erature review, and research questions. In Section 3, we 
explain how we construct and operationalize the analyti-
cal model. We present results in-detail in Section 4 and 
discuss main findings and policy implications in the fol-
lowing section. The last section concludes.

2 � Literature review

2.1 � The context of translational research

Translational research has emerged as an impor-
tant driver to facilitate conversion and increase bio-
medical productivity (Fishburn, 2013; Van der Laan 
& Boenink, 2015; Woolf, 2008; Zerhouni, 2003). 
Translational research is generally understood as a 
concerted effort to produce new products, services, 
or treatments from basic research in a rapid manner 
(Fishburn, 2013). Van der Laan and Boenink (2015) 
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succinctly summarize the emergence of translational 
research as a reflection of the desire to get more ben-
efit from society’s investment in basic research.

The conceptualization of “translational research” 
varies among researchers and continues to evolve 
(Van der Laan & Boenink, 2015). Originally, trans-
lational research was viewed as a two-phase process: 
the translation from basic science to human stud-
ies, and the translation of new knowledge into clini-
cal practice and health decision-making (Sung et al., 
2003). NIH (2006) has a similar definition, found in 
its first request for application for the Institutional 
CTSA program.

In the biomedical sector, researchers have recently 
more narrowly conceptualized the translation frame-
work, which spans from basic science to translation to 
community (Blumberg et  al., 2012). This more elon-
gated framework has been reflected in the NIH’s CTSA 
funding opportunity announcement (NIH, 2012). 
The core elements in the newer translational research 
framework are from basic science to translation to 
patients—processes to convert discoveries in the labo-
ratory into clinical trials (Fishburn, 2013). Similarly, 
the FDA also identified this part as a “critical path” to 
drug development (Woodcock & Woosley, 2008, p. 4). 
Many biomedical researchers focused on a narrow con-
ception that usually covered the area “between basic 
science…and new approaches for pre-clinical work” 
(Van der Laan & Boenink, 2015, p. 37).

The domain between basic research and the near-
market can be recognized as a market failure because 
of the sub-optimal distribution of resources such as 
venture capital funding. Public agencies like the NIH 

strongly support basic research, while the private sec-
tor heavily invests in marketable products or services. 
However, the middle part—the so-called valley of 
death—is often regarded as too risky for the private 
sector to invest in because it requires huge invest-
ments (Butler, 2008), along with the uncertainty of 
getting a good return on such investments. Figure  1 
illustrates the conceptualization of the valley of death 
along the translational continuum in the biomedical 
sector.

The gap between basic science and clinical science 
is often referred “translational gap” in the biomedical 
sector (Seyhan, 2019, p. 6). Crossing the gap requires 
not just enough funding, but also strong support to 
advance discoveries in the lab toward the bedside. 
Thus, public intervention is justified to mitigate the 
uncertainty and a large number of resource inputs 
when developing scientific knowledge, products, and 
services. Proper policy measures have the potential to 
shorten the time required for the development of bio-
medical products and services, thereby contributing 
to the greater public good.

2.2 � Extant literature and research questions

Several scholars have studied the effects of transla-
tional research on academic publications, especially 
by analyzing the CTSA program (Kim, 2019; Kim 
et al., 2020; Liu et al., 2016; Llewellyn et al., 2018; 
Schneider et  al., 2017). A strong emphasis has been 
paid to the number of articles published, among other 
outputs, resulting from the CTSA program. Investiga-
tors have shown that the CTSA program has increased 

Fig. 1   Illustration of val-
ley of death in biomedical 
sector. Adapted from Sey-
han (2019, p.7) and Reis 
et al., (2008, p.10)
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the recipients’ numbers of publications (Kim, 2019; 
Liu et al., 2016; Llewellyn et al., 2018).

While publication is one critical channel to 
advance and spread knowledge in the biomedical 
sector (Llewellyn et  al., 2018), the literature has yet 
to address whether or how the CTSA program con-
tributes to economic activity. Economic activity mat-
ters because translational research was initiated to 
facilitate the conversion of basic research into clini-
cal and commercial areas (NIH, 2006; Van der Laan 
& Boenink, 2015). Furthermore, the CTSA program 
considers collaboration with industry and other stake-
holders as one of its objectives (NIH, 2006, 2017).

The expansion of the scope of current research 
to address the impact of translational research on 
the commercialization of the produced knowledge 
would be helpful in deepening our understand-
ing. For instance, one can consider whether trans-
lational research increases the production of com-
mercially exploitable knowledge, as approximated 
by biomedical patents and clinical trials, and the 
extent to which this knowledge enhances biomedical 
entrepreneurship.

The extant literature on translational research also 
lacks a general theoretical framework to analyze the 
effects of translational research comprehensively. 
Instead, investigators have narrowly restricted their 
analysis only to the CTSA program recipients (e.g., 
Kim, 2019; Liu et  al., 2016; Llewellyn et  al., 2018; 
Schneider et  al., 2017). Furthermore, these examina-
tions have not taken into account the fact that trans-
lational research is a part of the complex biomedical 
ecosystem. Indeed, diverse stakeholders (e.g., universi-
ties, biomedical firms, and pharmaceuticals) take part 
in the process that moves a product or a service from 
its scientific discovery to clinical and commercial 
fields (Fishburn, 2013; Pisano, 2006). Given that trans-
lational research covers a wide spectrum within the 
broader biomedical ecosystem, it is imperative to take 
into account how translational research interacts with 
other components in the system (Simons et al., 2020).

In this vein, a more systemic focus on relevant 
interactions could lead to a more comprehensive anal-
ysis of the effects of translational research. Addition-
ally, we assert that a relevant conceptual framework 
is needed linking translational research to economic 
and business activities more comprehensively. We 
propose such an analytical model in the next section.

Knowledge is typically assumed to spill over 
from its original source. However, the flows of the 
ideas and knowledge are hampered by the so-called 
knowledge filter including institutional, geographical, 
and economic constraints (Almeida & Kogut, 1999; 
Carlsson et al., 2009). Audretsch and Lehmann (2005, 
p. 1195) define knowledge filter as “the gap between 
new knowledge and what Arrow (1962) referred to as 
economic knowledge or commercialized knowledge.” 
The knowledge filter concept is in line with the notion 
of “barriers to transmission” proposed by Hayter 
(2013).

The literature in the field of the knowledge spillo-
ver theory of entrepreneurship (KSTE) provides a 
theoretical foundation for explaining knowledge pro-
duction and utilization (Ghio et al., 2015). Economic 
agents like entrepreneurs utilize the new knowl-
edge to open opportunities by creating new firms to 
exploit the unused knowledge that firms or research 
organizations have generated (Acs et  al., 2009; 
Audretsch, 1995; Braunerhjelm et al., 2010; Hayter, 
2013). This concept envisages entrepreneurship as 
an effective vehicle enabling the utilization of new 
knowledge. At the same time, the KSTE implies that 
knowledge does not flow seamlessly from the inven-
tor to the innovator; neither is all knowledge com-
mercially useful in its original form (Braunerhjelm 
et al., 2010; Hayter, 2013).

Based on the KSTE, it is expected that more 
knowledge production and spillover would lead to 
higher levels of entrepreneurship (Acs et  al., 2009). 
By definition, translational research is expected to 
generate more usable forms of knowledge, such as 
publications, patents, and clinical trials. This, in turn, 
could affect entrepreneurship, since entrepreneurs can 
utilize converted knowledge to start a new business, 
for instance, in the biomedical sector. Thus, trans-
lational research activities would seem to facilitate 
knowledge exchange and help overcome obstacles 
associated with the traditional linear model of tech-
nology transfer (Hayter et al., 2020). It is in this sense 
that the KSTE can help us understand how transla-
tional research can affect biomedical entrepreneurship 
through the conversion and utilization of knowledge.

Another useful thread of research that pro-
vides insights for the current study is the entre-
preneurial ecosystem approach. Explaining what 
makes a particular region or city achieve more than 
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its counterparts has been an important focus for 
researchers and practitioners around the globe (Brown 
& Mason, 2017; Feldman, 2014). The entrepreneurial 
ecosystem approach has emerged as a conceptual 
framework to explain the dynamics within a system 
(Brown & Mason, 2017). While there is no standard 
definition of an entrepreneurial ecosystem (Stam & 
Van de Ven, 2021), scholars proposed several work-
ing terms. For instance, an entrepreneurial ecosystem 
is a dynamic system with diverse stakeholders, which 
can include entrepreneurs, universities, government, 
and consumers (Audretsch & Belitski, 2017). More 
broadly, Stam (2015) defined the entrepreneurial eco-
system as “a set of interdependent actors and factors 
coordinated in such a way that they enable productive 
entrepreneurship” (p. 1765). While there has been 
some criticism (See Stam & Van den Ven, 2021), the 
entrepreneurial ecosystem approach has provided a 
compelling framework to analyze regional context 
(e.g., Mack & Mayer, 2016; Spigel, 2017).

The sectoral perspective of the biomedical sec-
tor should also be emphasized. Every sector has dif-
ferent knowledge and technology bases, as well as 
different types of actors, networks, and institutions 
(Malerba, 2004). Thus, entrepreneurial ecosystems 
could be formed or worked based on industry-spe-
cific characters (Mason & Brown, 2014). As Pisano 
(2006) described, the biotech sector has its own 
particular anatomy, quite distinct from other sectors 
like information technology. Considering that the 
biomedical industry is a science-based business, in 
this paper we define biomedical entrepreneurship as 
knowledge-intensive entrepreneurial activities that 
utilize knowledge to exploit opportunities within 
the biotechnology sector (Malerba & McKelvey, 
2020; Pisano, 2006). 

In light of the KSTE and the entrepreneurial eco-
system approach, we consider the following two 
research questions. First, to what extent do increased 
level of knowledge translate into biomedical entrepre-
neurship? Second, do biomedical patents and clinical 
trials serve as effective forms of knowledge connect-
ing translational research to biomedical entrepre-
neurship? Further downstream than academic publi-
cations, we would like to explore whether these two 
well-known forms of knowledge are the connecting 
rods between basic research and biomedical entrepre-
neurship as described by scholars (e.g., Pisano, 2006).

3 � Methodology

3.1 � Empirical context

To support and facilitate the translation process, 
the NIH initiated a translational research program 
called the Clinical and Translational Science Awards 
(CTSA) program in 2006. Through it, the NIH pro-
vides about $500 million annually to approximately 
60 universities and nonprofit institutes (Llewellyn 
et  al., 2018; NIH, 2019). The CTSA program is 
designed “to transform the local, regional, and 
national environment for clinical and translational 
science, thereby increasing the efficiency and speed 
of clinical and translational research” (NIH, 2006). 
To achieve its goals, the program supports “training, 
research and infrastructure to help researchers engage 
in clinical research—and cross the valley of death” 
(Butler, 2008, p. 841). In particular, the funded pro-
jects and initiatives sponsor activities that influence 
the translation environment. For instance, SMART 
IRB provides a platform to help researchers and insti-
tutions researching multiple sites that require inte-
grated collaboration. One thing to note is that unlike 
other NIH awards supporting projects based on dis-
eases, specialties, and investigators, the CTSA pro-
gram supports improvements specifically in the trans-
lational environment (NIH, 2006).

3.2 � Model specification

We construct an analytical model for biomedical 
knowledge production and biomedical entrepreneur-
ship. Considering that translational research helps 
facilitate the conversion of basic science into more 
usable forms of knowledge, we expect that a vibrant 
translational research activity increases more useful 
and commercially exploitable knowledge produc-
tion. Then, entrepreneurs have a wider set of rele-
vant knowledge stocks to draw from. In this respect, 
the knowledge spillover theory of entrepreneurship 
enables us to analyze whether translational research 
increases biomedical entrepreneurship.

We explore the linkage between translational 
research and biomedical entrepreneurship, bio-
medical patents, and clinical trials. Patents are 
regarded as an important milestone before moving 
toward commercialization (Reitz & Czupich, 2014). 
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Commercialization in the biomedical sector generally 
occurs through the licensing of intellectual property 
rights (Kettler, 2000; Pisano, 2006; Scherer, 2010). 
Each stage of clinical trials generates critical informa-
tion regarding safety, efficacy, and others, and they are 
pre-requisite for commercialization in the biomedical 
sector (NIH, n.d.-a; Varmaghani et al., 2020). In sum, 
our model posits that by increasing such exploitable 
knowledge translational research endows entrepreneurs 
in a region with a wider set of relevant knowledge 
stock to utilize.

In the construction of the model, we take into 
account the factors that influence biomedical entre-
preneurship. Translational research is not a stand-
alone element but an interconnected factor in the 
biomedical development system. We identify regional 
factors which may affect regional biomedical entre-
preneurship, including public and private biomedi-
cal R&D investment, human capital, the presence of 
large biomedical firms, per capita income, population 
size, and the size of the regional economy. Figure 2 
depicts a schematic description of the model.

In Fig. 2, the thick black arrow from translational 
research to biomedical entrepreneurship shows the 
“direct” relationship between two sides. For further 
exploration of the detailed relationship, we separate 
biomedical patents and clinical trials from other out-
puts, and investigate their roles in bridging transla-
tional research and biomedical entrepreneurship. Two 
red dashed arrows from translational research to bio-
medical entrepreneurship through biomedical patents 
and clinical trials depict the “indirect” relationships 
between two sides. Regional factors are included as 
control variables in the model.

In the following sections, we first focus on esti-
mating the direct relationship between translational 
research and biomedical entrepreneurship. Subse-
quently, we estimate the indirect relationships in 
order to investigate how the indirect effects of trans-
lational research affects biomedical entrepreneurship 
through biomedical patents and clinical trials.

3.3 � Operationalization of the model

We empirically test the analytical model across all 381 
U.S. metropolitan statistical areas (MSAs1) with a panel 
dataset ranging from 2006 to 2015. The CTSA program 
is utilized herein as an approximation for translational 
research while the NIH SBIR program serves as an 
approximation for biomedical entrepreneurship.

First, we begin with estimating the direct effect 
of CTSA funding on SBIR grants. Endogeneity is 
one challenge in estimating the relationship between 
CTSA funding and SBIR grants. Institutions receiv-
ing CTSA funding are not randomly distributed, but 
they have been selected based on scientific compe-
tence among the applicants (NIH, 2006). In addition, 
the SBIR program selects small firms with “feasibil-
ity, technical merit, and commercial potential” (NIH, 
n.d.-b). Thus, the competitiveness in winning the 
CTSA funding could be related to the capability of 
getting the SBIR grants at the regional level.

Fig. 2   A schematic 
description of the analytical 
model

1  An MSA is defined as an area with “at least one urbanized 
area of 50,000 or more population, plus adjacent territory that 
has a high degree of social and economic integration with the 
core as measured by commuting ties (Office of Budget and 
Management, 2018).
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To address the possible endogeneity, we employ the 
difference-in-difference (DID) method. The treatment 
group is comprised of MSAs with CTSA funding, 
while the comparison group is MSAs with no CTSA 
funding. A conventional DID equation can be writ-
ten as Eq. 1. The dependent variable, SBIR mt, counts 
the number of SBIR grants received by small firms in 
an MSA m in year t. We use the number of grants as 
a proxy for entrepreneurship (Lee et  al., 2004; Qian 
et al., 2013).

One thing to note is that MSAs in the treatment group 
receive funding in different time periods, of different 
durations and different funding sizes. MSAs in the com-
parison group have zero CTSA funding throughout the 
whole period. Figure 3 illustrates the difference in fund-
ing between the treatment and comparison regions. The 
solid line represents a profile of one MSA in the treat-
ment group. In total, there are 46 different CTSA funding 
profiles, as all 46 MSAs in the treatment group have dif-
ferent funding sizes during different periods. The MSAs 
in the comparison group are represented by the dotted 
line in Fig.  3, which shows zero value for the whole 
period.

In line with previous research (Angrist & Pischke, 
2008, 2014; Bertrand et  al., 2004), we replace the 
interaction term in Eq. 1 with CTSA funding, as shown 
in Eq. 2. Here, the CTSA funding variable, CTSA mt, 
measures the degree of treatment in MSA m in year t. 
Accordingly, Eq.  2 includes the MSA dummy (ϒ m) 

(1)
SBIR

mt
= �

1
+ β

1
∙ (Treat

m
× Post

t
) + Υ ∙ Treat

m

+λ ∙ Post
t
+ ε

mt1

and the time dummy (λ t). X mt as control variables. β2 
is the coefficient of our interest. Standard errors are cal-
culated by a robust method and clustered at the MSA. 
As the dependent variables are count variables that are 
highly right-skewed, we use the Poisson option.

Second, we estimate the effects of translational 
research on biomedical knowledge production. Equa-
tions 3 and 4 estimate the effects of CTSA funding on 
biomedical patents and on clinical trials respectively. 
We use the same DID design as in Eq. 2.

Third, we estimate the indirect effect of translational 
research on biomedical entrepreneurship through bio-
medical patents and clinical trials. As shown in Fig. 2, 
biomedical patents and clinical trials are endogenous 
variables. They are affected by the CTSA funding and 
other regional conditions. They also affect another 
endogenous variable, SBIR grants. In this estimation, 
we consider three paths between the CTSA funding and 
the SBIR grants: (1) indirect path 1—through biomedi-
cal patents; (2) indirect path 2—through clinical trials; 
(3) direct path—all other outputs except biomedical 
patents and clinical trials. Equation  5 describes three 
paths between the CTSA funding and the SBIR grants.

(2)
SBIR

mt
= α

2
+ β

2
∙ CTSA

mt
+ δ ∙ X

mt
+ Υ

m
+ λ

t
+ ε

mt2

(3)

Biomedical patentmt = �
3
+ �

3
∙ CTSAmt + � ∙ Xmt

+ Υm + �t + �mt3

(4)
Clinical trials

mt
= �4 + �4 ∙ CTSAmt

+ � ∙ X
mt

+ Υ
m
+ �

t
+ �

mt4

Fig. 3   Imaginary profiles of 
CTSA funding in the treat-
ment and comparison groups
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We use path analysis/structural equation modeling 
to solve the set of simultaneous equations indicated 
by Eqs.  3, 4, and 5. While the negative binomial 
model might also be used due to the count variables 
with over-dispersion, the Poisson option is used 
here. According to Cameron and Trivedi (2010), the 
cluster-robust standard error can be used to address 
both over-dispersion and serial correlation. Standard 
errors are calculated by a robust method and clus-
tered at the MSA. We also show the result with the 
negative binomial estimates in the following section.

Regarding the decision rule of statistical analy-
sis, we use the threshold of 0.1 and report the precise 
p value. Amrhein et  al., (2019, p.306) suggested that 
researchers need to discuss the meaning of the esti-
mates more explicitly, as well as provide a precise 
number for the p value if reported, rather an overly 
relying on “dichotomous” decision rules, like using p 
values. Following their recommendations, we report 
the precise p values of the main results and then dis-
cuss the implications in-depth.

3.4 � Data and variables

Table 1 lists the variables, measures, and data sources. 
The NIH SBIR grant data were obtained from the NIH 

(5)

SBIRmt = �5 + �5 ∙ Biomedical patentmt + �6 ∙ Clinical trialsmt

+ �7 ∙ CTSAmt + � ∙ Xmt + Υm + �t + �mt5

RePORTER (NIH, n.d.-d). We include only new SBIR 
projects in Phase I and Fast Track,2 which means that 
renewed, supplemental, or extension projects have been 
excluded. Projects in Phase II also are excluded because 
they are only available to successful Phase I projects, 
which are influenced by diverse factors (e.g., firms’ 
management). The CTSA funding data were likewise 
obtained from the NIH RePORTER (NIH, n.d.-d). We 
use the funding opportunity announcements (FOAs)3 
of the CTSA program to identify relevant projects (Liu 
et al., 2016).

Biomedical patent data were obtained from the U.S. 
Patent and Trademark Office (n.d.). Following Cortright 
and Mayer (2002), we include three biomedical-related 
technology classes: Class 424-Drug, Bio-Affecting, 
and Body Treating Compositions (includes Class 514); 
Class 435-Chemistry: Molecular Biology and Microbiol-
ogy; and Class 800-Multicellular Living Organisms and 
Unmodified Parts Thereof and Related Processes. The 
patent data include the granted utility patents to an MSA 

Table 1   Variables, measures, and data sources

Variable Measure Source

NIH SBIR grants NIH SBIR (New projects in Phase I and Fast Track) grants NIH RePORTER
Biomedical patents Number of patents in biomedical-related technology U.S. PTO
Clinical trials Number of clinical trials conducted U.S. National Library of 

Medicine (ClinicalTri-
als.Gov)

CTSA funding Size of the CTSA funding NIH RePORTER
Public R&D R&D expenditure in the life science and medical field at the universities (after 

subtracting the CTSA funding)
NSF HERD Survey

Private R&D R&D expenditure by publicly-traded biomedical firms Compustat
Large biomedical firm Number of large biomedical firms belonging to the top 25 percent in annual 

revenue
Compustat

Human capital Percentage of adults (25 +) holding a bachelor’s degree or above U.S. Census
Per capita income Per capita income U.S. BEA
Agglomeration Population per area (i.e., square miles) U.S. Census
Regional economy Regional GDP U.S. BEA

2  Fast Track allows the submission of both Phase I and Phase II 
together to reduce the funding gap between phases. A Fast Track 
submission is recognized the same as a “new” project, just like new 
Phase I projects in the NIH RePORTER system (NIH, n.d.-e).
3  The FOA numbers used in this research: RFA-RM-06-002, 
RFA-RM-07-007, RFA-RM-07-002, RFA-RM-07-006, 
RFA-RM-08-002, RFA-RM-09-004, RFA-RM-09-019, 
RFA-RM-10-001, RFA-RM-10-020, RFA-RR-10-007, RFA-
RR-11-004, RFA-TR-12-006, RFA-TR-14-009.
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from 2006 to 2015, which is the most recent year catego-
rized at the MSA level by the U.S. Patent and Trademark 
Office.

We obtained clinical trial data from the U.S. National 
Library of Medicine’s ClinicalTrials.gov website. 
According to the U.S. law enacted in 1997 and 2007, and 
the decision by the International Committee of Medical 
Journal Editors in 2005, all clinical studies should be 
registered to the ClinicalTrials.gov registry (Califf et al., 
2012). We downloaded 180,926 clinical studies based on 
the first study submission date between 2004 and 2015. 
Some clinical studies were conducted at multiple sites, 
also including in foreign countries. We removed those 
that had study locations outside the U.S. After this clean-
ing process, we were left with 523,341 U.S. clinical trial 
locations.

Variables representing regional conditions are added 
as control variables. First, regional public R&D spending 
in the life science and medical research field is added to 
represent the strength of scientific knowledge. As there 
is no aggregated public R&D spending data in life sci-
ence and medical fields at the MSA level, we collected 
university R&D expenditures from the Higher Education 
Research and Development (HERD) Survey (National 
Science Foundation, 2011, 2015, 2018). The R&D 
spending data has been aggregated at the MSA level. As 
the HERD data may include the CTSA funding, we sub-
tracted CTSA funding from them to construct the final 
dataset.

Second, we measure the R&D spending of biomedi-
cal firms to control the effect of private R&D in that sec-
tor. Firm data is obtained from Compustat, a collection 
of financial information of publicly traded companies. 
Biomedical firms are selected based on North American 
Industry Classification System (NAICS) codes,4 defined 
by DeVol et al. (2004).

Third, we approximate the regional human capi-
tal by the percentage of adults (above 25) holding at 
least a bachelor’s degree or above (Florida, 2002; Qian 
et al., 2013). The data is collected from the U.S. Census 
(n.d.-a).

Fourth, the number of large biomedical firms is added 
to proxy the role of the established firms in the biomedi-
cal ecosystem as suggested by the anchor tenant theory 

(Agrawal & Cockburn, 2003; Feldman, 2003). Firm data 
is obtained from Compustat. We counted biomedical 
firms belonging to the top 25 percent (i.e., 75th percen-
tile) in terms of annual revenue to include relatively large 
firms.

Fifth, we add per capita income to represent the indi-
vidual’s ability to start and support a new business. Wall-
sten (2001) uses this variable in estimating the probabil-
ity of winning the SBIR grant at the MSA level. The data 
is obtained from the U.S. Bureau of Economic Analysis 
(BEA) (n.d.-a).

Sixth, following Qian et  al. (2013), we use regional 
population density since agglomeration can facilitate 
knowledge sharing through close and frequent interac-
tions. The population and area data were obtained from 
the U.S. Census (n.d.-b, n.d.-c). Populations between 2006 
and 2010 are calculated by interpolating the population in 
2000 and 2010 due to the lack of data at the MSA level.

Seventh, the size of the regional economy is added to 
the list of controls. Access to finance is an important ele-
ment in expanding venture business and further growth 
(Isenberg, 2011). It is more critical in the biomedical sec-
tor because of large resource input needs and a high level 
of uncertainty (DiMasi et al., 2016; Pisano, 2006; Sacks 
et al., 2014). We utilize regional GDP to approximate the 
size of the regional economy and the strength of venture 
capital financing. The GDP data was obtained from the 
U.S. Bureau of Economic Analysis (n.d.-b).

We used the zip code-MSA code conversion file pro-
vided by the U.S. Department of Housing and Urban 
Development (n.d.) to aggregate the data at the MSA 
level. With the data introduced, we constructed a panel 
data set of 10 years from 2006 to 2015.

4 � Findings

4.1 � Descriptive statistics

Summary statistics and the correlation matrix of key var-
iables are presented in Tables 2 and 3, respectively.

4.2 � Parallel trends

With a DID design, the treatment and comparison groups 
need to have common trends before the treatment. We 
examine whether the two groups have common trends in 
our dependent variables—SBIR grants, biomedical pat-
ents, and clinical trials—respectively.

4  NAICS (2017 version) codes used in this research: 325,411, 
325,412, 325,413, 325,414, 339,111, 339,112, 339,113, 
339,114, 339,115, 339,116, 335,410, 335,417, and 541,714.
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Figure  4 presents the trend for the SBIR grants. 
As this study is not an ordinary pre- and post-treat-
ment setting, there is no shared variable to indicate 
the treatment point. The treatment years are centered 
on the first CTSA funding years of each treated MSA. 
The comparison group is normalized in 2006, the first 
CTSA program funding year. The y-axis is the mean 
SBIR count. The top line represents the treatment 
group, and the bottom line is the comparison group. 
The dotted line represents the mean SBIR counts for 
all the MSAs (entire group).

For the five years prior to the treatment, all three 
lines declined: the treatment group by 7.4%; the com-
parison group by 14.8%; and the entire group by 9.4%. 
This indicates that the two groups had very similar 
declining trends before the treatment. The overall 
declining trends are consistent with other NIH SBIR 
award data, presented in Fig.  5, which continued to 
decline over our research period (NIH, n.d.-e).

After the treatment, the slopes are quite different: 
the treatment group declines only by 5.7%; the com-
parison group declines by 29.8%; and the entire group 
declines by 27.9%. The comparison group seems to 
follow the general declining trend of the SBIR grants, 
whereas the treatment group shows a slight upward tra-
jectory with some fluctuations. Thus, the data indicate 
that the two groups have common trends before the 
funding and changed courses afterwards.

To examine the data further, Fig. 6 presents each 
group’s ratio to the entire group’s mean SBIR grants. 
Each group’s line in Fig. 6 was calculated by divid-
ing the mean of the SBIR grants of each group by 
the mean of the SBIR grants of the entire group. For 
instance, the treatment group’s mean SBIR grants 
are six times larger than the mean SBIR grants of the 
entire group of MSAs. Before the treatment, the two 
groups have similar parallel trends, but after the treat-
ment, the treated line increases slightly and steadily, 
whereas the comparison line declines.

Similarly, we also review the trends of biomedical 
patents and clinical trials. Before the treatment (fund-
ing), the two groups’ trends in biomedical patents 
show similar, parallel trends. After the treatment, the 
treated line climbs rapidly, whereas the untreated line 
goes flat (See Figs. 7 and 8). Thus, we conclude that 
two groups suffice parallel trend conditions for the 
DID design.

However, we found that clinical trials of these two 
groups have different trends before the treatment: 

the treatment group rose by 24% and the comparison 
group rose by 88% (See Figs. 9 and 10). This limits 
the ability to make a causal claim when estimating 
the effect of CTSA funding on clinical trials.

4.3 � Results

4.3.1 � Direct relationship between CTSA funding 
on the SBIR grants

We first estimate the effect of CTSA funding on the SBIR 
grants (Eq. 2). Panel A in Table 4 presents the results. Col-
umn 3 is the model with the year and MSA fixed effects. 
The CTSA coefficient is 0.00725 and statistically sig-
nificant at the 0.05 level (p value: 0.047). The result indi-
cates that a 1% increase in the CTSA funding is expected 
to increase the number of SBIR grants in an MSA by 
0.00725%.5 With the fixed effect negative binomial esti-
mate, we have virtually the same coefficient, but a slightly 
larger standard error (p value: 0.086). Considering that 
we cannot get the clustered-robust standard error using 
negative binomial model and the over-dispersion can be 
addressed by the Poisson model (Cameron & Trivedi, 
2010), the estimate with the Poisson holds. Given that 
the average of SBIR grant counts in the treatment group 
is 5.95, doubling the CTSA funding size may change the 
received SBIR grants by 0.043 (= 5.95*0.00725). In sum, 
we found that CTSA funding increases the number of 
SBIR grants, but the effect size seems relatively small.

We also tested the time lag effects for the CTSA 
and SBIR association by lagging the CTSA funding. 
The CTSA coefficient increases to 0.00952 which 
is statistically significant at the 0.01 level (p value: 
0.001) at the length of 5  years. The coefficient is 
slightly reduced to 0.00822 (p value: 0.062) at the 
length of 6 years, but it is still larger than the origi-
nal coefficient. The CTSA coefficients are small and 
insignificant with other time lags.

To check the robustness of the results, we utilize 
the number of CTSA institutions as the main predic-
tor instead of CTSA funding. We draw on the anchor 
tenant hypothesis, which posits that large firms provide 
supports for regional innovation activities (Agrawal 
& Cockburn, 2003; Feldman, 2003). Given that 
CTSA institutions are generally large universities with 

5  The Poisson regression has the exponential form: E(y|x) = exp 
(x`β).
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hospitals and substantial research capabilities in the 
region, one can assume that they work like large estab-
lished organizations facilitating innovation. The NIH 
calls CTSA-funded institutions “hubs,” and emphasizes 
collaboration with regional biomedical networks (NIH, 
2012, 2016; Obeid et  al., 2014). Even though there 
might be some variations in the scope of their roles in 
the MSA, it is reasonable to assume that CTSA insti-
tutions have similar functionality in facilitating trans-
lational research in a particular region. The results are 
presented in column 4, panel B of Table 4. The CTSA 
institution coefficient is highly significant (p value: 
0.007). It indicates that additional CTSA institutions in 
an MSA increase the number of SBIR grants by 6.3%.

As a second robustness check, we utilize the aggre-
gated monetary value of the SBIR grants as a depend-
ent variable instead of using the SBIR grant counts. 
Column 5, panel B of Table 4 shows the results of the 
ordinary least squares (OLS). The dependent variable 
is SBIR funding in log form. We found that the CTSA 
funding coefficient is significant at the 0.1 level (p 
value: 0.096), and the results show that a 1% increase in 
CTSA funding increases the SBIR funding by 0.045%. 
Thus, the robustness checks using the number of CTSA 
institutions as the main independent variable and the 
monetary value of SBIR grants as the dependent vari-
able support the main findings in panel A in Table 4.

4.3.2 � The effect of CTSA funding on biomedical 
knowledge production

In this section, we estimate the effect of the CTSA 
funding on biomedical patents and clinical trials. To do 
so, we estimate Eqs. 3 and 4. Table 5 shows the results. 
The first column in panel A presents the relationship 
between CTSA funding and biomedical patents. The 
coefficient is significant at around 0.05 level (p value: 
0.053). The estimate indicates that a 1% increase in 
CTSA funding increases the number of biomedical 
patents by 0.0518%. As the mean of biomedical pat-
ents in the CTSA-funded MSAs is 114.8, doubling the 
CTSA funding can change the number of biomedical 
patents by 0.6 (= 114.8*0.0052) on average.

A reasonable question is whether the CTSA fund-
ing affects patents in different industries or technology 
fields. In other words, is the relationship presented in 
column 1 of Table 5 specific to patents in the biomedical 
field? To examine this question, we collected patent data 
in two different technology fields: Class 361-Electricity: Ta
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Fig. 4   The trends of the 
NIH SBIR grant. Treatment 
group (top line), com-
parison group (bottom line), 
entire group (middle line)

Fig. 5   The trend of the 
NIH SBIR awards (Phase 
I and Fast Track).  Source: 
Authors, based on the NIH 
Data Handbook. National 
Institutes of Health (n.d.-e)

Fig. 6   The trends of the 
NIH SBIR grant ratio. 
Treatment group (top line), 
comparison group (bottom 
line)
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Fig. 7   The trends of bio-
medical patents. Treatment 
group (top line), com-
parison group (bottom line), 
entire group (middle line)

Fig. 8   The trends of 
biomedical patent ratio. 
Treatment group (top line), 
comparison group (bottom 
line)

Fig. 9   The trends of clini-
cal trials. Treatment group 
(top line), comparison 
group (bottom line), entire 
group (middle line)
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Electrical Systems and Devices; and Class 726-Infor-
mation Security. We estimate the effect using the same 
model specification (i.e., Eq. 3). As shown in columns 
4 and 6 of Table 6, all CTSA funding coefficients are 
statistically insignificant leading to a conclusion that 
the effect of CTSA funding on patents seems to be bio-
medical field-specific. Notably, we test only two differ-
ent classes here; one should be cautious about making 
overly broad generalizations to other fields.

The second column in panel A of Table  5 shows 
the relationship between CTSA funding and the num-
ber of clinical trials conducted. The results indicate 
that CTSA funding is not associated with the clinical 
trials conducted in a region. The CTSA coefficient 
in the second column of Table  5 is not statistically 
significant at all. The results rather indicate that the 
number of clinical trials is affected by human capital 
and population. We discuss this later in Section 5.

Considering the estimates presented in panel A of 
Table 5 combined, one may conclude that the effects 
of CTSA funding on biomedical knowledge produc-
tion vary depending on the types of knowledge.

4.3.3 � Three paths from CTSA funding to SBIR grants

We now present the regression results of Eq. 5, which 
estimate the effects of CTSA funding, biomedical 
patents, and clinical trials on SBIR grants. The third 
column, panel B of Table  5 shows the results. The 
CTSA funding and biomedical patents coefficients 
are shown to be significant at the 0.1 level (p values 
are 0.06 and 0.039, respectively). The CTSA coeffi-
cient on the SBIR grants, 0.00663, is slightly smaller 

than that obtained earlier in the direct relationship 
between them (Table 4). We conjecture that this result 
is because the effect of CTSA funding is divided into 
three paths from CTSA funding to SBIR grants.

The biomedical patent coefficient on the SBIR 
grants is 0.127 as shown in the third column, panel 
B of Table 5, which means that a 1% increase in the 
number of biomedical patents in a region is associ-
ated with increases numbers of SBIR grants. Even 
though the magnitude is quite small, this result sup-
ports the knowledge spillover theory of entrepreneur-
ship (KSTE), which links new knowledge production 
and entrepreneurial activity (Acs et  al., 2009). This 
result provides one more piece of evidence that KSTE 
holds in a sectoral context like the biomedical sector.

The effect of clinical trials on the SBIR grants 
is negative and not significant as shown in the third 
column, panel B of Table 5. In conjunction with the 
statistically significant relationship between biomed-
ical patents and SBIR grants, we may conclude that 
the effect of biomedical knowledge on SBIR grants 
depends on the type of knowledge as well.

4.3.4 � Path analysis

Using path analysis, we estimate the indirect effects of 
the CTSA funding on the SBIR grants through biomedi-
cal patents and clinical trials. Figure 11 summarizes the 
path results, showing the main relationships between 
CTSA funding, biomedical patents, clinical trials, and 
SBIR grants. The path coefficients from the structural 
equation modeling are those obtained from the regres-
sions presented in Table 5.

Fig. 10   The trends of clini-
cal trials ratio. Treatment 
group (top line), compari-
son group (bottom line)
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Following the discussion in Section 3, we estimate 
two indirect paths between CTSA funding and SBIR 
grants: (1) indirect path 1—through biomedical pat-
ents and (2) indirect path 2—through clinical trials.

Indirect path 1 from CTSA funding to SBIR 
grants through biomedical patents is small and 
insignificant. The coefficient for the indirect path 1 
is 0.00066, and the p value is 0.145. The coefficient 
is around one tenth of the direct path (i.e., 0.00663) 
as shown in Fig.  11. This result is contrary to our 
expectation that the increased biomedical patents by 
CTSA funding increase SBIR grants. Indirect path 2 
from CTSA funding to SBIR grants through clinical 
trials is also small and insignificant. The coefficient 
is − 0.0000011, and the p value is 0.994.

These small coefficients and high p values of the 
indirect paths indicate that CTSA funding has a lim-
ited effect on SBIR grants through either biomedi-
cal patents or clinical trials. On the other hand, the 
direct path of CTSA funding on SBIR grants was 
found to be larger and significant. The coefficient 
of the direct effect is 0.00663 and significant at the 
0.1 level (p value: 0.06). As discussed earlier, the 
direct path includes the effects of all outputs other 
than biomedical patents and clinical trials. Thus, 
the large differences could indicate that the indirect 
paths through biomedical patents or clinical trials 
are not the main channels between CTSA funding 
and SBIR grants. With the reference to the recent 
literature (e.g., Kim, 2019; Llewellyn et al., 2018), 

Table 4   Poisson regression: CTSA funding to SBIR grants

Robust standard errors are adjusted for MSAs and in parentheses: *** p < 0.01, ** p < 0.05, * p < 0.1. ‘log’ indicates a natural log. 
Due to the missing data in the human capital variable, 177 observations were dropped in (2),  (3), (4), and (5). 200 groups (2,000 
obs.) in (1) and 203 groups (1874 obs.) in (2), (3), and (4) were dropped because of all zero outcomes

Variables Panel A Panel B

(1) (2) (3) (4) (5)

Poisson Poisson OLS

SBIR grants (Count) SBIR grants (Count) SBIR grants ($, log)

CTSA funding (log) 0.00715* 0.00729** 0.00725** 0.004463*
(0.00366) (0.00368) (0.00365) (0.02671)

CTSA institution (count) 0.06297***
(0.02343)

Public R&D (log)  − 0.00146  − 0.00234  − 0.00262 0.00539
(0.01309) (0.01320) (0.01315) (0.02495)

Private R&D (log)  − 0.00555  − 0.00533  − 0.00562 0.01867
(0.00657) (0.00679) (0.00701) (0.03907)

Human capital (log)  − 0.69000  − 0.76102  − 0.76688  − 0.52955
(0.62904) (0.63107) (0.62288) (0.79447)

Large biomedical firms (log)  − 0.11340  − 0.11183  − 0.09766 0.42355
(0.08407) (0.08231) (0.08084) (0.58331)

Per capita income (log) 0.62325 0.54059 3.01921
(0.83169) (0.84510) (2.26751)

Agglomeration (log) 0.19679 0.31258 0.74944
(0.63845) (0.63674) (0.67024)

Regional economy (log) 0.23878 0.23534  − 0.18227
(0.59313) (0.59122) (1.39347)

Constant  − 25.95169
(22.47628)

Year/MSA fixed effect Yes Yes Yes Yes Yes
Observations 1810 1759 1759 1759 3633
Number of MSA 181 178 178 178 381
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one might think that items like scientific publica-
tions could be the potential connector between pub-
lic funding for translational research and biomedical 
entrepreneurship. Unfortunately, we could not test 
this due to the lack of relevant publication data at 
the MSA level.

5 � Discussion and policy implications

A core finding of this analysis is that publicly funded 
translational research does contribute to regional bio-
medical entrepreneurship. As described, translational 
research aims to facilitate the transformation of basic 
science into more usable forms of knowledge. Thus, 
this result supports the knowledge spillover theory 
of entrepreneurship (KSTE), that posits that more 

knowledge leads to higher entrepreneurship (Acs 
et  al., 2009). This is also consistent with the wide-
spread belief in the policy community that a region 
would benefit from vibrant translational research 
activity in promoting biomedical business. It is nota-
ble that academic centers in the biomedical field 
observe the growth of vibrant activities at the local 
level and appreciate entrepreneurship (Kimberly & 
Berglund, 2022).

However, the estimated magnitude appears rela-
tively small. We offer three potential reasons. First, 
we only analyzed the first 10 years of the CTSA pro-
gram, thus the effect of the program might not have 
been fully exerted on the regional biomedical ecosys-
tem for the years reviewed in this study. Considering 
the long-time span involved in biomedical develop-
ment processes (DiMasi et al., 2003; Pisano, 2006), it 

Table 5   Poisson 
regression: CTSA funding, 
biomedical patents, clinical 
trials, SBIR grants

Robust standard errors are 
adjusted for MSAs and in 
parentheses: *** p < 0.01, 
** p < 0.05, * p < 0.1. 
‘log’ indicates a natural log. 
Due to the missing data in 
the human capital variable, 
177 observations were 
dropped in (1), (2), and (3). 
68 groups (512 obs.) in (1), 
1 group (3 obs.) in (2), and 
203 groups (1874 obs.) in 
(3) were dropped because 
of all zero outcomes

Variables Panel A Panel B

(1) (2) (3)

Poisson Poisson

Biomedical pat-
ents (Count)

Clinical trials (Count) SBIR grants (Count)

CTSA funding (log) 0.00518* 0.00140 0.00663*
(0.00268) (0.00196) (0.00352)

Biomedical patents (log) 0.12744**
(0.06173)

Clinical trials (log)  − 0.00078
(0.10110)

Public R&D (log)  − 0.00198 0.00605  − 0.00216
(0.00448) (0.00441) (0.01336)

Private R&D (log)  − 0.00390 0.00088  − 0.00450
(0.00420) (0.00175) (0.00686)

Human capital (log) 0.28140 0.28561**  − 0.79167
(0.36227) (0.13402) (0.62189)

Large biomedical firms (log) 0.02555 0.01575  − 0.11516
(0.03348) (0.02422) (0.08209)

Per capita income (log)  − 0.66308  − 0.64215** 0.69396
(0.47406) (0.27643) (0.82894)

Agglomeration (log) 0.01178 0.40153** 0.19827
(0.40512) (0.15615) (0.65063)

Regional economy (log) 0.00214  − 0.08568 0.23510
(0.42701) (0.17859) (0.59408)

Year/MSA fixed effect Yes Yes Yes
Observations 3121 3627 1759
Number of MSA 313 379 178
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is conceivable that it might require a longer period to 
observe this relationship more accurately. Second, we 

could have underestimated the effect by including only 
SBIR grants received by regional entrepreneurs while 

Table 6   Poisson regression: CTSA funding, different patent classes

Robust standard errors are adjusted for MSAs and in parentheses: ***p < 0.01, **p < 0.05, *p < 0.1. “log” indicates a natural log. 
Due to the missing data in the human capital variable, 177 observations were dropped in columns 2, 4, and 6. Sixty-eight groups 
(680 obs.), 68 groups (512 obs.), 149 groups (1490 obs.), 149 groups (1320 obs.), 190 groups (1900 obs.), and 190 groups (1726 
obs.) were dropped in each column because of all zero outcomes

Variables (1) (2) (3) (4) (5) (6)
Poisson

Biomedical patents (Count) Class 361 patents (Count) Class 762 patents (Count)

CTSA funding (log) 0.00512* 0.00518* 0.00562 0.00643 0.00724 0.00541
(0.00280) (0.00268) (0.00444) (0.00451) (0.00754) (0.00712)

Public R&D (log)  − 0.00198  − 0.00882  − 0.00060
(0.00448) (0.00863) (0.01027)

Private R&D (log)  − 0.00390 0.00815 0.00029
(0.00420) (0.00816) (0.00953)

Human capital (log) 0.28140 0.36519  − 0.91471
(0.36227) (0.73272) (0.88861)

Large biomedical firms (log) 0.02555 0.08916 0.08800
(0.03348) (0.07086) (0.06978)

Per capita income (log)  − 0.66308 2.04252** 0.95887
(0.47406) (0.89937) (1.19784)

Agglomeration (log) 0.01178 0.48248  − 1.37949
(0.40512) (0.55665) (1.56983)

Regional economy (log) 0.00214  − 0.78395  − 0.50014
(0.42701) (0.63131) (0.88726)

Year/MSA fixed effect Yes Yes Yes Yes Yes Yes
Observations 3130 3121 2310 2303 1910 1907
Number of MSA 313 313 231 231 191 191

Fig. 11   Path analysis 
result. Poisson option and 
year/MSA fixed effects used 
in Stata. N = 3633 due to 
missing values in the human 
capital variable. The robust 
standard errors are adjusted 
for 381 MSAs and are in 
parentheses: ***p < 0.01, 
**p < 0.05, *p < 0.1. The 
solid lines indicate statisti-
cally significant relation-
ships, while the dotted lines 
indicate insignificant ones 
at the 0.1 level
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excluding other biomedical activities in a region. 
As noted earlier in the paper, NIH SBIR recipients 
account for only about 20% of all NIH SBIR appli-
cants (NIH, n.d.-c). If the selected and the unselected 
applicants used the CTSA-related outputs with the 
same frequency, our measurement could have underes-
timated the true value. Furthermore, NIH SBIR grants 
are only a small fraction of total financing sources for 
biomedical firms. Thus, those entrepreneurs who did 
not apply might have absorbed the effect of the CTSA 
program on the SBIR grants, in which case, the CTSA 
coefficient would again be underestimated. Third, the 
CTSA funding is relatively small compared to other 
public and private biomedical research funding. The 
annual CTSA funding for over 60 institutions is equal 
to about 500 million dollars which compares to the 
total annual budget of NIH amounting to 39.1 billion 
dollars in 2019 (Kaiser, 2018).

Path analysis indicates that the effect of CTSA fund-
ing is not transmitted through biomedical patents. One 
conceivable reason is the mismatch between the patent 
production and utilization time, and between the pat-
ent production and utilization location. It could be the 
case that entrepreneurs are not limited to using knowl-
edge produced in their particular regions, but rather, 
they search for knowledge more globally. For instance, 
entrepreneurs might have used biomedical patents pro-
duced outside their regions from years prior.

Similarly, the effect of CTSA funding on SBIR 
grants through clinical trials is also weak. We con-
sider three potential explanations. First, some clini-
cal trials are just participating sites that are not influ-
enced by the CTSA activities in a region. According 
to our data from ClinicaTrials.gov, 13.8% of clinical 
studies were conducted on more than 10 sites world-
wide and 27 clinical studies had more than 1000 sites 
worldwide. Thus, the large number of participating 
sites could have attenuated the strength of the rela-
tionship between the CTSA and clinical trials. Sec-
ond, clinical trial site selection is heavily influenced 
by diverse factors such as recruitment-related factors 
(Dombernowsky et  al., 2019; Hurtado-Chong  et al., 
2017; Silva, 2018). As shown in Table 5, the number 
of clinical trials is strongly associated with population 
density and income per capita. Thus, these factors 
might have influenced the clinical trials variable more 
heavily than other factors, such as CTSA funding. 
Third, when viewed from the perspective of entre-
preneurs, there might be a mismatch between needed 

knowledge and produced knowledge. Some entrepre-
neurs require case-specific information for their tech-
nological developments and businesses, but the clini-
cal trials conducted in their specific regions might not 
be directly relevant to their entrepreneurial activities.

Policymakers should intensify efforts to improve 
the utilization of knowledge produced by transla-
tional research activity. The CTSA program could, for 
instance, expand its educational program for young 
researchers regarding entrepreneurship. Policymakers 
can borrow key elements from the I-Corps program of 
the National Science Foundation supporting the com-
mercialization of basic research. Such an expansion 
of the CTSA program can provide young researchers 
with relevant business education and allow them to 
get more involved in commercialization field. Local 
governments can also enhance their role in facilitating 
knowledge utilization by regional biomedical entre-
preneurs. They may establish information sharing 
and connecting organizations adjacent to research-
intensive areas to improve the flow of new knowledge 
between inventors and entrepreneurs. Local govern-
ments may also provide more sophisticated support to 
biomedical entrepreneurs beyond the current SBIR-
related support, as surveyed by Lanahan and Feldman 
(2015). For instance, state governments may help the 
establishment of wet-labs for early-stage start-ups like 
LabCentral in Cambridge, MA, partly supported by 
the state government (LabCentral, n.d.).

6 � Conclusion

In this paper, we investigated the effects of transla-
tional research on biomedical knowledge production 
and entrepreneurship. We constructed an analytical 
model, positing that translational research increases 
biomedical entrepreneurship by increasing knowl-
edge, namely biomedical patents and clinical trials, 
available to regional entrepreneurs.

The results show that CTSA funding has increased 
regional SBIR grants, but the impact is relatively 
small. CTSA funding also increases regional biomed-
ical patents, but it does not seem to increase clinical 
trials conducted regionally. Biomedical patents have 
a positive relationship with regional SBIR grants, but 
clinical trials do not. Path analysis indicates that the 
effect of the CTSA program on regional SBIR grants 
is not strongly conveyed through biomedical patents 
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or clinical trials. Based on these results, we conclude 
that translational research through the CTSA program 
has a fairly limited incremental impact on exploitable 
knowledge production and regional biomedical entre-
preneurship. However, we will be quick to add the 
caveats in Section 5.

This research contributes to the literature on the 
intersection of translational research and entrepre-
neurship by explicitly linking translational research 
to regional biomedical business activity. We broad-
ened the scope of analysis in two respects: (1) from 
the program-recipient level to the regional level, 
and (2) from specific outputs to broader socioeco-
nomic impacts (e.g., biomedical entrepreneurship). 
In relation to the first point, we used the metropoli-
tan statistical area (MSA) as a unit of observation 
to capture regional economic activities as used by 
Anselin et al. (1997), Florida and Mellander (2010), 
and Qian and Jung (2017). We also provided empir-
ical evidence that translational research contributes 
to biomedical knowledge production in a region, 
but the knowledge production depends on the type 
of knowledge. Finally, we added empirical evidence 
that the knowledge spillover theory of entrepreneur-
ship (Acs et  al., 2009) holds at the sectoral level 
like the biomedical field.

As a final note for future research, it should be 
stressed that the CTSA funding does not represent 
all translational research activities and that the 
NIH SBIR grants proxy a small fraction of bio-
medical business in a region. Obtaining additional 
data, including a wider spectrum of translational 
research and biomedical entrepreneurship activities, 
should improve the accuracy of the results. In addi-
tion, upon getting the relevant publication data at 
the MSA level, researchers can consider additional 
indirect paths from the CTSA funding to biomedical 
entrepreneurship.
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