Skip to main content
Log in

Influence of Tm3+ Concentration on Long Afterglow and Photostimulated Luminescence Properties of Eu2+-Doped Sr1Al2Si2O8 Blue Phosphors

  • OPTICS AND SPECTROSCOPY
  • Published:
Russian Physics Journal Aims and scope

Blue aluminum silicate phosphors of Sr1Al2Si2O8, Sr0.98Al2Si2O8:0.02Eu2+ and Sr0.98–xAl2Si2O8:0.02Eu2+, xTm3+ (x = 0.005, 0.01, 0.02, 0.04, 0.08) compositions are prepared by high temperature solid phase method. Their XRD, fluorescence emission and excitation luminescence properties, afterglow attenuation, afterglow luminescence, thermoluminescence and photostimulated luminescence properties are investigated. The results show that a high purity crystallized phosphor can be successfully prepared at 1350°C for 4 h. It is proven that Eu2+ as the luminescent center is replaced by Sr2+ with a coordination number of 12; Eu2+ and Tm3+ are substituted for Sr2+, which is the reason for a decrease in the unit cell parameter values. The sample excitation and emission spectra have peak wavelengths of 330 nm and 405 nm. Sr0.97Al2Si2O8:0.02Eu2+, 0.01Tm3+ has a minimum afterglow decay rate of 0.61389, which is suitable for use as a long-lasting luminescent blue phosphor. The pyroluminescence indicates that doping with Tm3+ significantly deepens the trap level. The photostimulated luminescence proves that the co-doped Tm3+ greatly improves the initial intensity and the optical storage performance of the photostimulated luminescence, especially the Sr0.96Al2Si2O8:0.02Eu2+; the 0.02Tm3+ sample trap level is 0.8999 eV. The initial photostimulated luminescence intensity of the co-doped sample is shown to be 1000 times that of the single doped Eu2+, and the optical storage – 1.8 times that of the single doping case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Shao, H. Lin, Y. Dong, Y. Fu, C. Liang, and J. He, J. Solid State Chem., 72–77, 225 (2015).

    Google Scholar 

  2. X. Yu, T. Wang, X. Xu, D. Zhou, and J. Qiu, ECS Solid State Lett., R4–R6, 3 (2013).

  3. F. Liu, W. Yan, Y.J. Chuang, Z. Zhen, J. Xie, and Z. Pan, Sci. Rep., 1554–1563, 3 (2013).

    Google Scholar 

  4. X. Liu, J. Zhang, X. Zhang, Z. Hao, J. Qiao, and X. Dong, Opt. Lett., 148–150, 38 (2013).

    Google Scholar 

  5. X. Xu, Q. He, and L. Yan, J. Alloys Compd., 22–26, 574 (2013).

    Google Scholar 

  6. A. McAulay, J. Wang, and C. Ma, Proc. SPIE, 271–276, 77 (1989).

    Google Scholar 

  7. Z. Wen, N. H. Farhat, and Z. J. Zhao, Appl. Opt., 7251–7265, 32 (1993).

    Google Scholar 

  8. H. Yu, G. Xiong, and J. Ma, J. TIT, 18–23, 17 (2001).

    Google Scholar 

  9. W. Jiang, Z. Xu, and X. Zhang, Sm. Mater. Lett., 1042–1045, 61 (2007).

    Google Scholar 

  10. A. S. Pradhan, J. I. Lee, and J. L. Kim, Med. Phys., 85–99, 33 (2008).

    Google Scholar 

  11. H. B. Liu, B. L. Feng, L. Luo, C. L. Han, and P. A. Tanner, Opt. Mater. Express, 3375–3385, 6 (2016).

    Google Scholar 

  12. Y. X. Zhuang, Y. Lv, L. Wang, W. W. Chen, T. L. Zhou, T. Takeda, N. Hirosaki, and R. J. Xie, ACS Appl. Mater. Interfaces, 1854–1864, 10 (2018).

    Google Scholar 

  13. Y. X. Zhuang, Y. Lv, Y. Li, T. L. Zhou, J. Xu, J. Ueda, S. Tanabe, and R. J. Xie, Inorg. Chem., 11890–11897, 55 (2016).

    Google Scholar 

  14. L. Xiao, J. Zhou, G. Z. Liu, and L. Wang, J. Alloys Compd., 24–29, 712 (2017).

    Google Scholar 

  15. S. Hufner and B. Judd, NY Acad. Press, 87–95, 32 (1979).

    Google Scholar 

  16. J. Wu, N. Wang, V. Yan, and H. Wang, Nano Res., 1863–1877, 14 (2021).

    Article  Google Scholar 

  17. A. Lecointre, A. Bessiere, A. Bos, and P. Dorenbos, J. Phys. Chem. C, 4217–4227, 115 (2011).

    Google Scholar 

  18. P. Dorenbos, J. Lumin., 155–176, 91 (2000).

    Article  Google Scholar 

  19. F. Clabau, A. Garcia, P. Bonville, D. Gonbeau, T. Le Mercier, P. Deniard, and S. Jobic. J. Solid State Chem., 1456–1461, 181 (2008).

    Google Scholar 

  20. M. Ma, D. Zhu, C. Zhao, T. Han, S. Cao, and M. Tu, Opt. Commun., 665–668, 285 (2012).

    Google Scholar 

  21. S. C. Gadam and S. Dhoble, J. Lumin., 23–26, 14 (2013).

    Google Scholar 

  22. Y. Kojima, T. Aoi, and U. Tetsuo, J. Lumin., 42–45, 146 (2014).

    Google Scholar 

  23. O. Y. Manashirov, E. M. Zvereva, V. B. Gutan, A. N. Gorgobiani, S. A. Ambrozevic, and A. N. Lobanov, Inorg. Mater., 487–491, 49 (2013).

    Google Scholar 

  24. S. Shuang, D. Kai, K. Huang, and L. Cheng, Adv. Powder Technol., 1516–1519, 25 (2014).

    Google Scholar 

  25. Z. Hua, L. Salamanca-Riba, M. Wuttig, and P. K. Soltani, J. Opt. Soc. Am. B, 1464–1469, 10 (1993).

    Google Scholar 

  26. M. V. Nadezhkin, D. V. Orlova, S. A. Barannikova, and N. M. Mnikh, Russ. Phys. J., 65, No. 3, 507 (2022).

    Article  Google Scholar 

  27. Z. Zhang, X. Xu, and J. Qiu, Spectrosc. Spectral Anal., 1486–1491, 34 (2014).

    Google Scholar 

  28. X. Sun, J. Zhang, X. Zhang, Y. Luo, and Z. Hao, J. Appl. Phys., 013501, 105 (2009).

    Google Scholar 

  29. F. Wang, Y .G. Tian, and Q. Zhang, J. Optoelectron. Laser, 1520–1525, 26 (2015).

    Google Scholar 

  30. P. Li, Z. Yang, and Z. Wang, Chin. Sci. Bull., 973–977, 53 (2008).

    Google Scholar 

  31. R. Chen, Phys. J. Electrochem. Soc., 1254–1257, 116 (1969).

    Google Scholar 

  32. M. Wang, X. Zhang, and Z. Hao, Opt. Mater., 1042–1045, 32 (2010).

    Google Scholar 

  33. A. H. Krumpel and E. V. Kolk, J. Appl. Phys., 073505–073514, 104 (2008).

    Google Scholar 

  34. X. Liu, J. Zhang, X. Zhang, Z. Hao, J. Qiao, and X. Dong, Opt. Lett., 148–150, 38 (2013).

    Google Scholar 

  35. L. G. Van Uitert, J. Lumin., 1–9, 29 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Y. Liu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S.Y., Gao, D., Wang, L. et al. Influence of Tm3+ Concentration on Long Afterglow and Photostimulated Luminescence Properties of Eu2+-Doped Sr1Al2Si2O8 Blue Phosphors. Russ Phys J 66, 655–665 (2023). https://doi.org/10.1007/s11182-023-02989-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02989-y

Keywords

Navigation