Skip to main content

Advertisement

Log in

Surface Structure and Properties of Niobium Zirconium Alloy After Boron-10 Ion Implantation

  • Published:
Russian Physics Journal Aims and scope

The boron-10 ion implantation in layers on the core components can provide lower nuclear reactivity due to an abnormally large neutron-capture cross-section during the initial stage of the reactor operation. It is shown that after the boron-10 ion implantation at 22 keV energy with 7∙1016 ion/cm2 fluence, the surface microhardness of E110 zirconium alloy increases from 3 to 3.7 GPa. After the boron-10 ion implantation in the indicated conditions (22 keV energy and 7∙1016 ion/cm2 fluence), the corrosion rate of E110 zirconium alloy in a 1% hydrofluoric acid solution is 1.2–1.4 times lower than that of the nonimplanted alloy. The boron-10 ion implantation is accompanied by such processes as the formation of a subgrain structure in the surface layer of the alloy, the grain size of which ranges within 100–200 nm; the increase in the scalar dislocation density; and the formation of 1.8–2.3 nm nanoparticles of zirconium boride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. C. Polo, E., Martinez, J. Esteve, and J. Andujar, Diam. Relat. Mater., 8, 423–427 (1999).

  2. D. J. Eaglesham, P. A. Stolk, H. J. Gossmann, and J. M. Poate, Appl. Phys. Lett., 65, 2305–2307 (1994).

    Article  ADS  Google Scholar 

  3. H. Schlemm and D. Roth, Surf. Coat. Technol., 114, 81–84 (1999).

    Article  Google Scholar 

  4. J. H. Freeman, Nucl. Instrum. Meth., 22, 306–316 (1963).

    Article  ADS  Google Scholar 

  5. V. I. Gushenets, A. S. Bugaev, and E. M. Oks, Prikladnaya fiz., 43, No. 2, 19–24 (2017).

    Google Scholar 

  6. A. G. Nikolaev, E. M. Oks, A. V. Vizir, et al., Rev. Sci. Instrum., 87, 02A902 (2016).

  7. A. G. Nikolaev, E. M. Oks, V. P. Frolova, and G. Yu. Yushkov, Russ. Phys. J., 60, No. 9, 1528–1532 (2018).

    Article  Google Scholar 

  8. A. G. Nikolaev, E. M. Oks, V. P. Frolova, and G. Yu. Yushkov, PZhTF, 41, No. 18, 30–37 (2015).

    Google Scholar 

  9. A. S. Bugaev, A. V. Vizir, V. I. Gushenets, et al., Russ. Phys. J., 62, No. 7, 1117–1122 (2019).

    Article  Google Scholar 

  10. A. Zielinski and S. Sobieszczyk, Int. J. Hydrogen Energ., 36, 8619–8629 (2011).

    Article  Google Scholar 

  11. A. S. Zaimovskii, A. V. Nikulina, and N. G. Reshetnikov, Zirconium Alloys in Nuclear Power Engineering [in Russian], Energoizdat, Moscow (1981).

    Google Scholar 

  12. L. M. Utevskii, Electron Diffraction Technique in Metallurgical Science [in Russian], Metallurgiya, Moscow (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. F. Ivanov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 26–31, May, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, Y.F., Frolova, V.P., Bugaev, A.S. et al. Surface Structure and Properties of Niobium Zirconium Alloy After Boron-10 Ion Implantation. Russ Phys J 64, 790–796 (2021). https://doi.org/10.1007/s11182-021-02393-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02393-4

Keywords

Navigation