Skip to main content
Log in

Dark Currents of Unipolar Barrier Structures Based on Mercury Cadmium Telluride for Long-Wave IR Detectors

  • PHYSICS OF SEMICONDUCTORS AND DIELECTRICS
  • Published:
Russian Physics Journal Aims and scope

Two types of long-wave infrared nBn-structures based on mercury cadmium telluride grown by molecular beam epitaxy on GaAs (013) substrates have been fabricated. For each type of device, the side walls of the mesa structures were passivated with an Al2O3 insulating film or left without passivation. The CdTe content in the absorbing layers was 0.20 and 0.21, and in the barrier layers, it was 0.61 and 0.63. The dark currents of the manufactured devices were studied in a wide range of voltages and temperatures. The values of the surface leakage component are found under various conditions. It has been shown that the surface leakage current density decreases upon passivation with an Al2O3 film. It was found that in the fabricated nBn-structures at room temperature, the surface leakage component dominates at reverse biases, and at forward biases, the dark current is determined by the combined effect of the surface leakage component and the bulk current component. From the Arrhenius plots, the values of the activation energies of the surface leakage current component were found, which are in the range from 0.05 to 0.10 eV at small reverse biases. At small reverse biases, upon cooling the samples, the role of the bulk component of the dark current increases, which at 180 K is approximately 0.81 A/cm2. In the temperature range 200–300 K, the values of the dark current density exceed the values calculated according to the empirical Rule07 model by a factor of 10-100, which indicates the possibility of creating the long-wave infrared barrier detectors by decreasing the values of the surface leakage component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rogalski, Infrared and Terahertz detectors, 3rd. ed., Boca Raton, CRC Press, Taylor & Francis Group (2019).

    Book  Google Scholar 

  2. L. Mollard, G. Destefanis, G. Bourgeois, et al., J. Electron. Mater., 40, 1830– 1839 (2011).

    Article  ADS  Google Scholar 

  3. I. I. Izhnin, K. D. Mynbaev, A. V. Voitsekhovsky, et al., Infrared Phys. Technol., 98, 230–235 (2019).

    Article  ADS  Google Scholar 

  4. S. Maimon and G. W. Wicks, Appl. Phys. Lett., 89, No. 15, 151109 (2006).

    Article  ADS  Google Scholar 

  5. D. Z. Ting, A. Soibel, A. Khoshakhlagh, et al., Appl. Phys. Lett., 113, 021101 (2018).

    Article  ADS  Google Scholar 

  6. A. Soibel, D. Z. Ting, S. B. Rafol, et al., Appl. Phys. Lett., 114, 161103 (2019).

    Article  ADS  Google Scholar 

  7. E. Plis, S. A. Myers, D. A. Ramirez, et al., Proc. SPIE, 9819, 981911 (2016).

    Article  Google Scholar 

  8. A. Evirgen, J. Abautret, J. P. Perez, et al., Electron. Lett., 50, 1472–1473 (2014).

    Article  ADS  Google Scholar 

  9. N. D. Akhavan, G. A. Umana-Membreno, R. Gu, et al., IEEE Trans. Electron Dev., 65, No. 10, 4340–4345 (2018).

    Article  ADS  Google Scholar 

  10. M. Kopytko, Infrared Phys. Technol., 64, 47–55 (2014).

    Article  ADS  Google Scholar 

  11. F. Uzgur and S. Kocaman, Infrared Phys. Technol., 97, 123–128 (2019).

    Article  ADS  Google Scholar 

  12. J. He, P. Wang, Q. Li, et al., IEEE Trans. Electron Dev., 67, No. 5, 2001–2007 (2020).

    Article  ADS  Google Scholar 

  13. A. M. Itsuno, J. D. Phillips, and S. Velicu, Appl. Phys. Lett., 100, No. 16, 161102 (2012).

    Article  ADS  Google Scholar 

  14. S. Velicu, J. Zhao, M. Morley, et al., Proc. SPIE, 8268, 826282X (2012).

    Google Scholar 

  15. O. Gravrand, F. Boulard, A. Ferron, et al., J. Electron. Mater., 44, No. 9, 3069–3075 (2015).

    Article  ADS  Google Scholar 

  16. M. Kopytko and A. Rogalski, Prog. Quant. Electron., 47, 1–18 (2016).

    Article  ADS  Google Scholar 

  17. M. Kopytko, K. Jóźwikowski, P. Martyniuk, et al., J. Electron. Mater., 45, No. 9, 4563–4573 (2016).

    Article  ADS  Google Scholar 

  18. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Infrared Phys. Technol., 102, 103035 (2019).

    Article  Google Scholar 

  19. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., J. Phys. D: Appl. Phys., 53, 055107 (2019).

    Article  ADS  Google Scholar 

  20. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Prikladn. Fiz., No. 1, 25–31 (2020).

    Google Scholar 

  21. A. M. Istuno, Bandgap-Engineered HgCdTe Infrared Detector Structures for Reduced Cooling Cequirements, Ph. D. diss., University of Michigan (2012).

    Google Scholar 

  22. R. Fu and J. Pattison, Opt. Eng., 51, No. 10, 104003 (2012).

    Article  ADS  Google Scholar 

  23. E. R. Zakirov, V. G. Kesler, G. Y. Sidorov, et al., Semicond. Sci. Technol., 34, No. 6, 065007 (2019).

    Article  ADS  Google Scholar 

  24. E. R. Zakirov, V. G. Kesler, G. Y. Sidorov, et al., Semicond. Sci. Technol., 35, No. 2, 025019 (2020).

    Article  ADS  Google Scholar 

  25. Handbook of Infrared Detection Technologies, eds. M. Henini and M. Razeghi, Elsevier Advanced Technology, Oxford (2002).

  26. K. Michalczewski, F. Ivaldi, L. Kubiszyn, et al., Acta Phys. Pol. A, 132, No. 2, 981–984 (2018).

    Article  ADS  Google Scholar 

  27. M. Kopytko, E. Gomółka, K. Michalczewski, et al., Semicond. Sci. Technol., 33, No. 12, 125010 (2018).

    Article  ADS  Google Scholar 

  28. X. Du, B. T. Marozas, G. R. Savich, et al., J. Appl. Phys., 123, No. 21, 214504 (2018).

    Article  ADS  Google Scholar 

  29. D. E. Sidor, G. R. Savich, and G. W. Wicks, J. Electron. Mater., 45, No. 9, 4663– 4667 (2016).

    Article  ADS  Google Scholar 

  30. W. E. Tennant, D. Lee, M. Zandian, et al., J. Electron. Mater., 37, No. 9, 1406– 1410 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Voitsekhovskii.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 3–8, May, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voitsekhovskii, A.V., Nesmelov, S.N., Dzyadukh, S.M. et al. Dark Currents of Unipolar Barrier Structures Based on Mercury Cadmium Telluride for Long-Wave IR Detectors. Russ Phys J 64, 763–769 (2021). https://doi.org/10.1007/s11182-021-02390-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02390-7

Keywords

Navigation