Approaches to the synthesis of heterocyclic \boldsymbol{C}-nucleosides

E. M. Mukhin, ${ }^{\star}$ K. V. Savateev, and V. L. Rusinov*
Ural Federal University named after the First President of Russia B. N. Yeltsin, 19 ul. Mira, 620002 Ekaterinburg, Russian Federation. E-mail: mukhin.evg.m@gmail.com

Abstract

This review is focused on the synthetic strategies to heterocyclic C-nucleosides and covers the literature from 2011 to 2021. The main attention is paid to the following three approaches: the direct $\mathrm{C}-\mathrm{C}$ coupling of a carbohydrate moiety with a preformed aglycon unit, the construction of a (pseudo)sugar residue on a pre-formed aglycon, and the construction of an aglycon on a pre-formed (pseudo)sugar. In each Section, the literature data are categorized in terms of the size of aglycon from simple to complex, the advantages and drawbacks of the reviewed approaches are discussed.

Key words: C-nucleosides, heterocycles, Remdesivir, convergent synthesis, divergent synthesis.

Analogs of natural nucleosides and nucleotides constituting a large class of compounds found wide applications in medicinal chemistry due mainly to their ability to compete with natural nucleosides as the building blocks for the synthesis of DNA and RNA. ${ }^{1}$ To date, there are more than 30 such compounds were approved for the treatment of viral, cancer, bacterial, fungal, and some other diseases. ${ }^{2-5}$

Among the structural analogs of natural nucleosides that yet not entered clinical trials but exhibit in vitro biological activities, there are purine, pyrimidine, and pyrazine derivatives. It was shown ${ }^{6}$ that the minimum inhibitory concentrations of the compounds of diazine family against different mycobacterium strains are lower than those of the comparator
drugs (pyrazinamide and isoniazid). Abnormal purine nucleosides also show tuberculostatic activity. ${ }^{7}$

Natural nucleosides consist of aglycon (a nucleobase of purine (adenosine, guanine) or pyrimidine (thymine, uracil, cytosine) families) and a pentose sugar residue (ribose or 2'-deoxyribose) bonded by the $\mathrm{C}-\mathrm{N}$ covalent bond. Consequently, the replacement or modification of these structural units can lead to the analogs of natural nucleosides. ${ }^{8}$ To date, a wide variety of such modifications are in the arsenal of synthetic organic chemists. First, this is the replacement of the purine/pyrimidine unit by other (het)aryl residues. At the same time, it should be emphasized that formally the compounds obtained by such modifications are more correctly called

[^0]Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 2, pp. 425-481, February, 2023.
C-glycosyl compounds rather than C-nucleosides. Nevertheless, the term C-nucleosides is very popular in scientific literature. In this review, for the clarity the term C-nucleoside is referred to any compounds with $\mathrm{C}-\mathrm{C}$ glycosidic bond, since from the viewpoint of biological activity in the cited publications they considered as the analogs of natural nucleosides. Second, the chemical modifications of natural nucleoside analogs involve the replacement of the ribose residue with alternative sugar units, introduction of carbocyclic moieties in the nucleosides as pseudoribose ring, replacement of endocyclic oxygen atom with other heteroatoms, etc. ${ }^{8,9}$ The possibility to modify the glycosidic bond between aglycon and sugar residue is considered less frequently. Until recently, only limited data on a "shift" of this bond to other carbon atom of pseudoribose unit were available. ${ }^{\mathbf{1 0 , 1 1}}$

Since in some cases the $\mathrm{C}-\mathrm{N}$ glycosidic bond, especially in purine deoxynucleosides, can be unstable to phosphorolysis with phosphorylases, the concept of C-nucleosides was introduced. ${ }^{12-14}$ In C-nucleosides, the aglycon and sugar units are linked by the $\mathrm{C}-\mathrm{C}$ covalent bond, which significantly increases metabolic stability of these compounds. ${ }^{\mathbf{1 5}}$ Among the synthesized C-nucleosides, the derivatives with promising antitumor and antiviral activities, e.g., tiazofurin, ${ }^{16}$ showdomycin, ${ }^{17}$ formycin A and B analogs, ${ }^{18}$ and pirazofurin, ${ }^{19}$ were found. Recently, the interest in this class of the compounds signifi-

cantly increased since C-nucleoside analog Remdesivir was approved by U.S. Food and Drug Administration for the treatment of COVID-19 and demonstrated direct antiviral effect by inhibiting RNAdependent PNA polymerase (RdRp)..$^{\mathbf{2 0 , 2 1}}$

One of the key differences between the C-nucleoside synthesis and the N-nucleoside synthesis is the formation of the corresponding covalent bond between aglycon and carbohydrate residue. Thus, in the case of N-nucleoside the common approach to the $\mathrm{C}-\mathrm{N}$ bond formation is the ribosylation of the nucleobase with sugars bearing the living group (halogen atom, OMe or OBn group). ${ }^{22}$ The drawback of this method is the lack of regiospecificity because the prototropic tautomerism gave rise to side $N(7)$-ribosylated product (Scheme 1), and, in some cases, even more complex $N(1)$ - and $N(3)$-regioisomers. ${ }^{23}$

Scheme 1

The $\mathrm{C}-\mathrm{C}$ bond formation in C-nucleoside synthesis occurred regiospecifically, at the same time preliminary functionalization of both aglycon and sugar is required. The present review provided the analysis of the approaches to the C-nucleoside synthesis and strategies to the formation of the key $\mathrm{C}-\mathrm{C}$ bond between aglycon and sugar. The main strategies towards C-nucleosides can be divided into three following groups: (1) the direct $\mathrm{C}-\mathrm{C}$ coupling of the functionalized carbohydrate and aglycon, (2) the construction of a sugar residue on a pre-formed aglycon, and (3) the construction of an aglycon on a pre-formed sugar (Fig. 1).

The majority of the publications devoted to the C-nucleoside synthesis deals with the direct $\mathrm{C}-\mathrm{C}$ bond formation between functionalized aglycon and carbohydrate. The articles on the construction of an aglycon on a pre-formed carbohydrate unit are in the second place. This is followed by the rarely applied approach to C-nucleosides via the construction of a sugar residue on a pre-formed aglycon.

The direct $\mathrm{C}-\mathrm{C}$ coupling of the functionalized aglycon and carbohydrate can be achieved by the Pd-catalyzed reactions (the Suzuki, Sonogashira, and Heck reactions), by activation of the halogenated aglycon with the Grignard reagents followed by the reaction with (pseudo)ribonolactone, as well as using more exotic methods, e.g., the electrochemical

Fig. 1. Synthetic approaches to C-nucleosides.
activation. The construction of an aglycon on a preformed (pseudo)riboside is often based on the cyclocondensation and cycloaddition reactions involving acetylene- and nitrile-substituted carbohydrate precursors that results in heterocyclic systems. The construction of a sugar residue on a pre-formed aglycon is the least common due approach apparently to it gives access to a limited scope of ribosides. Mainly, this approach is used to synthesize C-nucleosides with acyclic sugar residues.

According to the above approaches, the present review is divided into three large Sections in each of which the data are presented in the following order: simple aromatic aglycons, heterocyclic derivatives, and fused heterocyclic systems. The bibliography includes 109 references 83% of which were published in the last 10 years and 35% were reported in the last 5 years.

1. C-Nucleoside synthesis by the direct $\mathrm{C}-\mathrm{C}$ coupling

1.1. Reactions involving organometallic reagents

The most common approach to the C-nucleoside synthesis is the direct coupling of the preliminary functionalized carbohydrate and aglycon (see Fig. 1). This strategy is mainly implemented using the halogenated aglycons, which are converted to active carbanions by treatment with magnesium metal, the Grignard reagents, and some other methods. In these reactions, (pseudo)ribonolactone serves generally as an electrophile. The addition reactions gave hemiketals, which are further transformed to the target C-nucleosides.

Hocek and coworkers, ${ }^{24}$ considering the structures of such well-known prodrugs as Sofosbuvir and Valopicitabine bearing $2^{\prime}-C$-methyl group synthesized their structural analogs, namely, benzene and pyridine $2^{\prime}-C$-methyl- C-ribonucleosides and -nucleotides (Schemes 2 and 3).

It is of note that in the inseparable mixtures of anomers 2a and 2b kept in DMSO- d_{6} at $4^{\circ} \mathrm{C}$ epimerization occurred, and after 2 weeks the ratio of anomers changed in favor of β-anomer ($\alpha: \beta=31: 69$ for $\mathbf{2 a}$ and $\alpha: \beta=8: 92$ for $\mathbf{2 b}$). Reduction of the originally obtained mixtures of α - and β-anomers of compounds 2a $(\alpha: \beta=51: 49)$ and 2b $(\alpha: \beta=44: 56)$ using the $\mathrm{Et}_{3} \mathrm{SiH} / \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ system in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave

Scheme 2

2, 3: $\mathrm{R}=\mathrm{H}(\mathbf{a}), \mathrm{Br}(\mathbf{b})$
Reagents and conditions: i. 1) $\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{Br}$, BuLi (1.1 equiv.), THF, $-78^{\circ} \mathrm{C}$, 2) $\mathrm{MeOH} ; i$ ii. $\mathrm{Et}_{3} \mathrm{SiH}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0 \rightarrow 20^{\circ} \mathrm{C}, 5 \mathrm{~min}$.
exclusively β-isomers of the target C-nucleosides $\mathbf{3 a}, \mathbf{b}$. Hocek and coworkers ${ }^{24}$ explained the observed stereoselectivity in terms of the formation of a planar oxocarbenium cation intermediate, which is then reduced by $\mathrm{Et}_{3} \mathrm{SiH}$.

The $\mathrm{C}-\mathrm{C}$ coupling reactions of 2,5 -dibromopyridine $\mathbf{4}$ and compound $\mathbf{1}$ to synthesize pyridine C-nucleosides (see Scheme 3) were carried out in the presence of BuLi in either toluene or diethyl ether. The reaction performed in toluene gave lower yield of the product than in $\mathrm{Et}_{2} \mathrm{O}$ but proceeded with good β-stereoselectivity. In toluene, the $\mathrm{C}-\mathrm{C}$ coupling reaction proceeded at the position 2 of 2,5 -dibromopyridine to give compound 5 and in coordinating solvent $\mathrm{Et}_{2} \mathrm{O}$ the reaction proceeded at the
position 5 of 2,5-dibromopyridine to afford regioisomer 7. Hemiketals 5 and 7 were transformed in the target C-nucleosides $\mathbf{6}$ and $\mathbf{8}$ by treatment with lithium bis(trimethylsilyl)amide (LiHMDS) followed by the reduction of the obtained acetates with $\mathrm{Et}_{3} \mathrm{SiH} / \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$.

Leumann and coworkers ${ }^{25}$ synthesized 2-pyrenyl-C-nucleosides using 2-pyrenylmagnesium bromide (Scheme 4). The obtained mixture of α - and β-anomers $\alpha-\mathbf{1 0}$ and $\beta-\mathbf{1 0}$ was subjected to acid-catalyzed epimerization to give the target $\beta-C$-nucleoside $\beta-\mathbf{1 0}$. Further transformations afforded phosphoramidite 11, which was incorporated into oligodeoxynucleotides using standard automated DNA synthesis.

Scheme 3

Reagents and conditions: $i .1$) BuLi (1.1 equiv.), toluene, $-78^{\circ} \mathrm{C}, 10 \mathrm{~min}$, 2) MeOH ; ii. 4, BuLi (1.1 equiv.), diethyl ether, $-78^{\circ} \mathrm{C}$, $10 \mathrm{~min}, 2) \mathrm{MeOH}$.

Scheme 4

Reagents and conditions: i. 1) Mg , THF, $55^{\circ} \mathrm{C}$, 2) $\left.\mathrm{CuI}, 0 \rightarrow 20^{\circ} \mathrm{C}, 3\right) 55^{\circ} \mathrm{C}$; ii. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{PhSO}_{3} \mathrm{H}$, reflux, 12 h .

Hocek and coworkers, ${ }^{26}$ synthesized the 2 -substituted benzyl C-ribonucleosides as the carba analogs of phosphoribosylanthranilate, a key intermediate in tryptophan biosynthesis. The synthesis involved the reaction of ribonolactone $\mathbf{1 2}$ with the Grignard reagent $\mathbf{1 3}$ (Scheme 5) ${ }^{26}$. The $\mathrm{C}-\mathrm{C}$ bond forming reaction proceeded smoothly and stereoselectively to give α-hemiketal 14 in high yield (88%). It is of note that the reaction was carried out at room temperature under air and can be
scaled up to $10-\mathrm{g}$ load. The subsequent reduction of hemiketal $\mathbf{1 4}$ gave intermediate $\mathbf{1 6}$ in 36% yield in an inseparable mixture with two by-products $\mathbf{1 5 a}, \mathbf{b}$. The mixture of partially silylated derivatives $\mathbf{1 5 a}, \mathbf{b}$ was converted into the fully silylated nucleoside 16 by silylation. Compound 16 was tested for the inhibition of PriA isomerase from Mycobacterium tuberculosis and showed no significant enzyme inhibition up to concentrations of $0.5 \mathrm{mmol} \mathrm{L}^{-1}$.

Scheme 5

TBS is $\mathrm{Bu}^{\mathrm{t}} \mathrm{Me}_{2} \mathrm{Si}$
15: $\mathrm{R}^{1}=\mathrm{H}(\mathbf{a}), \operatorname{TBS}(\mathbf{b}) ; \mathrm{R}^{2}=\operatorname{TBS}(\mathbf{a}), \mathrm{H}(\mathbf{b})$
Reagents and conditions: i. THF, $20^{\circ} \mathrm{C}, 1 \mathrm{~h}, \mathrm{ii}$. $\mathrm{Et}_{3} \mathrm{SiH}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 10 \mathrm{~min}$; iii. TBSCl, imidazole, DMF, 24 h .

Hatano and coworkers ${ }^{27}$ reported the synthesis of mercapto C-nucleosides 20 and 21 (Scheme 6). The reaction of the protected 2-deoxyribonolactone 17 with organolithium derivative generated in situ by treatment of precursor $\mathbf{1 8}$ with BuLi is accompanied with the lactone ring opening. The thus obtained hydroxy ketone 19 was selectively reduced with the ring closure to obtain product $\mathbf{2 0}$ as β-anomer. The subsequent deprotection using tetrabutylammonium fluoride (TBAF) (95%), treatment with NpsCl (74%, NpsCl is $2-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{SCl}$), and reduction with $\mathrm{EtSH} /$ NEt_{3} gave the target product 21. In the last reduction
step, significant amount (50%) of disulfide dimer was also obtained. Disulfide dimer was easily converted to the target compound 21 by treatment with mercaptoethanol in MeOH .

Weinberger and Wagenknecht ${ }^{28}$ used 1,3-dioxolane 22 derived from 4-bromobenzophenone to synthesize benzophenone C-nucleosides (Scheme 7). Treatment of compound 22 with magnesium gave the Grignard reagent, which reacted with the Hoffer's chlorosugar 9 to give product 23 as a mixture of α - and β-anomers. Anomers $\alpha-23$ and $\beta-23$ were separated by flash chromatography and deprotected.

Scheme 6

Reagents and conditions: $i . \mathrm{BuLi}$ (1 equiv.); ii. $\mathrm{Et}_{3} \mathrm{SiH}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$.

Scheme 7

Reagents and conditions: i. Mg, THF; ii. flash chromatography; iii. DMTCl (72\%).

It was found that the selectivity was shifted to $\alpha-23$. Due to the better synthetic accessibility, α-stereoisomer $\alpha-24$ was subjected to phosphorylation to prepare the target C-nucleoside phosphoramidite 25. The low yield of β-anomer $\beta-23$ on the $\mathrm{C}-\mathrm{C}$ coupling step is the significant disadvantage of this method because exactly this type of the bonding is characteristic of natural nucleosides. Phosphoramidite 25 was used to synthesize oligonucleotides.

Synthesis of pseudouridine analogs was described (Schemes 8 and 9). ${ }^{\mathbf{2 9}}$ It was found that the coupling of protected 5,5-bis(hydroxymethyl)-1-pyrroline

1-oxide 28 as a sugar mimic with organolithium species 27 generated by lithiation of bromo derivative 26 gave unwanted dimer 29. The target product 31 was obtained as a minor product using 2 equiv. of $\mathrm{Bu}^{\mathrm{t}} \mathrm{Li}$ (see Scheme 8). The authors rationalized the choice of $\mathrm{Bu}^{\mathrm{t}} \mathrm{Li}$ to mediate the $\mathrm{C}-\mathrm{C}$ bond forming reaction instead of commonly used $\mathrm{Bu}^{\mathrm{n}} \mathrm{Li}$ in terms of avoiding the addition reaction of $\mathrm{Bu}^{\mathrm{n}} \mathrm{Li}$ to keto nitrones since $\mathrm{Bu}^{\mathrm{t}} \mathrm{Li}$ did not undergo the addition under the reported conditions.

In turn, organomagnesium intermediate 32 generated by treatment of aryl bromide 26 with magnesium in THF in the presence of $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Br}_{2}$ reacted

Scheme 8

Reagents and conditions: i. 1) $\mathrm{Bu}^{\mathrm{t}} \mathrm{Li}(1.7 \mathrm{M}$ in pentane $)$, $\left.\mathrm{THF},-78^{\circ} \mathrm{C}, 30 \mathrm{~min}, 2\right) 27(27: \mathrm{Bu} \mathrm{Li}=1: 1.2$ or $1: 2) ; i i . \mathrm{THF},-78 \rightarrow 20^{\circ} \mathrm{C}$, $3 \mathrm{~h} ;$ iii. $\mathrm{Cu}(\mathrm{OAc})_{2}, \mathrm{NH}_{3}$ (aqueous), 1,4-dioxane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \sim 20^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

Scheme 9

Reagents and conditions: i. $\mathrm{Mg},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Br}_{2}$, THF, reflux, 3 h ; ii. 28, THF, $-10^{\circ} \mathrm{C}, 2 \mathrm{~h}$; iii. $\mathrm{Cu}(\mathrm{OAc})_{2}, \mathrm{NH}_{3}$ (aqueous), $1,4-$ dioxane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 24 \mathrm{~h}$; $i v . \mathrm{NaI}, \mathrm{AcOH}, 70^{\circ} \mathrm{C}, 30 \mathrm{~min} ; v . \mathrm{AcOH}, 80^{\circ} \mathrm{C}, 30 \mathrm{~min}$.

Scheme 10

PMB is 4- $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$; Fmoc is fluorenylmethoxycarbonyl
Reagents, conditions, and yields: i. BuLi (1 equiv.), THF, $-78{ }^{\circ} \mathrm{C}$; ii. $\mathrm{Et}_{3} \mathrm{SiH}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 26 \mathrm{~h}, 57 \%$; iiii. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, $\sim 20^{\circ} \mathrm{C}, 5 \mathrm{~h}, 85 \%$; iv. $\mathrm{BCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 7 \mathrm{~h}, 88 \%$; $v . \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 50^{\circ} \mathrm{C}, 18 \mathrm{~h} ; v i .1$) TMSCl, pyridine, $\sim 20^{\circ} \mathrm{C}, 2 \mathrm{~h} ; 2$) FmocCl , MeCN (anhydrous), $\sim 20^{\circ} \mathrm{C}, 4 \mathrm{~h} ; 3$) KF, $\mathrm{H}_{2} \mathrm{O}, \sim 20^{\circ} \mathrm{C}, 20 \mathrm{~min}$; vii. DMTCl, $20^{\circ} \mathrm{C}, 2 \mathrm{~h}, 78 \%$; viii. $\mathrm{NC}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OP}(\mathrm{Cl}) \mathrm{NPr}^{\mathrm{i}}{ }_{2}, \mathrm{NPr}{ }_{2}{ }^{\mathrm{i}} \mathrm{Et}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \sim 20^{\circ} \mathrm{C}, 2 \mathrm{~h}, 82 \%$.
with N -oxide 28 to afford compound $\mathbf{3 1}$ in 36% yield (see Scheme 9).

Thus, the $\mathrm{C}-\mathrm{C}$ coupling of compounds 26 and 28 via the organomagnesium intermediate 32 is more promising, however even under these conditions by-product 30 is formed in high yield. Deprotection of compound $\mathbf{3 1}$ resulted in pseudouridine analogs 33 and 34.

Brown and coworkers ${ }^{30}$ synthesized phosphoramidite 39 (Scheme 10). The key lactone intermediate 36 for the $\mathrm{C}-\mathrm{C}$ coupling was obtained from compound 35 in 7 steps. The yields in each of the steps were $72-99 \%$. The $\mathrm{C}-\mathrm{C}$ coupling of lactone 36 with bromopyridine 37 in the presence of BuLi produced hemiketal 38 in moderate yield (48%). The low yield of compound $\mathbf{3 8}$ was explained by the formation of side hydrolysis products. The Fmoc and DMT protective groups were chosen because their permit to incorporate phosphoramidite 39 into tri-plex-forming oligonucleotides (TFOs).

The $\mathrm{C}-\mathrm{C}$ bond forming reaction to synthesize nucleosides 41a-f was carried out by reacting the corresponding (het)aryllithium derivatives with ribonolactone 40 (Scheme 11). ${ }^{31}$ Deoxygenation of the product mixtures in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{Et}_{3} \mathrm{Si}$ gave the target $\mathrm{C}(1)$-arylated riboses 41a-f

Scheme 11

$\beta-41 \mathbf{a}-\mathbf{f}$ (66-94\%)

		$\alpha: \beta$ ratio	
Compo-	Ar	Method i	Method $i i$
unds 41		$20: 1$	$1:>20$
41a	Ph	$20: 1$	$1:>20$
41b	2- $\mathrm{FC}_{6} \mathrm{H}_{4}$	$20: 1$	$1: 10$
41c	3-thienyl	$20: 1$	$1: 17$
41d	6-methoxypyridin-3-yl	$>20: 1$	$1: 15$
41e	quinolin-3-yl	$>20: 1$	$1: 2$

TBS is $\mathrm{Bu}^{\mathrm{t}} \mathrm{Me}_{2} \mathrm{Si}$
Reagents and conditions: i. 1) ArLi , 2) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{SiH}$; ii. 1) ArLi , 2) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, Hantzsch ester.
as the α-anomers exclusively. It is of note that MacMillan and coworkers ${ }^{31}$ were the first to use the Hantzsch ester as the reductant to obtain the desired β-anomers of C-nucleosides 41a-f.

Pyridine, pyridazine, and pyrimidine C-nucleosides as Favipiravir analogs were synthesized by Wang et al. (Scheme 12). ${ }^{32}$ It is of note that C-nucleosides 44 and 51a,b were synthesized using LDA for gen-
erating the lithium intermediates. This allowed the protonated derivatives $\mathbf{4 3}$ and $\mathbf{5 0 a}, \mathbf{b}$ to react with the protected lactones. The reaction of lactone $\mathbf{4 2}$ with lithium intermediate derived from $\mathbf{4 3}$ gave product 44 as a mixture of anomers the ratio of which was not given. The reaction of pyridines $\mathbf{5 0 a}, \mathbf{b}$ with lactone 49 carried out under similar conditions gave rise to derivatives 52a-f. C-Nucleosides 48a,b

Scheme 12

TBDPS is $\mathrm{Bu}^{\mathrm{t}} \mathrm{Ph}_{2} \mathrm{Si}$
45: $R^{1}=H, R^{2}=H(\mathbf{a}), \mathrm{OMe}(\mathbf{b}), \mathrm{OH}(\mathbf{c}) ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{F}(\mathbf{d})$
48: $\mathrm{R}=\mathrm{F}(\mathrm{a}), \mathrm{OH}(\mathrm{b})$
50, 51: $\mathrm{R}=\mathrm{Cl}(\mathbf{a}), \mathrm{Br}(\mathbf{b})$
52: $\mathrm{R}=\mathrm{H}(\mathbf{a}), \mathrm{Cl}(\mathbf{c}), \operatorname{Br}(\mathbf{d}), \mathrm{Me}(\mathbf{b})$, vinyl (e), ethynyl (f)
Reagents and conditions: i. LDA (1 equiv.), THF, $-78^{\circ} \mathrm{C}$; ii. BuLi (1 equiv.), THF, $-78^{\circ} \mathrm{C}, 2 \mathrm{~h}$; iii. 3-fluoropicolinonitrile, LDA (1.01 equiv.), THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$; vi. lithium bis(trimethylsilyl)amide (LiHMDS), $\mathrm{Ac}_{2} \mathrm{O}$.
were synthesized from lactone $\mathbf{4 2}$ and bromopyridine 46 activated for the $\mathrm{C}-\mathrm{C}$ coupling by treatment with BuLi.

The inhibitory activity of 5^{\prime} - O-triphosphate derived from compound 45a against RdRp of hepatitis C virus (HCV), rhinovirus, and norovirus was evaluated. The half-maximal inhibitory concentrations (IC_{50}) of triphosphate of $\mathbf{4 5 a}$ against RdRp of HCV , rhinovirus, and norovirus equal respectively to 5.3, 4.0 , and $3.5 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ indicated that compound 45 a may have the potential to be a broad-spectrum antiviral agent if it can be phosphorylated in infected cells. The anti-influenza activity of the synthesized compounds was determined in Madin-Darby canine kidney (MDCK) epithelial cells infected with influenza strain H1N1. Compound 45a has activity and cytotoxicity comparable to Favipiravir (EC_{50} $1.9 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ for $\mathbf{4 5 a}$ and $2.7 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ for Favipiravir). Compound $45 c$ exhibits even better inhibitory activity $\left(\mathrm{EC}_{50}=1.3 \mu \mathrm{~mol} \mathrm{~L}{ }^{-1}\right)$ but its cytotoxicity is several times higher (half-maximal cytotoxic concentration $\mathrm{CC}_{50}=2.0 \mu \mathrm{~mol} \mathrm{~L}^{-1}$) than that of compound 45 a and Favipiravir $\left(\mathrm{CC}_{50}>400 \mu \mathrm{~mol} \mathrm{~L}^{-1}\right)$.

Maier et al. ${ }^{33}$ described diastereoselective synthesis of carbocyclic C-nucleosides based on lithium and magnesium salts derived from aglycons and cyclopentane 53 synthesized from norbornadiene in four steps (Scheme 13).

Metobo et al. ${ }^{34}$ developed a convenient synthetic procedure towards azoloazine C-nucleosides via direct $\mathrm{C}-\mathrm{C}$ coupling of different lactones and activated azolotriazines. C-Nucleosides modified at the $\mathrm{C}\left(1^{\prime}\right)$ atom of the carbohydrate unit are of special interest. Taking into account previously studied structurally related compounds with biological activity, Metobo et al. ${ }^{34}$ synthesized 1^{\prime}-substituted tubercidin C-nucleoside analogs (Scheme 14). ${ }^{34}$ Lactone 49 reacted with lithium derivative generated by treatment of bromopyrrolotriazine 57 with BuLi to give hemiacetal 58 as a $3: 1$ anomeric mixture in 38% yield (see Scheme 14 , method A). The yield of compound 58 was increased to 60% when N-protected derivative of 57 was used (see Scheme 14, method B).

The stereochemical outcome of the addition of hemiketal 58 to nucleophiles in the presence of different Lewis acids at different temperatures was

Scheme 13

TIPS is $\operatorname{Pr}^{\mathrm{i}}{ }_{3} \mathrm{Si}$

Compound	R	Yield (\%)		Compound	R	Yield (\%)	
$\mathbf{5 4 , 5 6}$		$\mathbf{5 4}$	$\mathbf{5 6}$	$\mathbf{5 4 , 5 6}$	$\mathbf{5 4}$	$\mathbf{5 6}$	
54a, 56a	Ph	55	92	$\mathbf{5 4 c}, \mathbf{5 6 b}$	Bu	38	92
54b	2,4-bis(benzyloxy)-	$\mathbf{4 5}$	-	$\mathbf{5 4 d}, \mathbf{5 6 c}$	Bn	79	93
	pyrimidin-5-yl			$\mathbf{5 4 e}, \mathbf{5 6 d}$	thiazol-4-yl	90	53

Reagents and conditions: $i .1$) PhLi (1.5 equiv.), THF, $0^{\circ} \mathrm{C}$ (for 54a); 2,4-bis(benzyloxy)-5-bromopyrimidine, BuLi (1 equiv.), THF, $-78^{\circ} \mathrm{C}$, 2) 53, $-78 \rightarrow 20^{\circ} \mathrm{C}$ (for $\mathbf{5 4 b}$); BuMgCl (1.5 equiv.), THF, $0 \rightarrow 20^{\circ} \mathrm{C}$ (for 54 c); BnMgCl (1.5 equiv.), THF, $0 \rightarrow 20^{\circ} \mathrm{C}$ (for 54d); 4-bromothiazole, $\mathrm{Pr}^{\mathrm{i}} \mathrm{MgCl} \cdot \mathrm{LiCl}\left(1.07\right.$ equiv.) (for 54e); ii. $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}, 80^{\circ} \mathrm{C}$; iii. TBAF, THF, $\sim 20^{\circ} \mathrm{C}$; iv. 1) TBAF, THF, $\left.\sim 20^{\circ} \mathrm{C}, 2\right) \mathrm{H}_{2}(50$ bar $), \operatorname{Pd}(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{THF}, 70^{\circ} \mathrm{C}$.

Scheme 14

59: $\mathrm{R}=\mathrm{CN}(\mathbf{a}), \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}(\mathbf{b}), \mathrm{Me}(\mathbf{c}), \mathrm{H}(\mathbf{d})$
Reagents and conditions: i. Method \boldsymbol{A} : 1) $\mathbf{5 7}$, $\operatorname{BuLi}\left(3.3\right.$ equiv.), THF, $\left.-78^{\circ} \mathrm{C} ; 2\right) \mathbf{4 9}, 3 \mathrm{~h}$; Method $\left.\boldsymbol{B}: 1\right) \mathbf{5 7}$, $\left(\mathrm{ClSiMe}_{2} \mathrm{CH}_{2}\right)_{2}$ (1.2 equiv.), NaH (2.2 equiv., 60% suspension in mineral oil), BuLi (3.3 equiv.), THF, $-78^{\circ} \mathrm{C}, 2$) 49, 1 h .

Table 1. Stereoselectivity of the synthesis of compounds 59

Compound	Nucleophile	Lewis acid	$T /{ }^{\circ} \mathrm{C}$	t / h	Yield of $\mathbf{5 9}(\%)$	$\alpha: \beta$
59a	TMSCN	TMSOTf^{2}	0	2	76	$43: 57$
59a	TMSCN	TMSOTf^{2}	-78	3	65	$15: 85$
59a	TMSCN	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$	-78	3	58	$11: 89$
59b	AllylTMS	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$	-78	2	55	$13: 87$
59b	AllylTMS	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$	0	2	75	$26: 74$
59c	AlMe_{3}	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$	0	3	45	$50: 50$
59d	$\mathrm{Et}_{3} \mathrm{Si}^{5}$	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$	0	1	82	$5: 95$

studied (Table 1). It was found that the reaction temperature was the key parameter in the synthesis of nitrile 59a. Thus, at $0^{\circ} \mathrm{C}$, the reaction proceeded with good yield but non-stereoselectively. Lowering the reaction temperature to $-78^{\circ} \mathrm{C}$ and replacement of TMSOTf with $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ increased the reaction selectivity though decreased the yield of product 59a. Lowering the reaction temperature also improved stereoselectivity of the formation of allyl derivative 59b. In contrast, this approach was unsuccessful in the case of compound $\mathbf{5 9}$ c. The reaction at $0^{\circ} \mathrm{C}$ afforded the $1: 1$ anomeric mixture of $\mathbf{5 9} \mathbf{c}$ and at $-78{ }^{\circ} \mathrm{C}$ the conversion was less than 5%. High β-stereoselectivity was achieved only when $\mathrm{Et}_{3} \mathrm{SiH}$ in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ was used for the anomeric reduction of hemiketal 58.

Removal of benzyl protective groups in compound 59d using BCl_{3} at $-78^{\circ} \mathrm{C}$ gave C-nucleoside in 78% yield.

Cho and coworkers ${ }^{35}$ synthesized 1^{\prime}-vinyl and 1^{\prime} 'ethynyl derivatives 59e,f. From compounds 59e,f, phosphorylated prodrugs 6162 were prepared for biological evaluation (Scheme 15). The yields of compounds 60-62 are not given. ${ }^{35}$

Nucleosides 60a,c,e,f were tested against several RNA viruses. The highest activity against HCV, yellow fever, Dengue virus type 2, parainfluenza virus type 3, and coronavirus SARS-CoV was demonstrated by compound $\mathbf{6 0 a}$ with $\mathrm{EC}_{50}=4.1,11,9.46$, 1.71, and $2.24 \mu \mathrm{~mol} \mathrm{~L}^{-1}$, respectively. Prodrug 62a exhibited the most potent inhibitory activity against RdRp of hepatitis C virus with the half-maximal effective concentration (EC_{50}) and IC_{50} values of 0.085 and $5.6 \mu \mathrm{~mol} \mathrm{~L}{ }^{-1}$, respectively.

Cho and coworkers ${ }^{\mathbf{3 6}}$ synthesized $2^{\prime}-C$-methyl-C-nucleoside analogs of adenosine $65 a, b, 68$, uridine 69, and cytidine 70 (Scheme 16). It is of note that the $\mathrm{C}-\mathrm{C}$ coupling of ribonolactone $\mathbf{1}$ and bromo aglycons 57 and $\mathbf{6 3}$ in the presence of 3.3 equiv. of BuLi afforded compounds 64a,b in the yields of 56 and 60%, respectively. The reaction with bis(methylthio) derivative $\mathbf{6 6}$ and equimolar amount of BuLi gave product 67 in 85% yield. It was found that coupling of lactone $\mathbf{1}$ with 5 -bromo-2,4-di-tertbutoxypyrimidine proceeded with the ribose ring opening that required two additional steps to synthesize compound 69.

Scheme 15

59: $\mathrm{R}=\mathrm{CH}=\mathrm{CH}_{2}(\mathbf{e}), \mathrm{C}=\mathrm{CH}$ (f)
60-62: $\mathrm{R}=\mathrm{CN}$ (a), $\mathrm{Me}(\mathbf{c}), \mathrm{CH}=\mathrm{CH}_{2}(\mathbf{e}), \mathrm{C}=\mathrm{CH}(\mathbf{f})$
Reagents and conditions: i. $\mathrm{CH}_{2}=\mathrm{CHMgBr}$ (6 equiv.) (for 59e) or $\mathrm{HC} \equiv \mathrm{CMgCl}$ (6 equiv.) (for 59f), THF, $0 \rightarrow 20^{\circ} \mathrm{C}, 2 \mathrm{~h}, 2$) MsOH (cat.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \sim 20^{\circ} \mathrm{C}, 3 \mathrm{~h}$; ii. BCl_{3} or BBr_{3} (4-8 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$.

Of the synthesized C-nucleosides, only adenosine analogs 65a,b showed activity against subgenomic GT1b HCV replicon with the $\mathrm{EC}_{50} 20$-fold higher than those of the corresponding N-nucleosides. The most potent activity was demonstrated by compounds 65 a and $68\left(\mathrm{IC}_{50}=0.31\right.$ and $0.19 \mu \mathrm{~mol} \mathrm{~L}{ }^{-1}$ vs $\mathrm{IC}_{50}=0.30$ and $0.25 \mu \mathrm{~mol} \mathrm{~L}{ }^{-1}$ for the corresponding N-nucleosides).

Reaction of lactone 1 and bromo heterocycle 57 in the presence of 3.3 equiv. of BuLi and 1 equiv. of $\left(\mathrm{ClSiMe}_{2} \mathrm{CH}_{2}\right)_{2}$ produced 1'-cyano-2'-C-methyl 4-aza-7,9-dideazaadenosine 71 (Scheme 17). ${ }^{37}$ Compound 71 efficiently inhibited replication of hepatitis C virus $\left(\mathrm{IC}_{50}=0.29 \mu \mathrm{~mol} \mathrm{~L}^{-1}\right)$. A phosphor-amidate-type monophosphate prodrug derived
from compound 71 was found to exhibit respectable replicon activity against GT1b $\mathrm{HCV}\left(\mathrm{EC}_{50}=\right.$ $=1.05 \mu \mathrm{~mol} \mathrm{~L}{ }^{-1}$).

Kirschberg and coworkers ${ }^{\mathbf{3 8}}$ synthesized 2^{\prime}-fluoro-2'-C-methyl C-nucleoside 74 inhibiting HCV polymerase (Scheme 18). The IC_{50} value of 5^{\prime} - O -triphosphate derived from compound 74 against nonstructural protein 5B (NS5B, RNA polymerase) found in the wild-type genotype 1 b (GT1b) replicon of the hepatitis C virus was equal to $0.42 \mu \mathrm{~mol}^{-1}$.

At present, several methods to construct the nucleoside core of remdesivir are known. These methods gave the products of the $\mathrm{C}-\mathrm{C}$ coupling of aglycon with riboside in the yields ranging from 25 to $69 \% .^{\mathbf{2 0}, \mathbf{3 4}, 35,39-42}$

Scheme 16

$X=C H(57,64 a, 65 a), N(63,64 b, 65 b)$
Reagents and conditions: $i .1) \mathbf{5 7}$ or $\mathbf{6 3}$, $\left(\mathrm{ClSiMe}_{2} \mathrm{CH}_{2}\right)_{2}\left(1.2\right.$ equiv.), 2) $\mathrm{BuLi}\left(3.3\right.$ equiv.), THF, $\left.-78{ }^{\circ} \mathrm{C}, 3\right) \mathbf{1}, 1 \mathrm{~h}$; ii. 1) $\mathbf{6 6}$, BuLi , (1.0 equiv.), THF, $-78{ }^{\circ} \mathrm{C}, 2$) $\mathbf{1}, 1 \mathrm{~h}$; iii. 1) 5 -bromo-2,4-di-tert-butoxypyrimidine, BuLi (1.0 equiv.), THF, $-78{ }^{\circ} \mathrm{C}, 2$) $\mathbf{1}, 1 \mathrm{~h}$; 3) NaBH_{4} (4 equiv.), $\mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; iv. $\mathrm{HCl}-\mathrm{EtOH}\left(1: 10 \mathrm{v} / \mathrm{v}\right.$), $\sim 20^{\circ} \mathrm{C}, 2 \mathrm{~h} ; v . \mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, 54 \%$; vi. $\mathrm{Ph}_{3} \mathrm{PCHCO}_{2} \mathrm{Et}$ (1.5-2.5 equiv.), MeCN, microwave irradiation, $180^{\circ} \mathrm{C}, 1 \mathrm{~h}$; vii. Bredereck's reagent $\mathrm{Me}_{3} \mathrm{COCH}\left(\mathrm{NMe}_{2}\right)_{2}$ (1.5 equiv.), toluene, $120^{\circ} \mathrm{C}, 6 \mathrm{~h}$; viii. guanidine (10 equiv.), $\mathrm{MeOH}, \sim 20^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

Xue at al. ${ }^{43}$ suggested to add secondary amines in the reaction mixture to stabilize the lithium aglycon intermediate and improve the yield of the target product 58 (Scheme 19). Additives of sterically hindered secondary amines (Table 2, entries 4-7) were beneficial for improving the yield of the target product 58 up to 74%. When the reaction was carried out
in the presence of tertiary diisopropylethylamine, the yield of product $\mathbf{5 8}$ decreased to 49%. The effect of the solvent : reactant ratio on the yield of the target product was also evaluated. It was found that the optimal concentration of the reactants is $0.2 \mathrm{~mol} \mathrm{~L}^{-1}$.

Convergent synthesis of imidazo[2,1-f][1,2,4]-triazin-4-amine C-nucleoside by the direct $\mathrm{C}-\mathrm{C}$

Scheme 17

Reagents, conditions, and yields: i. $\left(\mathrm{ClSiMe}_{2} \mathrm{CH}_{2}\right)_{2}$ (1 equiv.), BuLi (3.3 equiv.), THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$; ii. TMSCN (6 equiv.), TMSOTf (4 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-15 \rightarrow 0{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 93 \%$; iii. BCl_{3} (3 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$.

Scheme 18

73: $\mathrm{X}=\mathrm{CH}(\mathbf{a}), \mathrm{N}(\mathbf{b})$
Reagents, conditions, and yields: i. 1) 57 or $\mathbf{6 3}$ (1 equiv.), ($\left.\mathrm{ClSiMe}_{2} \mathrm{CH}_{2}\right)_{2}$ (1.02 equiv.), THF, $-78{ }^{\circ} \mathrm{C}, 1.6 \mathrm{M} \mathrm{BuLi}$ (1.1 equiv.), 2) 72; ii. TMSCN, $\operatorname{In}(\mathrm{OTf})_{3}$, dichloroethane, $58 \%(\beta: \alpha=\sim 95: 5)$; iii. concentrated aqueous $\mathrm{NH}_{3}, \mathrm{MeOH}, 60 \%$.

Scheme 19

Reagents and conditions: $i .\left(\mathrm{ClSiMe}_{2} \mathrm{CH}_{2}\right)_{2}$; ii. 1) $\mathrm{R}_{2} \mathrm{NH}$, BuLi , THF, $\left.-78^{\circ} \mathrm{C}, 2 \mathrm{~h}, 2\right) 49$.
coupling of bromo heterocycle 75 and ribonolactone 77 in the presence of BuLi was described (Scheme 20) ${ }^{44}$.

Guanosine derivatives $\mathbf{6 8}$ and $\mathbf{8 0}$ were synthesized similarly (Scheme 21). ${ }^{44}$

Draffan and coworkers ${ }^{44}$ noted that the $\mathrm{C}-\mathrm{C}$ coupling of ribonolactone 77 with less stable lithium
intermediate generated from bromides 79 should be carried out at lower temperature $\left(-100{ }^{\circ} \mathrm{C}\right.$; see Scheme 22) than the reaction with more stable anion of compound $76\left(-78^{\circ} \mathrm{C}\right.$; see Scheme 20). An alternative approach to C-nucleoside $\mathbf{8 0}$ is shown in Scheme 22.

Liu at al. ${ }^{45}$ described an efficient synthesis of $\alpha-$ and β - C-nucleosides with high anomeric selectivity

Table 2. Effect of the amine additives on the yield of compounds 58

Entry	Amine	Yield of $\mathbf{5 8}$ (\%)
1	Diethylamine	41
2	Dipropylamine	45
3	Dibutylamine	54
4	Diisopropylamine	74
5	Diisobutylamine	71
6	Dicyclohexylamine	70
7	2,2,6,6-Tetramethylpiperidine	74
8	Diisopropylethylamine	49

Scheme 20

DCB is $2,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{2}$
Reagents and conditions: i NBS, DMF, $86^{\circ} \mathrm{C}, 1 \mathrm{~h}$; $i i$. 1) $\mathrm{BuLi}\left(2\right.$ equiv.), $\left.-78^{\circ} \mathrm{C}, \mathrm{THF}, 2\right) 77,-78^{\circ} \mathrm{C}$; iii. NH_{3} in MeOH, $20^{\circ} \mathrm{C} \rightarrow$ reflux; iv. $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{Et}_{2} \mathrm{SiH}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \rightarrow 20^{\circ} \mathrm{C}, 3 \mathrm{~h} ; v . \mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, 60^{\circ} \mathrm{C}, 18 \mathrm{~h}, \mathrm{NaOAc}, \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(9: 1), \mathrm{AcOH}$.

Scheme 21

$X=\mathrm{CH}(78 \mathrm{a}, 79 \mathrm{a}, 80), \mathrm{N}(68,78 \mathrm{~b}, 79 \mathrm{~b})$
Reagents and conditions: $i . \mathrm{Et}_{3} \mathrm{~N}$, DMAP, $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{MeCN}, \sim 2{ }^{\circ} \mathrm{C}, 46 \mathrm{~h}$; ii. NBS, dichloroethane, $-10 \rightarrow 0{ }^{\circ} \mathrm{C}$, 1 h ; iii. 1) BuLi (1.1 equiv.), THF, $-100^{\circ} \mathrm{C}, 79 \mathrm{a}$ or 79b, 2) 77; iv. $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{Et}_{3} \mathrm{SiH}, \mathrm{MeCN},-78 \rightarrow 20^{\circ} \mathrm{C}, 3 \mathrm{~h} ; v . \mathrm{H}_{2}\left(4.3\right.$ bar), $10 \% \mathrm{Pd} / \mathrm{C}, 60^{\circ} \mathrm{C}$, $18 \mathrm{~h}, \mathrm{NH}_{4} \mathrm{OAc}, \mathrm{MeOH}-\operatorname{EtOAc}(13: 2)$ (for 80) or $\mathrm{BBr}_{3},-78 \rightarrow-30^{\circ} \mathrm{C}$ (for 68).

Scheme 22

Reagents and conditions: i. 1) $\mathrm{BuLi}\left(2\right.$ equiv.), $-100^{\circ} \mathrm{C}$, 2-methyltetrahydrofuran, 2) $\mathbf{1}$, $-100{ }^{\circ} \mathrm{C}$. ii. $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{SiH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-78^{\circ} \mathrm{C}, 15 \mathrm{~min}$; iii. $\mathrm{MeC}(\mathrm{O}) \mathrm{NH}_{2}, \mathrm{Pd}_{2}(\mathrm{dba})_{2}$, XantPHOS, $\mathrm{Cs}_{2} \mathrm{CO}_{3}, 130^{\circ} \mathrm{C}, 1 \mathrm{~h} ; i v . \mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 20 \rightarrow 50^{\circ} \mathrm{C}, 70 \mathrm{~h}$; v. NaOMe, $20 \rightarrow 80^{\circ} \mathrm{C}$.

Scheme 23

PG is 2-naphthylmethyl (Nap)
82-84: $\mathrm{R}=\mathrm{Me}(\mathbf{a}), \mathrm{H}(\mathbf{b})$
Reagents, conditions, and yields: i. 1) 81, LDA, THF, $-30^{\circ} \mathrm{C}, 50 \mathrm{~min}$, 2) $\left.\mathrm{BuLi},-78^{\circ} \mathrm{C}, 5 \mathrm{~min}, 3\right) \mathbf{8 2},-78^{\circ} \mathrm{C}, 2 \mathrm{~h}$; ii for $\mathbf{8 3 a} . \mathrm{Et}_{3} \mathrm{SiH}$, $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{MeCN},-40^{\circ} \mathrm{C}, 2 \mathrm{~h}, 51 \%$; iii. $\mathrm{Et}_{3} \mathrm{SiH}, \mathrm{TMSOTf}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-7{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, \mathbf{8 4 a}-75 \%, \mathbf{8 4 b}-82 \%$.
from $N(6)$-Boc-protected purine analogs (Scheme 23). Lithiation of compound $\mathbf{8 1}$ and subsequent nucleophilic addition of the protected lactones $\mathbf{8 2}$ to lithium intermediates were studied under different conditions. The high yields of the target C-nucleosides 84 were achieved only using $5^{\prime}-O$-Nap-protected ribonolactone 82, LDA for generation of the lithium intermediate from bromide 81, and the $\mathrm{Et}_{3} \mathrm{SiH} /$ TMSOTf system for the reduction of hemiketal 83. When other protective groups ($\mathrm{PG}=\mathrm{TBS}$, TBDPS) and other reagents for activation of bromide $\mathbf{8 1}$ ($\mathrm{NaH}, \mathrm{BuLi}, \mathrm{LiHMDS}$) were used, these transformations were unsuccessful. High α-selectivity was confirmed by the ROESY analysis.

The optimized conditions were applied to the reaction of bromo heterocycle $\mathbf{8 5}$ with lactones $\mathbf{8 2 a}, \mathrm{b}$
(Scheme 24). This reaction smoothly gave intermediates $\mathbf{8 6 a}, \mathrm{b}$; however, reduction of hemiketals $\mathbf{8 6}$ was not as good as the reduction of 83 , and the target products $87 \mathbf{a}, \mathbf{b}$ were obtained in moderate yields of 54 and 55%, respectively. It should be noted that the N-Boc-protective group was unstable under conditions used for hemiketal reduction.

Reaction of O (5)-benzyl-protected lactones 88a,b with bromo heterocycle $\mathbf{8 1}$ carried out under similar conditions gave hemiketals 89a,b (Scheme 25). ${ }^{\mathbf{4 5}}$ Reduction of hemiketals 89a,b with $\mathrm{Et}_{3} \mathrm{SiH}$ in the presence of either $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ at $-10^{\circ} \mathrm{C}$ (see Scheme 25, conditions iii) or TMSOTf at $-78^{\circ} \mathrm{C}$ (conditions ii) resulted in the target α-anomers $90 a, b$ in good yields. Treatment of hemiketals $\mathbf{8 9} \mathbf{a}, \mathbf{b}$ with $\mathrm{Et}_{3} \mathrm{SiH} / \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ at elevated temperatures (conditions $i v$) enabled not

Scheme 24

86, 87: $R=\operatorname{Me}(\mathbf{a}), \mathrm{H}(\mathbf{b})$
Reagents and conditions: i.1) 85, LDA (1.3 equiv.), THF, $\left.-30^{\circ} \mathrm{C}, 2\right) \mathbf{8 2}$, $\mathrm{BuLi}\left(2.5\right.$ equiv.), $-78^{\circ} \mathrm{C}$; ii. $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{SiH}, \mathrm{MeCN}$, $-40 \rightarrow 20^{\circ} \mathrm{C}$.

Scheme 25

88-91: R = Me (a), $\mathrm{H}(\mathbf{b})$
Reagents, conditions, and yields: i. 1) $\mathbf{8 1}$, LDA (1.3 equiv.), THF, $\left.-30^{\circ} \mathrm{C}, 2\right) \mathbf{8 8}, \mathrm{BuLi}$ (2.5 equiv.), $-78{ }^{\circ} \mathrm{C}$; ii. TMSOTf, $\mathrm{Et}_{3} \mathrm{SiH}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-7{ }^{\circ} \mathrm{C}$; iii. $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{SiH}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-10^{\circ} \mathrm{C}$; iv. $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{SiH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0 \rightarrow 20^{\circ} \mathrm{C}$.
only the reduction of hemiketal but also the removal of the Boc-protective group to afford products 91a,b. ${ }^{45}$

Possibility to synthesize β - C-nucleosides under the above-described conditions was exemplified by the reaction of per- O-benzylated lactones 1 and 49 with bromo heterocycle 81 (Scheme 26). ${ }^{45}$ It was found that those reactions proceeded with high
β-stereoselectivity and gave either N-Boc-protected (93) or deprotected (59) β - C-nucleosides depending of the conditions used for the reduction of the intermediate hemiketals 92 .

De Jonghe and coworkers ${ }^{46}$ described the synthesis of pyrrolo[2,1-f][1,2,4]triazine C-nucleosides. The authors initially attempted the direct $\mathrm{C}-\mathrm{C}$ coupling of 9-bromo-4-aza-7,9-dicarbaadenine 57

Scheme 26

$R=\operatorname{Me}(92 a, 93 a, \beta-59 c), H(92 b, 93 b, \beta-59 d)$
Reagents, conditions, and yields: $i .1$) $\mathbf{1}$ or $\mathbf{4 9}$, LDA (1.3 equiv.), THF, $-30^{\circ} \mathrm{C}$, 2) BuLi (2.5 equiv.), $-78^{\circ} \mathrm{C}, 3$) $\mathbf{8 1},-78^{\circ} \mathrm{C}$; $\mathbf{i i}$ for $\mathbf{9 3 a}$. $\mathrm{Et}_{3} \mathrm{SiH}$, TMSOTf, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 80 \%$; iii. $\mathrm{Et}_{3} \mathrm{SiH}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-10^{\circ} \mathrm{C}, \mathbf{9 3 a}-81 \%, \mathbf{9 3 b}-87 \%$; iv. $\mathrm{Et}_{3} \mathrm{SiH}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0 \rightarrow 20^{\circ} \mathrm{C}$.

Scheme 27

98: $\mathrm{Hal}=\mathrm{Cl}(\mathbf{a}), \mathrm{Br}(\mathbf{b}), \mathrm{I}(\mathbf{c})$
Reagents and conditions: i. LDA (1.5 equiv.), THF, $-7{ }^{\circ} \mathrm{C}$; ii. $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{SiH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$; iii. 7 M NH 3 , $\mathrm{MeOH}, 100{ }^{\circ} \mathrm{C}$; $i v . \mathrm{H}_{2}, \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{AcOH}, \sim 20^{\circ} \mathrm{C}$; $v . N$-halogenosuccinimide (NHalS), DMF, $0^{\circ} \mathrm{C}$.
and per-benzylated ribonolactone 49 (see Scheme 14, $\operatorname{method} \boldsymbol{A})$. This reaction gave the anomeric mixture in a very low yield. The authors suggested that the low yield of the target product was due to the presence of the unprotected exocyclic amino group in 57 and decided to switch to an alternative nucleobase, 4-(methylthio)pyrrolo[2,1-f][1,2,4]triazine 94, rather than to protect the exocyclic amino group (Scheme 27). Hemiketal 95 synthesized by the $\mathrm{C}-\mathrm{C}$ bond forming reaction between aglycon and ribonolactone was subjected to anomeric reduction to prepare exclusively β-anomer 96 . Before the removal of the benzyl protective groups, the methylthio group was replaced with the NH_{2} group. Halogenation of C-nucleoside 97 with N-halosuccinimides gave chloro, bromo, and iodo derivatives $\mathbf{9 8 a}-\mathbf{c}$. The iodine atom in compound 98 c was replaced with the CN group by the $\mathrm{Pd}\left(\mathrm{PBu}_{3}^{\mathrm{t}}\right)_{2}$-catalyzed cross-coupling reaction with zinc cyanide.

Compound 97 showed high in vitro cytotoxicity against human hematological and solid cancer cell lines. The exact molecular target of these compounds is currently unknown.

Underexplored xylo- C-nucleosides (3^{\prime}-epimers of ribonucleosides) were studied by Herdewijn and coworkers. ${ }^{47}$ The $\mathrm{C}-\mathrm{C}$ coupling of compounds $\mathbf{9 4}$ and $\mathbf{9 9}$ gave a mixture of epimers $\mathbf{1 0 0}$ in 60% yield
(Scheme 28). The stereoisomeric ratio was given only for a product of the reduction of 1^{\prime}-hydroxy group in $\mathbf{1 0 0}(\alpha: \beta=2: 3)$. The removal of the benzyl protective groups by the $\mathrm{Pd}(\mathrm{OH})_{2}$-catalyzed hydrogenolysis in acetic acid gave rase to a mixture of xylo- C-nucleoside 101 and a ring opening product 102. The yield of target xylo- C-nucleoside β - $\mathbf{1 0 1}$ increased to 62% when compound $\mathbf{1 0 0}$ was deprotected with $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$ in refluxing EtOH. These conditions also gave α-anomer $\alpha-101$ in 18% yield. Introduction of the CN group into the position 1' of compound $\mathbf{1 0 0}$ and subsequent deprotection proceeded with good yields on each step to give products 103 (see Scheme 28).

Activity of compounds $\mathbf{1 0 1}$ and $\mathbf{1 0 3}$ against a panel of tumor cell lines was studied. Compound $\mathbf{1 0 1}$ was found to possess a micromolar antiproliferative activity against the human leukemia HL-60 and lung cancer NCI-H460 cells. In contrast, no significant cytotoxicity was observed for compound $\beta \mathbf{- 1 0 3}$.

Herdewijn and coworkers ${ }^{48}$ synthesized threosyl C-nucleosides (Scheme 29). The C-C coupling of ribonolactone $\mathbf{1 0 4}$ with 4-(methylthio)pyrrolo[2,1-f][1,2,4]triazine (94) as an aglycon activated with LDA gave hemiketal 105 as a mixture of anomers in 70% yield. Reduction of the hydroxy group, replacement of the SMe group with the amino group, and depro-

Scheme 28

Reagents, conditions, and yields: i. LDA, THF, $-78^{\circ} \mathrm{C}, 3 \mathrm{~h}$; ii. $\mathrm{Et}_{3} \mathrm{SiH}^{2}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 85 \%$; iii. $\mathrm{NH}_{3}, \mathrm{MeOH}, 100{ }^{\circ} \mathrm{C}$, $12 \mathrm{~h}, 85 \%$; iv. $\mathrm{H}_{2}, \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{AcOH}, \sim 20^{\circ} \mathrm{C}, 48 \mathrm{~h} ; v$. TMSOTf, TMSCN, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 2.5 \mathrm{~h} ; v i . \mathrm{NH}_{3} / \mathrm{MeOH}, 100{ }^{\circ} \mathrm{C}, \sim 18 \mathrm{~h}$, 86%; vii. $\mathrm{BCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0 \rightarrow 20^{\circ} \mathrm{C}, 2.5 \mathrm{~h}$.
tection of the benzyl groups afforded compound $\mathbf{1 0 6}$ as a mixture of α - and β-anomers in 72% yield. Anomers $\alpha-106$ and $\beta-106$ were separated by column chromatography. The synthesized C-nucleosides were phosphorylated at the 3^{\prime}-position with the yields of about 70% at each step.

Immucillins are an important group of C-nucleosides showing antitumor and antimalarial activity. The most important immucilins are compounds 110 (BCX-1777) and 111 (BCX-4430). Synthesis of compounds 109 and 110 via the multi-step construc-
tion of the aglycon on the pre-formed sugar unit was described by Herdewijn and coworkers. ${ }^{4}$

Zhang et al. ${ }^{50}$ developed improved procedure to synthesize compounds $\mathbf{1 1 0}$ and $\mathbf{1 1 1}$ via the $\mathrm{C}-\mathrm{C}$ bond forming reaction between aglycon 107 and N -oxide 108, a synthetic equivalent of ribonolactone, under basic conditions (Scheme 30). No yield of compound 109 was given because it was subjected to reduction without purification. Due to low stability, the obtained intermediate was immediately treated with $\mathrm{Boc}_{2} \mathrm{O}$ under basic conditions. The major isomer

Scheme 29

Reagents, conditions, and yields: \boldsymbol{i}. LDA (1.07 equiv.), THF, $-78{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$; ii. $\mathrm{Et}_{3} \mathrm{SiH}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 40 \mathrm{~min}, 94 \%$; iii. $\mathrm{NH}_{3}, \mathrm{MeOH}, 100^{\circ} \mathrm{C}, 12 \mathrm{~h}, 92 \%$; iv. cyclohexene, $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$, EtOH , reflux, $\sim 18 \mathrm{~h}$.

Scheme 30

Reagents, conditions, and yields: i. 1) $\mathbf{1 0 7}$, BuLi (2.16 equiv.), $\mathrm{MeOBu}^{\mathrm{t}},-20^{\circ} \mathrm{C} ; 2$) $\mathbf{1 0 8},-20^{\circ} \mathrm{C}$; ii. Zn , $\mathrm{MeOH}-\mathrm{AcOH}(1: 5)$, reflux; iii. $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{NaOH}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}(2: 1), \sim 20^{\circ} \mathrm{C}, 38 \%$ (over 3 steps); $i v . \mathrm{HCl}$ (conc.), reflux.
of N -Boc-derivative was isolated by column chromatography. Subsequent deprotection afforded compound $\mathbf{1 1 0}(70 \%)$ after recrystallization. Compound 110 (BCX-1777) was transformed to derivative 111 (BCX-4430) by the following reaction sequence that involved protection of the functional groups, replacement of the carbonyl group with the chlorine atom, the CuBr -catalyzed Ullmann-type amination, and deprotection. Since this reaction sequence involved
less steps than the procedure described by Herdewijn and coworkers ${ }^{49}$ and only $2-3$ chromatographic steps for purification, this approach is very attractive for the large-scale synthesis.
C-Nucleoside 114 (Scheme 31) bearing $1^{\prime}, 2^{\prime}-\beta-$ lactam moiety was designed as the hybrid scaffold of MK-608 and GS-6620. ${ }^{51}$ Compound $\mathbf{1 1 4}$ is a potential hepatitis C virus NS5B polymerase inhibitor. The role of aglycon was played by compound $\mathbf{9 4}$, which

Scheme 31

TBS is $\mathrm{Bu}^{\mathrm{t}} \mathrm{Me}_{2} \mathrm{Si}$
Reagents and conditions: i. LDA (1.1 equiv.), THF, $-78 \rightarrow-20^{\circ} \mathrm{C}, 40 \mathrm{~min}$.

Scheme 32

Reagents and conditions: i. LDA (1.1 equiv.), THF, $-78 \rightarrow-20^{\circ} \mathrm{C}, 40 \mathrm{~min}$.
was lithiated using LDA and subjected to the coupling with ribonolactone 112a to give hemiketal 113 in 82% yield (see Scheme 31).

Dang and coworkers ${ }^{52}$ used lactone $\mathbf{1 1 2 b}$ as the starting material to synthesize $1^{\prime}, 2^{\prime}$-cyclopentafused C-ribonucleosides (Scheme 32). The charac-

Scheme 33

Table 3. Conditions and outcome of the $C-C$-coupling of lactones $\mathbf{1 , 4 9}, \mathbf{7 2}$, and 112a,b with aglycons 57, 63, 75, and 94

Aglycon	Lactone	Reaction conditions	Yield of C-nucleoside (\%)	Ref.
57	1	1) $\left.\left(\mathrm{ClSiMe}_{2} \mathrm{CH}_{2}\right)_{2}, 2\right) \mathrm{BuLi},-78{ }^{\circ} \mathrm{C}$	64a (60)	36
57	49	1) $\left.\left(\mathrm{ClSiMe}_{2} \mathrm{CH}_{2}\right)_{2}, 2\right) \mathrm{NaH}, \mathrm{BuLi},-78{ }^{\circ} \mathrm{C}$	58 (60)	35
57	72	1) $\left(\mathrm{ClSiMe}_{2} \mathrm{CH}_{2}\right)_{2}$, 2) $\mathrm{BuLi},-78^{\circ} \mathrm{C}$	73a (40)	38
63	1	1) $\left(\mathrm{ClSiMe}_{2} \mathrm{CH}_{2}\right)_{2}$, 2) $\mathrm{BuLi},-78^{\circ} \mathrm{C}$	64b (56)	36
63	72	1) $\left(\mathrm{ClSiMe}_{2} \mathrm{CH}_{2}\right)_{2}$, 2) $\mathrm{BuLi},-78^{\circ} \mathrm{C}$	73b (59)	38
75	112a	LDA, THF, $-78{ }^{\circ} \mathrm{C}$	(59)	51
75	112b	LDA, THF, $-20^{\circ} \mathrm{C}$	115 (47)	52
94	1	LDA, THF, $-78^{\circ} \mathrm{C}$	(32)	53
94	49	LDA, THF, $-78^{\circ} \mathrm{C}$,	95 (60)	53
94	112a	LDA, THF, $-20^{\circ} \mathrm{C}$	113 (82)	51

teristic feature of this synthesis is protection of the hydroxy groups as TBS ether instead of more common benzyl protection.

We compared the yields of the target products of the $\mathrm{C}-\mathrm{C}$ coupling achieved in the reactions of different azoloazine aglycons and functionalized ribonolactones (Scheme 33, Table 3).

For aglycon 57, the highest yield of the target C-nucleosides 58 and $\mathbf{6 4 a}$ was achieved in its reaction with lactones 49 and $\mathbf{1}$; in contrast, in the reaction of aglycon 57 with lactone $\mathbf{7 2}$ the yield of C-nucleoside 73a was 40%. In the reactions with aglycon 63, the best results were demonstrated by lactones $\mathbf{1}$ and $\mathbf{7 2}$. The yields of C-nucleosides $\mathbf{6 4 b}$ and 73b in these reactions reached $\sim 60 \%$. In the reactions with aglycon 94, the yields of the target products depended on the nature of the substituents at the position 2' of lactone. Thus, the reaction of aglycon 94 with 2'-azido-2'-methyl-substituted lactone 112a gave C-nucleoside 113 in 82% yield, whereas for 2^{\prime}-benz-yloxy-2'-methyl derivative 1 the yield dropped to 32%. In the case of aglycon 75, the best results were obtained with 2^{\prime}-azido- 2^{\prime}-methyl-substituted lactone 112a. The replacement of the azide group with nitrile one (compound 112b) decreased the yield of the target product $\mathbf{1 1 5}$ to 47%. In all cases, the C-C coupling products were synthesized as the mixtures of anomers, the ratios of which were not given.

Thus, the direct $\mathrm{C}-\mathrm{C}$ coupling of aglycon and (pseudo)ribonolactone in the presence of organometallic reagents or relatively strong bases is the
reasonably common strategy to access C-nucleosides. Typical reaction conditions are as follows: THF, BuLi ($1-3.5$ equiv.), $-78^{\circ} \mathrm{C}$. In some cases, the halogenated aglycons were activated by refluxing with magnesium turnings, using a mixture of NaH and either BuLi or $\mathrm{Bu}^{\mathrm{t}} \mathrm{Li}$. As the solvents, anhydrous toluene, methyl tert-butyl ether, and diethyl ether can be used. It is of note that such base as LDA can transform aglycons containing no halogen atoms into carbanions, wherein the lesser excess of the base should be used (from 1 to 1.5 equiv.).

1.2. Pd-Catalyzed C-glycosylation

Another strategy to direct formation of the glycosidic bond between preliminary functionalized aglycon and (pseudo)riboside is the Pd-catalyzed reactions. To realize this strategy, the halogencontaining aglycons and carbohydrates with unsaturated units are mainly used.

This approach can be exemplified by the synthesis of C-nucleosides 118 by the reaction of iodo derivative $\mathbf{1 1 7}$ with glycal 116 catalyzed by the $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{AsPh}_{3}$ system (Scheme 34). ${ }^{54}$

Another example of the Pd-catalyzed syntheses of C-nucleosides is the Suzuki reaction of compounds 120a,b with different (het)arylboronic acids to give the target carbocyclic C-nucleosides 121a-g in high yields (75-99\%) (Scheme 35). ${ }^{33}$

An efficient synthesis of alkynyl C-nucleosides by the Sonogashira coupling for the preparation of

Scheme 34

NPE is 2-(4-nitrophenyl)ethyl
117, 118: R = H (a), Me (b)
Reagents and conditions: $i . \mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{AsPh}_{3}, \mathrm{Ag}_{2} \mathrm{CO}_{3}, \mathrm{CHCl}_{3}, 70^{\circ} \mathrm{C} . i i . \mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}$, THF, $0^{\circ} \mathrm{C}, 10 \mathrm{~min}$; iii. $\mathrm{NaBH}(\mathrm{OAc})_{3}, \mathrm{MeCN}$, $0^{\circ} \mathrm{C}$; $i v$. DMTCl, pyridine, $\sim 20^{\circ} \mathrm{C}$; $v . \mathrm{NC}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OP}\left(\mathrm{NPr}^{\mathrm{i}}{ }_{2}\right)_{2}, \mathrm{Pr}^{\mathrm{i}}{ }_{2} \mathrm{NH}$, tetrazole, $\mathrm{MeCN}, \sim 20^{\circ} \mathrm{C}$.

Scheme 35

119, 120: $\mathrm{R}^{1}=\operatorname{Pr}^{\mathrm{i}}, \mathrm{R}^{2}=\mathrm{Bu}^{\mathrm{t}} \mathrm{Ph}_{2} \mathrm{Si}(\mathrm{TBDPS})(\mathbf{a}) ; \mathrm{R}^{1}=\operatorname{Pr}^{\mathrm{i}}{ }_{3} \mathrm{Si}(\mathrm{TIPS}), \mathrm{R}^{2}=\mathrm{Bu} \mathrm{C}^{\mathrm{C}}(\mathrm{O})(\mathrm{Piv})(\mathbf{b})$

| Com-
 pound 121 | Ar Yield (\%) |
| :--- | :--- | :--- |

Reagents and conditions: i. 1) LDA, THF, $-78{ }^{\circ} \mathrm{C}$, 2) $\mathrm{PhNTf}_{2},-78 \rightarrow 20^{\circ} \mathrm{C}$; $\left(\mathrm{Me}_{3} \mathrm{Si}_{2}{ }_{2} \mathrm{NK}\right.$ (KHMDS), N-(5-chloro-2-pyridyl)bis(trifluoromethanesulfonamide) (the Comins' reagent), THF, $-78 \rightarrow 20^{\circ} \mathrm{C}$; ii. $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}, \mathrm{~K}_{3} \mathrm{PO}_{4}, \mathrm{MeO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OMe}$ (DME), $\mathrm{H}_{2} \mathrm{O}, 80^{\circ} \mathrm{C}$; iii. TBAF, THF, $\sim 20^{\circ} \mathrm{C}$; $i v . \mathrm{MeONa}, \mathrm{MeOH}, 65^{\circ} \mathrm{C}$.

DNA-based polyfluorophores was described by Kool and coworkers ${ }^{55}$ (Scheme 36). The authors revealed the excess of the starting compound 122 (1.5 equiv.) to compensate for the oxidative Glaser homocoupling. ${ }^{56,57}$
C-Nucleosides 123a-f were used to synthesize the DNA-based polyfluorophores. These compounds could be used as fluorescent labels or probes in multiple DNA applications.

Modified Sonogashira coupling was used to synthesize derivatives 126a-f (Scheme 37). ${ }^{58}$ The strategy involved the coupling of alkynyl-substituted hydrocarbons 125a-f, aroyl chlorides, and 1,4-di-thiane-2,5-diol. The reaction conditions were optimized: the highest yields could be achieved in anhydrous HCl ethanol solution. However, prolongation of the reaction time caused the decrease in the yield due apparently to the decomposition of sugar in
acidic solution. Under optimized conditions using the one-pot procedure, the target products were synthesized in $70-86 \%$ yields.

Sato and Matsuda ${ }^{59}$ reported the synthesis of C-nucleosides by the Heck reaction (Scheme 38). 3^{\prime}-Keto derivative $\mathbf{1 2 9}$ was prepared by the reaction of glycal 116 and 2-amino-4-fluoro-3,5-diiodopyridine $\mathbf{1 2 7}$ catalyzed by $\mathrm{Pd}(\mathrm{OAc})_{2}$ and $\mathrm{Ph}_{3} \mathrm{As}$. The reaction regio- and stereoselectively gave the only product 128, which was further transformed to 3^{\prime}-hydroxy derivative $\mathbf{1 2 9}$ by stereoselective reduction. Phosphoramidite $\mathbf{1 3 0}$ was synthesized from (pseudo)nucleoside $\mathbf{1 2 9}$ in three steps in 12% overall yield.

The Heck reaction of glycal $\mathbf{1 1 6}$ with phosphordiamidite $\mathbf{1 3 1}$ catalyzed by $\mathrm{Pd}(\mathrm{OAc})_{2}$ and $\mathrm{Ph}_{3} \mathrm{As} \mathrm{gave}^{2}$ the mixture of the expected target product $132(20 \%)$ and desilylated oxo nucleoside 133 (53\%) (Scheme 39). Treatment of the mixture of compounds $\mathbf{1 3 2}$ and $\mathbf{1 3 3}$

Scheme 36

Reagents and conditions: i. $\mathrm{RX}(\mathrm{X}=\mathrm{Br}(\mathbf{1 2 3 a}, \mathbf{b})$, $\mathrm{I}(\mathbf{1 2 3 c}, \mathbf{e}, \mathrm{f})$, $\mathrm{OTf}(\mathbf{1 2 3 d})), \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CuI}, \mathrm{NEt}_{3}, \mathrm{DMF}, 80{ }^{\circ} \mathrm{C}, 2.5 \mathrm{~h}$; ii. $\mathrm{NC}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OP}(\mathrm{Cl}) \mathrm{NPr}^{\mathrm{i}}{ }_{2}, \operatorname{EtNPr}{ }_{2}{ }^{\mathrm{i}}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \sim 20^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$.

with $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}$ provided oxo derivative $\mathbf{1 3 3}$ in 79% yield (over 2 steps). Further, compound 133 was transformed to pyridon-3-yl C-2'-deoxyribonucleosides $\mathbf{1 3 4 a}, \mathbf{b}$ in several steps. It should be underlined that the synthesis of C-deoxynucleoside 134b by the Heck reaction of deoxyriboglycal 116 and 6-chloro-3-iodopyridin-2(1 H)-one failed. ${ }^{60}$

Hocek and coworkers ${ }^{61}$ described synthesis of 2,6-disubstituted pyridin-3-yl C-2'-deoxyribonucleosides 138 and $\mathbf{1 4 0}$ (Scheme 40). The Heck reaction of bromo-chloro-iodo-pyridines and glycal 116 in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$, and $\mathrm{Ag}_{2} \mathrm{CO}_{3}$
was accompanied by partial desilylation similarly to the reaction of glycal 116 with iodo pyridine 131 (see Scheme 39). The obtained mixtures were treated with $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}$ to obtain fully deprotected ketones $\mathbf{1 3 7}$ and 139 as pure β-anomers. Subsequent stereoselective reduction gave compounds $\mathbf{1 3 8}$ and 140. The synthesized C-nucleosides did not exert antiviral or cytostatic effects.

Hocek and coworkers ${ }^{62}$ synthesized pyrimidin5 -yl C-2'-deoxyribonucleosides (Scheme 41). The Heck reaction was realized under the same conditions ${ }^{61}$ using the $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{P}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ system. The

Scheme 37

$R^{1}, R^{2}=H, F, B r, M e$
Reagents and conditions: $\left.i . \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(1 \mathrm{~mol} . \%), \mathrm{CuI}(3 \mathrm{~mol} . \%), \mathrm{Et}_{3} \mathrm{~N}, 2\right) \mathrm{HCl}, \mathrm{EtOH}$, heating.

Scheme 38

Reagents, conditions, and yields: i. NIS, AcOH ; $i i$. 1) $\left.\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{Ph}_{3} \mathrm{As}^{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMF}, 65^{\circ} \mathrm{C}, 2\right) \mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}$; iii. $\mathrm{NaBH}(\mathrm{OAc})_{3}, \mathrm{MeCN}$, $\mathrm{AcOH}(1: 1) ; i v . \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 90 \%$; v. DMTCl, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 92 \%$; vi. $\mathrm{NC}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OP}(\mathrm{Cl}) \mathrm{NPr}^{\mathrm{i}}{ }_{2}, \mathrm{EtNPr}^{\mathrm{i}}{ }_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 61 \%$.
reaction also proceeded with desilylation. Ketone 141 was prepared in 42% yield (over 2 steps). Reduction of ketone $\mathbf{1 4 1}$ afforded the target C-deoxyribonucleoside. Scaling up of the Heck reaction up to gram scale was emphasized.

Reaction between glycal 115 and 2-bromo-5iodopyridine in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ gave derivative 142 in 53% yield exclusively as β-anomer (Scheme 42). Picolinamide C-nucleoside 143 was synthesized in seven steps in 2% overall yield. ${ }^{63}$

Scheme 39

134: $\mathrm{R}=\mathrm{H}(\mathbf{a}), \mathrm{Cl}(\mathbf{b})$
Reagents and conditions: i. $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{AsPh}_{3}, \mathrm{Ag}_{2} \mathrm{CO}_{3}, \mathrm{CHCl}_{3}, 70^{\circ} \mathrm{C}, 12 \mathrm{~h} ; i \mathrm{ii} . \mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}, \mathrm{THF}, \sim 20^{\circ} \mathrm{C}, 12 \mathrm{~h}$.
Scheme 40

116

Reagents and conditions: i. 1) $\left.\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}, \mathrm{Ag}_{2} \mathrm{CO}_{3}, \mathrm{CHCl}_{3}, 70^{\circ} \mathrm{C}, 10 \mathrm{~h} ; 2\right) \mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}, \mathrm{THF}, \sim 20^{\circ} \mathrm{C}, 15 \mathrm{~min} ; i i . \mathrm{NaBH}(\mathrm{OAc})_{3}$, $\mathrm{AcOH}, \mathrm{MeCN}, 0^{\circ} \mathrm{C}, 5 \mathrm{~min}$.

Scheme 41

Reagents and conditions: $i . \mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}, \mathrm{Ag}_{2} \mathrm{CO}_{3}, \mathrm{CHCl}_{3}, 70^{\circ} \mathrm{C}, 10 \mathrm{~h}$; ii. $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 5 \mathrm{~min} ; i i i . \mathrm{NaBH}(\mathrm{OAc})_{3}$, $\mathrm{MeCN}, \mathrm{AcOH}, 0^{\circ} \mathrm{C}, 5 \mathrm{~min}$.

Reagents and conditions: $i . \mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}, \mathrm{CHCl}_{3}, \mathrm{Ar}$.
Serpi and coworkers ${ }^{64}$ described the Heck reaction of 5-iodo aglycon $\mathbf{1 4 5}$ with protected ribofuranosyl glycal 144 catalyzed by the $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{AsPh}_{3} /$ $\operatorname{EtNPr}{ }_{2}{ }_{2}$ system. This reaction selectively afforded β-anomer 146 (Scheme 43). Compound 146 was transformed to 2'-deoxypseudoisocytidine 147 in three steps (see Scheme 43) in $\sim 30 \%$ overall yield.

We like to give several additional examples of the Pd -catalyzed $\mathrm{C}-\mathrm{C}$ bond formation between aglycon and riboside. Chiba and Inouye ${ }^{65}$ used the Sonogashira reaction between 1-ethynyl-2-deoxyribose $\beta-122$ and halogen-tethered pyrimidine and pyridine to synthesize alkynyl C-nucleosides 148a-f in good yields (67-92\%) (Scheme 44). Protection of the amino group (yields $56-93 \%$) and subsequent phosphoramidation (yields 41-98\%) furnished unnatural alkynyl C-pseudonucleotides 149a-f.

Lefoix et al. ${ }^{66}$ were interested in the synthesis of pyrazolo[1,5-a][1,3,5]triazine C-nucleosides as deoxyadenosine analogs (Scheme 45). Different conditions for performing the Heck reactions between glycal 150 and iodopyrazolotriazine were tested. Thus, the solvent (MeCN, DMF, dioxane), the palladium source $\left(\mathrm{Pd}(\mathrm{dba})_{2}, \mathrm{Pd}_{2}(\mathrm{dba})_{3}, \mathrm{Pd}(\mathrm{OAc})\right)$, and the base $\left(\mathrm{Bu}_{3} \mathrm{~N}, \mathrm{Et}_{3} \mathrm{~N}\right)$ were varied. However, the highest yield of the target compound $\mathbf{1 5 1}$ did not exceed 34%. Phosphoramidite $\mathbf{1 5 2}$ was used to synthesize 18 -mer oligonucleotides, which incorporated one or two pyrazolotriazine C-nucleoside units.

Phthalimide C-nucleoside $\mathbf{1 5 5 b}$ was synthesized by the Heck reaction of halogenated phthalimides 153a,b and glycal 116 in the presence of the $P\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} /$ $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{Et}_{3} \mathrm{~N}$ catalytic system followed by the nitro group reduction (Scheme 46). ${ }^{67}$ Nucleoside 155b showed pronounced solvatochromic and solvatofluorochromic behavior. The absorption and fluorescence emission bands are red-shifted in solvents of high polarity; the largest bathochromic shift was observed in the solvents with hydrogen-bonding capabilities. Compound $\mathbf{1 5 5 b}$ was further transformed to the corresponding phosphoramidite and used as the DNA building block in the synthesis of oligonucleotides.

The Heck coupling of glycal 150 and aglycon 156 catalyzed by the $\mathrm{Pd}_{2}(\mathrm{dba})_{3} / \mathrm{AsPh}_{3} / \mathrm{NBu}_{3}$ system regio- and stereoselectively gave product 157 in high yield (Scheme 47). ${ }^{46}$ Compound 157 was further converted to the corresponding 2^{\prime}-deoxy- and $2^{\prime}, 3^{\prime}$-dideoxynucleosides 158 and 159.

Thus, the Pd-catalyzed reactions are also reasonably common approach towards C-nucleosides. Realization of this approach requires halogenated aglycons, mainly, iodo derivatives. The most com-

Scheme 43

Reagents and conditions: i. N, O-bis(trimethylsilyl) acetamide, $\mathrm{Pd}(\mathrm{OAc})_{2}$, AsPh_{3}, $\mathrm{EtNPr}^{\mathrm{i}}{ }_{2}, \mathrm{DMF}, 80^{\circ} \mathrm{C}, 24 \mathrm{~h}$; ii. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N} \cdot \mathrm{HF}, \mathrm{THF}$, $\sim 20^{\circ} \mathrm{C}, 12 \mathrm{~h}$; iii. $\mathrm{NaBH}(\mathrm{OAc})_{3}, \mathrm{AcOH}, \mathrm{MeCN},-15 \rightarrow 20^{\circ} \mathrm{C}, 2 \mathrm{~h} ; i v . \mathrm{NH}_{3}, \mathrm{MeOH}, 0 \rightarrow 20^{\circ} \mathrm{C}, 6 \mathrm{~h}$.

Scheme 44

Reagents and conditions: i. $\mathrm{PdCl}_{2}(\mathrm{PPh})_{3}, \mathrm{CuI},\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{NH}$ or $\mathrm{Et}_{3} \mathrm{~N}$ (for 148 c$)$, $\mathrm{DMF}, \mathrm{N}_{2}$; ii (for 148a). $\mathrm{Pd}_{2}(\mathrm{dba})_{3}, \mathrm{PPh}_{3}, \mathrm{CuI}$, $\mathrm{NHPr}{ }_{2}{ }_{2}$, DMF, N_{2}.

Scheme 45

Reagents and conditions: $i . \mathrm{Pd}(\mathrm{dba})_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{AsPh}_{3}, \mathrm{MeCN}$.

153: $\mathrm{Hal}=\mathrm{Br}(\mathbf{a}), \mathrm{I}(\mathbf{b})$
Reagents and conditions: i. $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}, \mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeCN}, 82^{\circ} \mathrm{C}$; ii. $\mathrm{NaBH}(\mathrm{OAc})_{3}, \mathrm{HOAc}-\mathrm{MeCN}(2: 1), 0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h} ; i \mathrm{ii} . \mathrm{NaSH}$, $\mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}, 78^{\circ} \mathrm{C}, 1 \mathrm{~h}$.

Scheme 47

Reagents and conditions: $i . \mathrm{Pd}(\mathrm{dba})_{2}, \mathrm{AsPh}_{3}, \mathrm{NBu}_{3}, \mathrm{DMF}, 100^{\circ} \mathrm{C}, 7 \mathrm{~h}$.
mon source of Pd^{0} is $\mathrm{Pd}(\mathrm{OAc})_{2}$; less frequently $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}, \mathrm{Pd}(\mathrm{dba})_{2}$, and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ are used. Other components of the catalytic system in these transformations are the ligand (e.g., AsPh_{3} and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$) and the base (e.g., $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{EtNPr}^{\mathrm{i}}{ }_{2}$, and silver carbonate).

1.3. Non-standard approaches to the direct $\mathbf{C}-\mathbf{C}$ coupling

In this Section, we exemplified the non-standard approaches of the $\mathrm{C}-\mathrm{C}$ bond forming reactions between aglycon and carbohydrate. All these approaches are differed from each other in synthetic methods used for construction of the glycosidic bond.

Ma et al. ${ }^{68}$ synthesized C-nucleosides via decarboxylative cross-coupling reaction involving ribosyl/ deoxyribosyl acids with (het)aryl bromides in the presence of photoredox/nickel dual-catalyst (Scheme 48). Special experiments established the importance of visible light, photocatalyst, nickel catalyst, ligand, and base, since no formation of the desired crosscoupled product was observed in the absence of at least one of these reaction promoters. Moreover, the inhibition of the reactivity was observed in the presence of air oxygen and TEMPO ($23-25 \%$ yields) thus suggesting the radical nature of the reaction.

The substituents (Het)Ar could be different substituted derivatives of benzene, naphthalene, benzofuran, indole, pyridine, benzomorpholine, thiazole,

Scheme 48

160: $\mathrm{X}=\mathrm{OBn}(\mathbf{a}), \mathrm{H}(\mathbf{b})$
Reagents and conditions: LEDs (blue light, 34 W), $4 \mathrm{CzIPN}(5 \mathrm{~mol} . \%), \mathrm{NiBr}_{2}$ ($10 \mathrm{~mol} . \%$), 2, 2'-bipyridine ($12 \mathrm{~mol} . \%$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv.), DMF, $\mathrm{N}_{2}, 30^{\circ} \mathrm{C}, 24 \mathrm{~h}$.
and other mono- and bicyclic heteroaryl compounds. In addition to the mild reaction conditions, broad substrate scope, and good functional group compatibility, the most significant advantage of this transformation is the use of safe, bench-stable, and easily handled starting materials. ${ }^{68}$

Tachallait et al. ${ }^{69}$ suggested straightforward and versatile synthesis of C-(het)aryl nucleosides via the FeCl_{3}-catalyzed Friedel-Crafts C-glycosylation (Scheme 49). It was found that no reaction occured in the presence of other iron salts and iron oxide ($\mathrm{Fe}_{2} \mathrm{O}, \mathrm{FeSO}_{4}$) even with the increased catalyst loading (up to $50 \mathrm{~mol} . \%$) and at higher reaction temperatures as well as when $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was replaced with DMF. Nucleophiles ArH (see Scheme 49) were methoxybenzene and its 4 -substituted derivatives, thiophene and furan derivatives, 2-methoxynaphthalene, and benzofuran. 2-Methoxynaphthalene and 3-(ethoxycarbonyl)furan C-glycosides were isolated exclusively as β-anomers. In the case of benzofuran, the reaction proceeded with good selectivity of $\beta: \alpha=95: 5$. In other cases, β-anomers

Scheme 49

Reagents and conditions: $\mathrm{FeCl}_{3}(10 \mathrm{~mol} . \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, $10-30 \mathrm{~min}$.
predominated only slightly, the product yields were $30-72 \%$. The synthesized C-nucleosides showed interesting photophysical properties, including fluorescence. They can potentially can be used for RNA labeling to afford new biological probes and sensors.

Chiba and coworkers ${ }^{70}$ described electrochemical synthesis of C-nucleosides based on unactivated prolinols. Firstly, the addition of thiophenol to prolinols 161a-c was studied (Scheme 50). Interestingly, the relationship between the coupling yield, electron density at the position 1^{\prime}, and $\mathrm{p} K_{\mathrm{a}}$ of the carboxylic acid additives was observed. Additive of acetic acid caused a decrease in the yield with a decrease in the electron density at the position 1^{\prime} of the substrates;

Scheme 50

161, 162: 2'-deoxy (a), 3'-deoxy (b), 2', 3'-dideoxy (c)

$\mathrm{RCO}_{2} \mathrm{H}$	Yield of $\mathbf{1 6 2}$ (\%)		
	$\mathbf{1 6 2 a}$	$\mathbf{1 6 2 b}$	$\mathbf{1 6 2}$
AcOH^{2}	94	64	24
$\mathrm{Cl}_{2} \mathrm{CHCO}_{2} \mathrm{H}$	72	81	56
$\mathrm{~F}_{3} \mathrm{CCO}_{2} \mathrm{H}$	34	73	75

Reagents and conditions: $i .2 .6 \mathrm{~F} \mathrm{~mol}^{-1}, 0.25 \mathrm{~mA} \mathrm{~cm}{ }^{-2}, \mathrm{RCO}_{2} \mathrm{H}$ ($50 \mathrm{mmol} \mathrm{L}{ }^{-1}$), $0^{\circ} \mathrm{C}$; ii. PhSH (5 equiv.), $\sim 20^{\circ} \mathrm{C}$, glassy carbon anode, Pt cathode, $\mathrm{MeNO}_{2}-\mathrm{LiClO}_{4}\left(1.0 \mathrm{~mol} \mathrm{~L}^{-1}\right)$.

Scheme 51

Reagents and conditions: i. 1) $2.6 \mathrm{~F} \mathrm{~mol}^{-1}, 0.5 \mathrm{~mA} \mathrm{~cm}^{-2}, \mathrm{RCO}_{2} \mathrm{H}$ $\left(\mathrm{R}=\mathrm{Me}, \mathrm{Cl}_{2} \mathrm{CH}, \mathrm{CF}_{3}\right)\left(50 \mathrm{mmol} \mathrm{L}{ }^{-1}\right), 0{ }^{\circ} \mathrm{C}$; ii. (Het)ArH (5 equiv.), $\sim 20^{\circ} \mathrm{C}$, glassy carbon anode, Pt cathode, $\mathrm{MeNO}_{2}-$ $\mathrm{LiClO}_{4}\left(1.0 \mathrm{~mol} \mathrm{~L}^{-1}\right)$.
while in the case of TFA the reverse dependence was observed.

The developed conditions were used to synthesize a series of C-azanucleosides (Scheme 51). Different arenes, indoles, benzothiophene, benzofuran, and thiophene served as (het)aryls; the product yields varied from 45 to 84%. It was noted that in the case of 5 -cyanoindole the yield of the target C-azanucleoside decreased to 14%. In contrast, the presence of the nitro group or the chlorine atom at position 7 of the starting indole has no effect on the yield and the corresponding products were obtained in the yields of 84 and 88%, respectively.

Comparatively rare sydnone C-nucleosides 164 and 166 were synthesized by Van Calenbergh and coworkers. ${ }^{71}$ Two strategies, electrophilic and nucleophilic, for the generation of the $\mathrm{C}-\mathrm{C}$ bond were explored (Scheme 52). Electrophilic glycosylation
offered the advantage of operational simplicity and good yields; however, it is limited to benzyl protected ribofuranosides. Nucleophilic approach provided high stereoselectivity and compatible with different glycolactones.

Acyclo C-nucleosides were synthesized in high yields by the reaction of chlorophthalazine 167 with gluconic acid hydrazide and galactaric acid bishydrazide. Refluxing the reactants in EtOH enabled the cascade process that involved substitution of the chlorine atom and the 1,2,4-triazole ring closure ${ }^{72}$ (Scheme 53).

Simple acyclic phosphorylated aza- C-nucleotides 171a-e and $\mathbf{1 7 2}$ were synthesized by coupling of aldehydes 168 and 169 with amino phosphonates 170 (Scheme 54). ${ }^{73}$

Derivatives $\mathbf{1 7 1 f}-\mathbf{g}$ were obtained by the reductive alkylation followed by deprotection.

Anthra $[1,2-d]$ imidazole-6,11-dione C-nucleosides $\mathbf{1 7 4 a} \mathbf{- c}$ were synthesized by imidazole cyclization reaction of 1,2-diaminoanthraquinone 173 with various sugar- and azasugar-derived aldehydes ${ }^{74}$ (Scheme 55).

Similar strategy was used to synthesize compounds $\mathbf{1 7 4 d}-\mathbf{h}$. Condensation of 1,2 -diaminoanthraquinone $\mathbf{1 7 3}$ with monochloroacetic acid and subsequent nucleophilic substitution of the chlorine atom with N-alkylamino aza-sugar gave compounds 174d-h in the yields did not exceeding 48% (Scheme 56).

The approaches to the formation of the glycosidic bond between aglycon and carbohydrate unit de-

Scheme 52

162-166: $\mathrm{R}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}(\mathbf{a}), \mathrm{Bn}(\mathbf{b})$
Reagents and conditions: i. $\mathrm{Pr}^{\mathrm{i}} \mathrm{MgCl} \cdot \mathrm{LiCl}, \mathrm{THF}, 0^{\circ} \mathrm{C}$; ii. $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, $\mathrm{Et}_{3} \mathrm{SiH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; iii. $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, CHCl_{3}, reflux.

Scheme 53

Ar is $2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}$
Reagents and conditions: i. gluconic acid hydrazide, EtOH, reflux, 4 h ; ii. galactaric acid bishydrazide, EtOH (anhydrous), reflux, 5 h .

Scheme 54

170, 171: $n=1$ (a), 2 (b), $3(\mathbf{c}), 4(\mathbf{d}), 5(\mathbf{e})$

170c

172

THP is

Reagents and conditions: $i . \mathrm{NaBH}_{4}, \mathrm{EtOH} ;$ ii. $35 \% \mathrm{HCl}, 60^{\circ} \mathrm{C}$; iii. $48 \% \mathrm{HBr}, 90^{\circ} \mathrm{C}$; iv. 2-picoline borane complex, MeOH .

171: $\mathrm{X}=\mathrm{H}(\mathbf{f}-\mathbf{n}), \mathrm{NH}_{2}(\mathbf{o}, \mathbf{p}), \mathrm{Cl}(\mathbf{q})$
$\mathrm{R}={ }_{(\mathrm{HO})_{2} \mathrm{P}(\mathrm{O})}^{(\mathrm{Cl}}$

 $(\mathrm{HO})_{2}(\mathrm{O}) \mathrm{PO}$

Scheme 55

Reagents and conditions: $i . \mathrm{H}_{2} \mathrm{SO}_{4}$, $\mathrm{DMF}, \sim 20^{\circ} \mathrm{C}, 5 \mathrm{~h}$; ii. $\mathrm{HCl}, 1,4$-dioxane, $40^{\circ} \mathrm{C}, 5 \mathrm{~h}$.

Scheme 56

Reagents and conditions: i. $\mathrm{ClCH}_{2} \mathrm{CO}_{2} \mathrm{H}, 90^{\circ} \mathrm{C}, 1 \mathrm{~h}$; ii. DMF, EtNPr ${ }_{2}{ }^{\mathrm{I}}$, $\mathrm{NaI}, 70^{\circ} \mathrm{C}, 3 \mathrm{~h}$.
scribed in this Section are quite diverse and, in some cases, allow synthesis of the target C-nucleosides in good yield and high stereoselectivity. However, in terms of universality and applicability to a wide range of substrates these approaches are significantly inferior to more common methods that based on activation with the Grignard reagents and the Pd-catalyzed transformations.

2. Synthesis of C-nucleosides by construction of a sugar unit on a pre-formed aglycon

The next strategy towards C-nucleosides involved the construction of the carbohydrate unit on a preformed aglycon (see Fig. 1).

For instance, the iridium(I)-catalyzed allylation of enantiopure copper(I) alkoxide, generated from monoprotected diols (R) - and (S)-175, with enantiopure allylic carbonates (R) - and (S) - 176a-d was used to synthesize C-nucleoside precursors $177 \mathrm{a}-\mathrm{d}^{75}$ (Scheme 57). Configuration of products 177a-d obtained by the stereocontrolled synthesis was predetermined by the absolute configuration of the starting substrates $\mathbf{1 7 5}$ and 176. Compounds 177a-d were converted to pseudoribosides under conditions of the standard ring-closing metathesis. Undoubted advantages of this approach are stereoselectivity and high yields of the target products ($56-97 \%$). However, the use of unique and expensive reagents limited a wide application of this approach. In addition, it

Scheme 57

Reagents and conditions: i. BuLi ; ii. 1) CuI , 2) 176a-d, $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}$ (COD is 1,5 -cyclooctadiene), chiral ligand, $\mathrm{THF},-40 \rightarrow 20^{\circ} \mathrm{C}$, $16-20 \mathrm{~h}$; iii. $\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}_{2} \mathrm{Ru}=\mathrm{CHPh}(1 \mathrm{~mol} . \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 3 h ; iv. $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}, \mathrm{THF}, \sim 20^{\circ} \mathrm{C}, 16 \mathrm{~h}$.
remains unclear whether this approach is applicable to the synthesis of heterocyclic C-nucleosides.

Synthesis of 2'-deoxy- C-glycosides based on the construction of the riboside unit on a pre-formed aglycon described by Midtkandal et al. ${ }^{76}$ required 11 steps (Scheme 58). The obtained mixture of cis and
trans isomers of compound $\mathbf{1 7 8}$ was separated by column chromatography, however attempted epimerization of trans-isomer to cis-isomer failed. The final cis-179 was obtained in $\mathbf{1 1 . 2 \%}$ overall yield.

Compound cis-179 was evaluated against a wide panel of the tumor cell lines but was found inactive.

Scheme 58

Reagents, conditions, and yields: i. $\mathrm{TMSCH}_{2} \mathrm{Li}, \mathrm{THF},-78^{\circ} \mathrm{C}$; ii. TBDPSCl, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \sim 20{ }^{\circ} \mathrm{C}, 89 \%$ (over 2 steps); iii. $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0 \rightarrow 20^{\circ} \mathrm{C}, 59 \%$; iv. $\mathrm{TMSNTf}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-7{ }^{\circ} \mathrm{C}, 54 \%($ cis : trans $=1.3: 1) ;$ v. $\mathrm{O}_{3} ;$ vi. $\mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 87 \%\left(\mathrm{reso}^{2}\right.$ lution of the isomers by column chromatography gave cis-isomer in 50% yield); vii. $\mathrm{NaClO}_{2}, \mathrm{H}_{2} \mathrm{O}_{2}, 90 \%, \mathrm{NaH}_{2} \mathrm{PO}_{4}, \mathrm{MeCN}^{2}, \mathrm{H}_{2} \mathrm{O}$, 90%; viii. $\mathrm{SOCl}_{2}, \mathrm{PhMe}$; ix. $\mathrm{NH}_{4} \mathrm{OH}, 95 \%$ (over 2 steps); $x . \mathrm{TsOH}, \mathrm{DMF}, 60^{\circ} \mathrm{C}, 56 \%$; xi. $\mathrm{NaBH}(\mathrm{OAc})_{3}, \mathrm{AcOH}, \mathrm{MeCN}, 0{ }^{\circ} \mathrm{C}, 95 \%$.

Scheme 59

$\mathrm{R}=\mathrm{Ph}, \mathrm{OMe}$
Reagents, conditions, and yields: $i . \mathrm{Et}_{3} \mathrm{~N}$, TMSOTf, $0^{\circ} \mathrm{C}, 67 \%(\mathrm{R}=\mathrm{Ph}), 73 \%(\mathrm{R}=\mathrm{OMe})$; ii. $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 1 \mathrm{~h}, 81 \%(\mathrm{R}=\mathrm{Ph})$; iii. 1) $\mathrm{NaHCO}_{3}, \mathrm{MeOH}, 94 \%$, 2) NaBH_{4}, $\mathrm{MeOH}, 1 \mathrm{~h}, 92 \%$; iv. TMSOTf, $\mathrm{MeCN},-20^{\circ} \mathrm{C}, 78 \%(\mathrm{R}=\mathrm{Ph})$ or $-40^{\circ} \mathrm{C}, 95 \%(\mathrm{R}=\mathrm{OMe})$; v. $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{MeNO}_{2},-10^{\circ} \mathrm{C}$; vi. $\mathrm{NaHCO}_{3}, \mathrm{MeOH}$.

Stereoselective transformation of the sugar derivatives to C-glycosides was reported by Boto and coworkers. ${ }^{77}$ The synthesized acyclic glycosides were modified to "construct" the cyclic riboside unit in good yield and excellent diastereoselectivity (Scheme 59). It was noted that this method of construction of the riboside moiety can be applied to substrates with high functionalization and conformational constraints.

1,3-Dipolar cycloaddition of C-vinyltriazoles $\mathbf{1 8 0}$ to C-(tert-butyldiphenylsilyl)oxy- N-methylnitrone 181 afforded a mixture of cis and trans isomeric C-nucleosides 182 in almost quantitative yields. The ratio of cis and trans isomers of triazolyl nucleosides 183 obtained by removal of the TBDPS protective varied from 1:1 to $1: 1.3$ depending on the substituent R^{1} (Scheme 60). ${ }^{78}$ Giofrè and coworkers ${ }^{78}$

Scheme 60

$\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{Bn}, 3-\mathrm{F}_{3} \mathrm{C}-4-\mathrm{ClC}_{6} \mathrm{H}_{3}, 4-\mathrm{MeOC}_{6} \mathrm{H}_{4}, 4-\mathrm{FC}_{6} \mathrm{H}_{4}, 2$-pyridylmethyl, 2-naphthyl
Reagents and conditions: $i . \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, sodium ascorbate, $\mathrm{Et}_{3} \mathrm{~N}, 4 \mathrm{~h}, \sim 20^{\circ} \mathrm{C}$; ii. $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \sim 20^{\circ} \mathrm{C}, 12 \mathrm{~h}$; iii. $\mathrm{Bu}^{\mathrm{t}} \mathrm{OK}$, $\mathrm{Bu}{ }^{\mathrm{t} O H}, 40^{\circ} \mathrm{C}, 12 \mathrm{~h} ; i v . \mathrm{CHCl}_{3}$, microwave irradiation (150 W), $80^{\circ} \mathrm{C}, 2 \mathrm{~h} ; v$. TBAF, THF, $\sim 20^{\circ} \mathrm{C}, 4-5 \mathrm{~h}$.
rationalized the absence of diastereoselectivity in terms of the E-endo attack of the dipolarophile on the nitrone, which leads to cis adducts, competing with the E-exo attack leading to trans adducts because of secondary orbital interactions exerted by the triazole ring.

Compounds cis- $\mathbf{1 8 3}$ bearing the phenyl and benzyl substituents R^{1} showed antiproliferative activity. The growth inhibitory effect exerted by these compounds at a concentration of $100 \mu \mathrm{~mol} \mathrm{~L}{ }^{-1}$ reached 50% in hepatocellular carcinoma (HepG2) and colorectal adenocarcinoma (HT-29) cells and increased up to 56% in the neuroblastoma (SH-SY5Y) cell line after 72 h of incubation.

1,3-Dipolar cycloaddition was also used to synthesize pyrrolidine C-azanucleoside analogs related to pseudouridine. ${ }^{79}$ The main synthetic concept utilized for the synthesis of the target products is
based on the construction of the pyrrolidine analogs of pseudocarbohydrate on an aglycon via nitrones 184a,b (Scheme 61). The good yields of the majority of intermediates and target products are of note; however, the yields were reported for not all compounds synthesized. In general, this approach is convenient for the construction of the pyrrolidine ring in the position 5 of uracil. Using the appropriately substituted nitrones and alkenes, it is possible to synthesize a wide variety of pyrrolidine analogs of pseudouridine with different substituents and geometry.

Stereoselective synthesis of pyridazine C-nucleosides that involved the construction of the riboside unit from acyclic moiety in compounds $\mathbf{1 8 5}$ and $\mathbf{1 8 6}$ and subsequent one-pot transformation of the furan ring to the pyridazine scaffold was described by Cermola and coworkers ${ }^{80}$ (Scheme 62). It is of note the yields of furyl ribosides is relatively low ($30-35 \%$).

Scheme 61

184: $R=\operatorname{Me}(\mathbf{a}), \mathrm{Bn}(\mathrm{b})$
Reagents and conditions: i. $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$ or $\mathrm{BnNHOH} \cdot \mathrm{HCl}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, $\mathrm{EtOH}, \mathrm{H}_{2} \mathrm{O}, \sim 20^{\circ} \mathrm{C}, 24 \mathrm{~h}$; ii. $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{OH}$, reflux, 48 h ; iii. MsCl , pyridine, $\sim 20^{\circ} \mathrm{C}, 12 \mathrm{~h}$; iv. $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, \sim 20^{\circ} \mathrm{C}, 48 \mathrm{~h} ; v . \mathrm{CH}_{2}=\mathrm{CHCO}_{2} \mathrm{Me}$, toluene, $80^{\circ} \mathrm{C}, 48 \mathrm{~h} ; v i . \mathrm{H}_{2}$, Ranay Ni , $\mathrm{MeOH}, \sim 20^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

Scheme 62

Reagents and conditions: $i . \mathrm{Et}_{3} \mathrm{SiH}, \mathrm{MeCN}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O},-40 \rightarrow 20^{\circ} \mathrm{C}, \sim 18 \mathrm{~h}$; ii.1) $\left.\mathrm{O}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}, 90 \mathrm{~min} ; 2\right) \mathrm{Et} \mathrm{S},-20^{\circ} \mathrm{C}, 2 \mathrm{~h}$; 3) $\mathrm{NH}_{2} \mathrm{NH}_{2}$, THF, $\sim 20^{\circ} \mathrm{C}, 1 \mathrm{~h}$.

Synthesis of thioglycoside and acyclic C-nucleoside of [1,2,4]triazines and [1,2,4]triazolo[4,3-b][1,2,4]triazines was described ${ }^{\mathbf{8 1}}$ (Scheme 63). Good overall yields of C-nucleosides 187 synthesized in four steps ($40 \pm 5 \%$) and thioglycosides 188 prepared in five steps ($32 \pm 5 \%$) were achieved.

Sugar hydrazones 191 were synthesized by the reaction of compound $\mathbf{1 8 9}$ with equimolar amounts
of aldoses $\mathbf{1 9 0}$ (Scheme 64). ${ }^{82}$ Oxidative cyclization of hydrazones 191 and subsequent acylation of the resulted triazoloquinazolines $\mathbf{1 9 2}$ gave rise to polyacetoxyalkyl C-nucleosides 193. This approach gave the target products in overall yields form 20 to 60%.

Chromeno[2,3-b]pyridine and [1,2,4]triazolo-[1,5-a]quinoline C-nucleoside analogs were synthesized either by the reaction of compound 194 with

Scheme 63

187: $n=4$ (a), 3 (b)
Reagents, conditions, and yields: i. MeI, $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, $\sim 20^{\circ} \mathrm{C}$; ii. $\mathrm{N}_{2} \mathrm{H}_{4}$, EtOH , reflux; iii. $\mathrm{HOCH}_{2}(\mathrm{CHOH})_{n} \mathrm{CHO}, \mathrm{AcOH}, \mathrm{EtOH}$, reflux, $85 \%(n=4), 83 \%(n=3)$; $i v . \mathrm{Ac}_{2} \mathrm{O}, 90^{\circ} \mathrm{C}$; $v . \mathrm{CS}_{2}, \mathrm{KOH}$, EtOH, reflux; vi. KOH , acetone, $\sim 20^{\circ} \mathrm{C}, 81 \%\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{OAc}\right), 79 \%$ $(\mathrm{R}=\mathrm{H})$; vii. $\mathrm{NH}_{3}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}$.

Scheme 64

Reagents and conditions: i. 190, $\mathrm{EtOH}, \mathrm{AcOH} ; i i . \mathrm{FeCl}_{3}$, $\mathrm{EtOH} ;$ iii. $\mathrm{Ac}_{2} \mathrm{O}$, pyridine.
aldoses in the presence of iodine or by three-step construction of the acyclic unit on heterocycle 195 (Scheme 65). ${ }^{83}$ This strategy for the C-nucleoside synthesis is very promising due to good yields of the target products, short reaction sequences, and available reagents used.

The strategy of the construction of the sugar unit on a pre-formed aglycon is generally applicable for the synthesis of C-nucleosides bearing the pseudoriboside (mainly acyclic) unit. The role
of heterocyclic base is mainly played by simple aromatic derivatives and functionalization of the structure is impossible. Synthesis of compounds bearing functionalized purines/pyrimidines as aglycons and ribose/deoxyribose as the sugar units following this strategy is limited. These facts explained the smaller number of publications focusing on this approach compared to other strategies for constructing the C-nucleoside backbone.

Scheme 65

$\mathrm{Ar}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$

Reagents and conditions: i. L-rhamnose, $\mathrm{I}_{2}, \mathrm{AcOH}$; ii. d-glucose, $\mathrm{I}_{2}, \mathrm{AcOH}$; iii. $\mathrm{ClCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$; iv. $\mathrm{N}_{2} \mathrm{H}_{4}$; v. D-glucose.

3. Synthesis of C-nucleosides by construction aglycon on a pre-formed sugar unit

Another approach towards C-nucleosides is based on the reaction sequences that allow construction of an aglycon on a pre-formed carbohydrate unit bearing the functional groups able to participate in cyclocondensation and cycloaddition reactions.

Thus, C-nucleosides 197a,b were synthesized in almost quantitative yields by cycloaddition of sodium azide to the nitrile group of protected ribosides 196a,b (Scheme 66). The introduction of acyloxymethyl group as N-protective groups in the tetrazole ring allowed subsequent phosphorylation of the $3^{\prime}-\mathrm{OH}$ group of the sugar residue to give the target compounds 198a and 198b in the yields of 16 and 33.8%, respectively, over 6 steps. ${ }^{84}$

Ribosides 199a-d derived from D-glucose were used as the starting material for the construction of aglycon based on the nitrile group to prepare tiazofurin analogs 201a-d ${ }^{85}$ (Scheme 67). The key intermediates 200a-d were synthesized by the one-pot
reaction that involved the addition of hydrogen sulfide to the nitrile group, the azide reduction, and spontaneous O, N-shift of the acyl group. It was shown that this one-pot sequence was a general approach to a variety of 2-amido-D-ribofuranosyl thiocarboxamides 200a-d. Compounds were the convenient intermediates for the thiazole synthesis via the reaction with ethyl bromopyruvate.

Compounds 201a-d demonstrated high in vitro cytotoxicity against chronic myelogenous leukemia K 562 cell lines with $\mathrm{IC}_{50}=0.15-2.69 \mu \mathrm{~mol} \mathrm{~L}{ }^{-1}$. Among solid tumor cell lines, human colorectal adenocarcinoma cells (HT29) were sensitive only to compound 201d, while cervical cancer cell-derived HeLa cells were sensitive to compounds 201a,b,d. Only compound 201a was cytotoxic against human breast cancer cell line MCF-7.

Similarly strategy for the construction of aglycon on a nitrile group of riboside was used by Popsavin and coworkers ${ }^{86}$ to synthesize 2 -(β-D-xylofuranosyl)-thiazole-4-carboxamide 204 (Scheme 68) and two tiazofurin analogs 208a,b with 5-hydroxymethyl-2-

Scheme 66

POM is $\mathrm{CH}_{2} \mathrm{OC}(\mathrm{O}) \mathrm{Bu}^{\mathrm{t}}$
196-198: $n=0$ (a), 2 (b)
Reagents and conditions: $i . \mathrm{NaN}_{3}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMF}, 130^{\circ} \mathrm{C}, 2 \mathrm{~h}$ (for 197a) or microwave irradiation, $130^{\circ} \mathrm{C}, 2 \mathrm{~h}$ (for 197 b).

Reagents and conditions: $i . \mathrm{H}_{2} \mathrm{~S}$, pyridine, $\sim 20^{\circ} \mathrm{C}$; ii. $\mathrm{H}_{2} \mathrm{~S}$, DMAP, EtOH, $\sim 20^{\circ} \mathrm{C}$; iii. $\mathrm{BrCH}_{2} \mathrm{COCO}_{2} \mathrm{Et}$, EtOH, reflux; iv. NH_{3}, $\mathrm{MeOH}, \sim 20^{\circ} \mathrm{C}$.

Scheme 68

Reagents and conditions: i. $\mathrm{HSCH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}_{2} \mathrm{Et}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeOH}, \sim 20^{\circ} \mathrm{C}, 2 \mathrm{~h}$; ii. 1) $\mathrm{BrCCl}_{3}, \mathrm{DBU}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 5 \mathrm{~h}$; 2) $4{ }^{\circ} \mathrm{C}$, 68 h ; iii. $\mathrm{NH}_{3}, \mathrm{MeOH}, \sim 20^{\circ} \mathrm{C}, 6$ days.
methyltetrahydrofuro[2,3- $d][1,3]$ dioxol-6-ol moiety (Scheme 69). It is of note that intermediate 202 was obtained as an inseparable mixture of C(4)-epimers and was immediately treated with bromotrichloromethane and DBU to give thiazole 203. The yields of intermediates 207a,b (see Scheme 69) were somewhat higher (50-54\%) than those of compound 203 (36%).

Compounds 208a,b demonstrated submicromolar activities against four tumor cell lines (K562, HL-60, Jurkat, and HeLa).

The same strategy was successful in the synthesis of acyclic nucleosides 213 and 214, the tiazofurin analogs (Scheme 70). The key synthetic step was the condensation of compound 211 derived from D-arabinose with cysteine ethyl ester hydrochloride to
afford C-epimeric thiazoline, which was treated with bromotrichloromethane and DBU to give thiazole $212 .{ }^{87}$

Pure α - and β-anomers of glycosylcyanide 216 (the synthesis of which was established in hundredgram scale in 93% yield) were used to synthesize C-nucleosides 217-220 bearing tetrazole, 1,2,4-oxadiazole, and 1,3,4-oxadiazole as the aglycon mimics (Scheme 71). ${ }^{\mathbf{8 8}}$ Most synthetic steps gave the yields of at least $70-80 \%$.

Tetrahydrofuranyl alkynes 221, 223, 225, and 227 were involved in Cu -catalyzed cycloaddition reaction with different furanyl azides and adamantyl azide. ${ }^{89}$ It should be noted that treatment of stereoisomeric alkynes 221, 223, and 225 with azides

Scheme 69

$\left.R^{1}=B z, R^{2}=O E t(207 a, b) ; R^{1}=H, R^{2}=N H_{2}^{(208 a, b}\right)$
Reagents and conditions: $i . \mathrm{HSCH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}_{2} \mathrm{Et}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeOH}, \sim 20^{\circ} \mathrm{C}, 2 \mathrm{~h}$ (for 206) or 3.5 h (for 210); ii. 1) $\mathrm{BrCCl}_{3}, \mathrm{DBU}$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 5 \mathrm{~h}, 2\right) 4^{\circ} \mathrm{C}, 4$ days (for 207a) or 18 h (for 207b); iii. $\mathrm{NH}_{3}, \mathrm{MeOH}, \sim 20^{\circ} \mathrm{C}, 7$ days (for 208a) or 6 days (for 208b).

Scheme 70

214: $R=O B z(\mathbf{a}), \mathrm{H}(\mathbf{b})$
Reagents and conditions: i. $\mathrm{HSCH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}_{2} \mathrm{Et}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeOH}, \sim 20^{\circ} \mathrm{C}, 2 \mathrm{~h}$; ii. 1) $\left.\mathrm{BrCCl}_{3}, \mathrm{DBU}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 5 \mathrm{~h} ; 2\right) 4{ }^{\circ} \mathrm{C}$, 17 days; iii. $\mathrm{NH}_{3}, \mathrm{MeOH}, \sim 20^{\circ} \mathrm{C}, 6$ days (for 213) or 16 days (for 215); iv. $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}, \sim 20^{\circ} \mathrm{C}, 72 \mathrm{~h}$.
afforded the corresponding 1,2,3-triazolyl C-nucleosides 222b, 224a-c, and 226b,c in $58-75 \%$ yields (Scheme 72).

Sabat et al. ${ }^{\mathbf{9 0}}$ synthesized alkynyl derivative $\mathbf{2 3 1}$ by the similar Barbier reaction between the fully protected ribose $\mathbf{2 3 0}$ and ethyl iodopropiolate $\mathbf{2 2 9}$

Scheme 71

$\mathrm{R}=p-\operatorname{Tol}(\mathbf{2 1 6}, \mathbf{2 1 7} \mathbf{a}, 218 \mathbf{a}, \mathbf{2 2 0 a}), \mathrm{H}(\mathbf{2 1 7} \mathbf{b}, \mathbf{2 1 8} \mathbf{b}, \mathbf{2 2 0})$
217a,b: $\mathrm{R}^{\prime}=\mathrm{Me}, \mathrm{Bu}^{\mathrm{i}}, \mathrm{Bu}^{\mathrm{t}}, \mathrm{CF}_{3}$
218a,b: $\mathrm{Ar}=\mathrm{Ph}, p$-Tol
220a,b: $\mathrm{R}^{\prime \prime}=\mathrm{Me}, \mathrm{Bu}^{\mathrm{i}}, \mathrm{Bu}^{\mathrm{t}}, \mathrm{CF}_{3}$, $\mathrm{Ph}, p-\mathrm{Tol}$
Reagents and conditions: i. $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$, DIPEA, EtOH, reflux, 1 h ; ii. $\mathrm{ArC}(\mathrm{O}) \mathrm{Cl}, 1,4$-dioxane, $\sim 20^{\circ} \mathrm{C}, 16 \mathrm{~h}$; iii. $\mathrm{CH}(\mathrm{OMe})_{3}$, $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O} 110^{\circ} \mathrm{C}, 3 \mathrm{~h}$ or $\left(\mathrm{R}^{\prime} \mathrm{CO}\right)_{2} \mathrm{O}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, 110^{\circ} \mathrm{C}$ or $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \sim 20^{\circ} \mathrm{C}, 5 \mathrm{~h} ; i v . \mathrm{KOH}, \mathrm{DMSO}, \sim 20^{\circ} \mathrm{C}, 6 \mathrm{~h} ; v . \mathrm{NaOMe}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(3: 2), \sim 20^{\circ} \mathrm{C}, 16 \mathrm{~h}$; vi. $\mathrm{NaN}_{3}, \mathrm{Cu}, \mathrm{CuSO}_{4}, \mathrm{DMF}, 120^{\circ} \mathrm{C}, 16 \mathrm{~h}$; vii. ($\left.\mathrm{R}^{\prime \prime} \mathrm{CO}\right)_{2} \mathrm{O}$, hydroquinone, reflux, 1 h or $\mathrm{R}^{\prime \prime} \mathrm{C}(\mathrm{O}) \mathrm{Cl}$, pyridine, $90^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

Scheme 72

$R=$
(222a, 224a, 226a),

1-adamantyl (222c, 224c, 226c, 228),

Reagents and conditions: $i . \mathrm{RN}_{3}, \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O},(+)-\mathrm{L}-$ ascorbic acid sodium salt, $\mathrm{Bu}^{\mathrm{t}} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}(1: 1), \sim 20^{\circ} \mathrm{C}, 6-8 \mathrm{~h}$.
(Scheme 73). The subsequent Huisgen cycloaddition, aminolysis, and deprotection gave rise to ribavirin derivative SRO-91.

The key intermediates $\mathbf{2 3 2}$ bearing the alkyne unit were synthesized in high yields by the intramolecular Nicholas reaction catalyzed by $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ (Scheme 74). ${ }^{91}$ Subsequent Cu^{I}-cycloaddition proceeded with high yields to give triazolyl C-nucleosides 233a-g. ${ }^{91}$

One-pot synthesis of aryl pyrazole C-nucleosides analogs of Pyrazofurin by the three-component
coupling of sugar alkynes $\mathbf{2 3 4 a} \mathbf{- j}$, benzoyl chlorides, and hydrazine hydrate was described by Liu et al. ${ }^{92}$ (Scheme 75). The reaction conditions were optimized by varying the catalyst, base, solvent, and the reaction time. When the reaction was carried out under the optimal conditions, in the presence of the $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2} / \mathrm{CuI}$ system as a catalyst, $\mathrm{Et}_{3} \mathrm{~N}$ as a base, and THF as a solvent, the yield of the target products bearing the ribose unit reached $70-90 \%$.

The developed procedure was further used to synthesize a series of thiophene C-nucleosides in $65-80 \%$ yields (Scheme 76). ${ }^{93}$

Bicyclic lactones (+)-235a and (\pm)-235b and their derivatives reacted with aminoguanidine bicarbonate under basic conditions to give rise to 3 -aminotriazole C-nucleosides 237-23994,95 (Scheme 77). Compounds $236 \mathbf{a}, \mathbf{b}$ are the suitable precursors for the synthesis of such biologically active compounds as showdomycin and its carba analogs.

Solarte et al. ${ }^{96}$ involved alkyne 231 in the cycloaddition reaction with benzyl azide. Deprotection of C-nucleoside precursors 240a and 241b and conversion of the ethoxycarbonyl moiety to the amide group afforded the target products 240b and 241b (Scheme 78).

The tandem ene/intramolecular Sakurai cyclization was used to synthesize C-glycoside 243, a structural analog of tiazofurin ${ }^{97}$ (Scheme 79). Compound $\mathbf{2 4 2}$ was also used as a starting material in the synthesis of other pyranosyl C-nucleosides. However, the yields on each synthetic step were low, therefore, this method is of low interest for the synthesis of a wide range of the C-nucleoside and C-glycoside derivatives.

Sequential construction of aglycon unit in six steps from compound $\mathbf{2 4 4}$ gave pyridazine C-nucleosides 248a,b (Scheme 80). ${ }^{32}$ It is of note that the reaction of hydrazone 245 with N, N-dimethylformamide dimethyl acetal (DMF-DMA) resulted in a mixture of expected pyridazine 246 and its N-methyl derivative 247. Compounds 246 and 247 were separated by flash chromatography. Next, compounds 246 and 247 were transformed to amides and then subjected to desilylation. The overall yields of compounds 248a and 248b were 5.7 and 5.3%, respectively (over 6 steps).

Wang et al. ${ }^{32}$ did not limit themselves to the use of pyridazine as the aglycon. Pyrimidine C-nucleoside 249 was synthesized through the Weinreb amide (Scheme 81). The overall yield of the target compound $\mathbf{2 5 0}$ was 3.5%.

Scheme 73

Reagents and conditions: i. $\mathrm{In}^{0}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 3 days; $i i$. $\mathrm{PivOCH}_{2} \mathrm{~N}_{3}$, toluene, reflux, 24 h ; iii. aqueous $\mathrm{NH}_{3}, 1,4$-dioxane, reflux, 48 h ; $i v$. Dowex $50 \mathrm{WX} 8, \mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}, 50^{\circ} \mathrm{C}, \sim 18 \mathrm{~h}$.

Scheme 74

233: $\mathrm{Ar}=4-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}(\mathbf{a}), 3,5-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}(\mathbf{b}), 1$-naphthyl (c), anthracen-2-yl (d), pyren-1-yl (e), 2- $\mathrm{NCC}_{6} \mathrm{H}_{4}(\mathbf{f}), 4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$ (g)
Reagents and conditions: $i . \mathrm{HC} \equiv \mathrm{CMgCl}, \mathrm{THF}, \sim 20^{\circ} \mathrm{C}, 3 \mathrm{~h}$; ii. $\mathrm{Co}_{2}(\mathrm{CO})_{8}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \sim 20^{\circ} \mathrm{C}$; iii. 1) $\left.\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 2\right) \mathrm{Et}_{3} \mathrm{~N}$, $\sim 20^{\circ} \mathrm{C}$; iv. column chromatography; v. $\mathrm{I}_{2}, \mathrm{THF}, 0^{\circ} \mathrm{C}$; vi. THF, $\mathrm{CuI}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{ArN}_{3}, 60^{\circ} \mathrm{C}, 30 \mathrm{~min}$; vii. MeONa, MeOH.

Scheme 75

$\mathrm{Ar}=\mathrm{XC}_{6} \mathrm{H}_{4} ; \mathrm{X}=\mathrm{H}, \mathrm{Me}, \mathrm{OMe}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}$
Reagents and conditions: i. 1) $\left.\mathrm{ArC}(\mathrm{O}) \mathrm{Cl}, \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{CuI}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}, 2\right) \mathrm{N}_{2} \mathrm{H}_{4}$, EtOH.

Scheme 76

Reagents and conditions: i. 1) $\left.\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{CuI}, \mathrm{Et} \mathrm{H}_{3} \mathrm{~N}, \mathrm{DMF}, \sim 20^{\circ} \mathrm{C}, 2\right) \mathrm{Na}_{2} \mathrm{~S} \cdot 9 \mathrm{H}_{2} \mathrm{O}, \mathrm{KOH}, 60^{\circ} \mathrm{C}$.

Scheme 77

$$
\begin{aligned}
& (+)-236 a \quad(47-76 \%) \\
& (+)-236 b \quad(60 \%) \\
& (-)-236 b \quad(80 \%)
\end{aligned}
$$

235-237, 239: $\mathrm{X}=\mathrm{O}$ (a), CH_{2} (b)
Reagents and conditions: i. 4-methylmorpholine 4-oxide (NMO), $\mathrm{OsO}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Bu}^{\mathrm{t} O H}, \sim 20^{\circ} \mathrm{C}$; ii. 2-methoxypropene or 2,2-dimethoxypropane, TsOH , acetone, $\sim 20^{\circ} \mathrm{C}$; iii. 1) NMO, $\mathrm{OsO}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Bu}^{\mathrm{t} O H}, \sim 20^{\circ} \mathrm{C}$, 2) AlCl_{3}, acetone, $\sim 20^{\circ} \mathrm{C}$; $i v$. aminoguanidine bicarbonate, pyridine, reflux; $v . \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, $\mathrm{AcOEt}, \sim 20^{\circ} \mathrm{C}$.

Scheme 78

231

Reagents and conditions: $i . \mathrm{BnN}_{3}$, toluene, reflux, 24 h ; $i i$. Dowex $50\left(\mathrm{H}^{+}\right), \mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}, 50{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}$; iii. 1) NH_{3} (gas), $\mathrm{MeOH},-10{ }^{\circ} \mathrm{C}, 8 \mathrm{~h}$ (yield 83%), 2) Dowex $\left(\mathrm{H}^{+}\right)$, MeOH , $\mathrm{H}_{2} \mathrm{O}$.

Scheme 79

TMS is $\mathrm{Me}_{3} \mathrm{Si}$
Reagents and conditions: i. $\mathrm{Et}_{2} \mathrm{AlCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; ii. $\mathrm{MeCH}=\mathrm{CHCHO}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii. NH_{3} (gaseous), MeOH ; iv. 1) $\mathrm{O}_{3}, \mathrm{MeOH}$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2\right) \mathrm{Me}_{2} \mathrm{~S}$; v. $\mathrm{NaBH}_{4}, \mathrm{MeOH}$; vi. $\mathrm{Ac}_{2} \mathrm{O}$, pyridine; vii. $\mathrm{P}_{2} \mathrm{~S}_{5}$, toluene; viii. $\mathrm{BrCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CO}_{2} \mathrm{Et}, 4 \AA$ molecular sieves, EtOH (anhydrous); ix. TBAF, THF.

Scheme 80

248: $\mathrm{R}=\mathrm{H}(\mathbf{a}), \mathrm{Me}(\mathbf{b})$
Reagents, conditions, and yields: i. $\mathrm{BuLi}, \mathrm{MeCN}$; $i i . \mathrm{TfN}_{3}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeCN}$; iii. $\mathrm{PMe}_{3}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}$; $i v$. $\mathrm{Boc}_{2} \mathrm{O}$, pyridine; $v . \mathrm{Me}_{2} \mathrm{NCH}(\mathrm{OMe})_{2}$, THF, 12 h ; vi. $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{H}_{2} \mathrm{O}_{2}$, MeOH, 83%; vii. 80% aqueous $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$.

Scheme 81

Reagents, conditions, and yields: i. 2-(7-aza-1 H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HATU), $\mathrm{EtNPr}^{\mathrm{i}}{ }_{2}, \mathrm{MeON}(\mathrm{H}) \mathrm{Me}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 8 \mathrm{~h}, 82 \%$; ii. 1) $\left.\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{CLi}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}, 2\right) \sim 2{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$; iii. $\mathrm{MeO}_{2} \mathrm{C}(\mathrm{S}) \mathrm{NH}_{2} \cdot \mathrm{HCl}, \mathrm{MeCN}$, $80^{\circ} \mathrm{C}, 3 \mathrm{~h}, 32 \%$ (over 2 steps); iv. 1) MCPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3 \mathrm{~h}, 92 \% ; 2$) KCN, DMSO, $\sim 18 \mathrm{~h}, 63 \% ; v . \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NH}_{4} \mathrm{OH}, \mathrm{MeOH}, 1 \mathrm{~h}$, 57%; vi. $\mathrm{BCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 4 \mathrm{~h}, 41 \%$.

Scheme 82

253, 254: $\mathrm{R}=\mathrm{SMe}(\mathbf{a}), \mathrm{Me}(\mathbf{b}), \mathrm{Ph}(\mathbf{c}), \mathrm{O}(\mathbf{d})$
Reagents and conditions: $i . \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{MeCN}, \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mol} . \%), 8{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}$; ii. $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(8: 2)$, Dowex H^{+}, 16 h .

Legrave et al. ${ }^{98}$ optimized the conditions of condensation of different amidines and alkynyl ribose derivative 231 and synthesized C-nucleoside precursors 251a-c. Subsequent deprotection gave the target derivatives 252a-c (Scheme 82).

Synthesis of C-nucleosides by the construction of the aglycon unit on the carbohydrate mimic 253 was studied. ${ }^{99-102}$ Synthesis of phosphorylated 9-deazaadenosine and 7-oxa-7,9-dideazaadenosine C-nucleosides 254 and 255 is shown in Scheme 83. ${ }^{\mathbf{1 0 2}}$ The

Scheme 83

Reagents and conditions: $i . \mathrm{ClCH}_{2} \mathrm{CN}, \mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMF; ii. LDA, $-70^{\circ} \mathrm{C}$, THF; iii. $\mathrm{CH}(\mathrm{NH}) \mathrm{NH}_{2} \cdot \mathrm{AcOH}, \mathrm{EtOH}$; iv. BzCl, pyridine; v. TBAF, THF; vi. $(\mathrm{EtO})_{2} \mathrm{POCH}_{2} \mathrm{OTf}, \mathrm{Bu}^{\mathrm{t} O L i}$, THF; vii. $\mathrm{NH}_{3}, \mathrm{MeOH}, \sim 20^{\circ} \mathrm{C}$; viii. TMSBr, 2,6-lutidine, $\mathrm{MeCN} ; i x . \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CN}^{\prime} \cdot \mathrm{H}_{2} \mathrm{SO}_{4}$, $\mathrm{NaOAc}, \mathrm{MeOH} ; x$. 1) $\mathrm{ClC}(\mathrm{O}) \mathrm{OEt}, \mathrm{DBU}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; 2) $\mathrm{DBU}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; 3) $\mathrm{K}_{2} \mathrm{CO}_{3}$, EtOH .

Scheme 84

(content of β-anomer is 20%)

Reagents and conditions: i. $\mathrm{NCCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$, $\mathrm{Bu}{ }^{\mathrm{t}} \mathrm{OK}, \mathrm{EtOH} ; i i . \mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH} ; i i i$. DIBAL-H, Et O ; $i v . \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CN}, \mathrm{NaOAc}$, $\mathrm{MeOH} ; v$. 1) $\mathrm{ClC}(\mathrm{O}) \mathrm{OEt}$, $\mathrm{DBU}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 2$) DBU; vi. $\mathrm{K}_{2} \mathrm{CO}_{3}$, EtOH ; vii. $\mathrm{CH}(\mathrm{NH}) \mathrm{NH}_{2} \cdot \mathrm{AcOH}$, EtOH ; viii. $\mathrm{BCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; ix. TBSCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; x$. BzCl, pyridine; $x i$. TBAF, THF.
target products were obtained in low amounts due to multi-step synthesis and low yields.

To widen a series of biologically active carbocyclic nucleosides, Kim and Hong ${ }^{\mathbf{1 0 1}}$ synthesized $6^{\prime}, 6^{\prime}$-di-fluoro-5'-deoxycarbocyclic-9-deazaadenosine C-nucleoside 257. Compound 257 was further converted to phosphonate 258 (Scheme 84). The starting compound 256 was synthesized in ten steps in 15% overall yield. Despite the relatively high yields in each synthetic step (see Scheme 84), this synthetic approach is of low interest.

Nevertheless, this method was applied for the synthesis of other C-nucleoside derivatives ${ }^{\mathbf{1 0 0}}$ (Scheme 85). The starting lactone $\mathbf{2 5 9}$ was synthesized from 1,4-dihydroxy-2-butene in four steps in 49% overall yield. Lactone 259 was transformed in eight steps to carbocyclic $4-\mathrm{N}$-dibenzyl diazaadenosine C-nucleoside 260 in 7.2% overall yield. Compound 260 was further phosphorylated to give prodrugs 261-264.

4'-Trifluoromethylated carbocyclic nucleoside 266 was synthesized similarly via intermediate 265
(Scheme 86). ${ }^{\mathbf{9 9}}$ The yield of nucleoside 266 was 1.7% over seven steps.

Vogel and coworkers ${ }^{\mathbf{1 0 3}}$ synthesized C-nucleosides 270 and 271 in high yields ($76-90 \%$) from fully protected C-ribosides 268a-c by the reaction of the aldehyde group with different CH -acidic compounds followed by construction of the aglycon unit using two sequential cyclocondensations (Scheme 87).

Analogous approach was used to convert protected aldehyde 272 to thienopyrimidinone 273 in four steps in 20% overall yield (Scheme 88). Aldehyde 272 was also transformed to methylthiopyrimidine C-nucleoside 276 (see Scheme 88). First, aldehyde 272 was converted to 2-deoxy acetylenic ketones 274a,b, which were further transformed to pyrimidines 275a,b. Deprotection of compound 275a afforded C-nucleoside 276. No yields of compounds 274a,b are given. ${ }^{103}$

Reaction of compound 267 with alkynyl organometallic compounds followed by the Dess-Martin oxidation gave intermediates 277a,b (Scheme 89). Compounds 277a,b were involved in the reactions

Scheme 85

260 (82\%)
261 (19\% over 4 steps)
262 (61\%)

$X=B u^{\dagger} \mathrm{Me}_{2} \mathrm{Si}$
Reagents and conditions: i. $\mathrm{NCCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$, $\mathrm{Bu}^{\mathrm{t}} \mathrm{OK}, \mathrm{EtOH}$; ii. $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$; iii. DIBAL-H, Et O ; iv. $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CN}, \mathrm{NaOAc}$, MeOH ; v. 1) $\mathrm{ClC}(\mathrm{O}) \mathrm{OEt}$, $\mathrm{DBU}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; 2) DBU ; vi. $\mathrm{K}_{2} \mathrm{CO}_{3}$, EtOH ; vii. $\mathrm{CH}(\mathrm{NH}) \mathrm{NH}_{2} \cdot \mathrm{AcOH}$, EtOH; viii. BzCl, pyridine; $i x$. TMSBr, 2,6-lutidine, $\mathrm{MeCN} ; x .10 \% \mathrm{Pd} / \mathrm{C}$, cyclohexene, MeOH .

Scheme 86

Reagents and conditions: i. $\mathrm{NCCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$, $\mathrm{Bu}^{\mathrm{t}} \mathrm{OK}$, $\mathrm{EtOH} ; i i . \mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH} ; i i i$. DIBAL-H, $\mathrm{Et}_{2} \mathrm{O} ; i v . \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CN} \cdot \mathrm{H}_{2} \mathrm{SO}_{4}$, $\mathrm{NaOAc}, \mathrm{MeOH} ; v . \mathrm{ClC}(\mathrm{O}) \mathrm{OEt}, \mathrm{DBU}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Scheme 87

268: $\mathrm{R}=\mathrm{CN}(\mathbf{a}), \mathrm{CONH}_{2}$ (b), 4- $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{NHC}(\mathrm{O})$ (c)
269: $\mathrm{R}=\mathrm{H}(\mathbf{a}), 4-\mathrm{MeOC}_{6} \mathrm{H}_{4}(\mathbf{b})$
Reagents and conditions: i. CH acids, $\mathrm{Al}_{2} \mathrm{O}_{3}$, toluene (anhydrous), reflux, $2-16 \mathrm{~h}$; ii. $\mathrm{S}_{8}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMF}, \sim 20^{\circ} \mathrm{C}, 2 \mathrm{~h}$; iii. 1) $\mathrm{HC}(\mathrm{OEt})_{3}$, reflux, 2 h , 2) $\mathrm{EtOH} / \mathrm{NH}_{3}$, reflux, 2 h ; $i v .90 \%$ aqueous $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \sim 20^{\circ} \mathrm{C} ; v . \mathrm{HC}(\mathrm{OEt})_{3}$, DMF (anhydrous), reflux, $7-10 \mathrm{~h}$.

Scheme 88

274: $\mathrm{R}^{1}=\mathrm{H}(\mathbf{a}), \mathrm{Ph}(\mathbf{b})$
275: $R^{1}=H, R^{2}=\operatorname{SMe}(\mathbf{a}), R^{1}=\operatorname{Ph}, R^{2}=\operatorname{Me}(b)$
Reagents and conditions: i. 1) $\mathrm{CH} \equiv \mathrm{CEtMgBr}$ or $\mathrm{PhC} \equiv \mathrm{CLi}$, THF (anhydrous), $\sim 20^{\circ} \mathrm{C}, 4 \mathrm{~h}, 2$) the Dess-Martin oxidation; ii. $\mathrm{MeSC}(\mathrm{NH}) \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{SO}_{4}$ (for 274a) or $\mathrm{MeC}(\mathrm{NH}) \mathrm{NH}_{2} \cdot \mathrm{HCl}$ (for 274b), $\mathrm{H}_{2} \mathrm{O}$ (cat.), $\mathrm{Na}_{2} \mathrm{CO}_{3}$, AcOEt , reflux, $3-24 \mathrm{~h}$; iii. $\mathrm{Bu} \mathrm{C}_{4} \mathrm{NF}$, 1,4-dioxane, $\sim 20^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

Scheme 89

277, 280: $R^{1}=H(\mathbf{a}), \operatorname{Ph}(\mathbf{b}) ; R^{2}=M e, P h, S M e$
Reagents and conditions: i. 1) $\mathrm{HC} \equiv \mathrm{CMgBr}$ or $\mathrm{PhC} \equiv \mathrm{CLiMgBr}$, THF (anhydrous), $\sim 20^{\circ} \mathrm{C}, 4 \mathrm{~h}, 2$) the Dess-Martin oxidation; ii. acetamidinium chloride, benzamidinium chloride, or S-methylisothiouronium, $\mathrm{H}_{2} \mathrm{O}$ (cat.), $\mathrm{Na}_{2} \mathrm{CO}_{3}$, AcOEt, reflux, $2-24 \mathrm{~h}$; iii. $\mathrm{Bu}_{4} \mathrm{NF}, 1,4$-dioxane, $\sim 20^{\circ} \mathrm{C}, 4 \mathrm{~h}$; iv. $1 \mathrm{MHCl}, \mathrm{EtOH}, \sim 20^{\circ} \mathrm{C}$, 12 h. $v .4 H-1,2,4$-triazol-3-amine, EtOH (anhydrous), reflux, 4 h ; vi. 1 M NaOMe in $\mathrm{MeOH}, \sim 20^{\circ} \mathrm{C}, 1 \mathrm{~h}$; vii. 1) $1 H$-benz[d]imidazol-2-amine, EtOH (anhydrous), reflux, $2 \mathrm{~h}, 2$) 1 M NaOMe in $\mathrm{MeOH}, \sim 20^{\circ} \mathrm{C}, 1 \mathrm{~h}$.
with various diamines to afford C-nucleosides 278-281 with the pyrimidine, triazolopyrimidine, and benzimidazopyrimidine scaffolds as the aglycons. ${ }^{103}$

Schneller and coworkers ${ }^{\mathbf{1 0 4}}$ developed an efficient synthesis of a series of carbocyclic formycin derivatives structurally related to 3-deazaaristeromycin. This approach is characterized by high yields on each step (Scheme 90).

Smellie and Paton ${ }^{105}$ synthesized nitrile oxide 284 from D-ribose in four steps in 85% overall yield. Compound 284 was used as a starting material for constructing the aglycon unit by cycloaddition reac-
tions (Scheme 91). The developed procedure towards benzazole C-nucleosides is an effective alternative to current synthetic routes to furanosylbenzazoles owing to small number of steps and good yields.

Zhang and coworkers ${ }^{\mathbf{1 0 6}}$ described efficient synthesis of indolizine C-nucleoside analogs by one-pot three-component coupling of sugar alkynes 234a,c-i, pyridines, and α-bromo carbonyl compounds. Optimization of the reaction conditions revealed that refluxing in THF in the presence of cesium carbonate for 2 h is the most efficient. Under the optimal conditions, a series of derivatives 285 were obtained in high yields of $76-95 \%$ (Scheme 92).

Scheme 90

$\mathrm{R}^{1}=\mathrm{H}, \mathrm{Me}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
Reagents, conditions, and yields: i. 1) $\mathbf{2 8 3}$, THF, $-78^{\circ} \mathrm{C}$, 2) BuLi , 3) $\mathbf{2 8 2}$, $\sim 20^{\circ} \mathrm{C}$; ii. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ (20 equiv.), $0 \rightarrow 20^{\circ} \mathrm{C}, 5 \mathrm{~h}$; iii. phthalic ahydride, toluene, $50^{\circ} \mathrm{C}, 24 \mathrm{~h}, 80 \%$ (over 2 steps); iv. $\mathrm{KOAc}, \mathrm{Ac}_{2} \mathrm{O}$, isoamyl nitrite, benzene, reflux; $v . \mathrm{NH}_{3}, \mathrm{MeOH}, \sim 20^{\circ} \mathrm{C}, \sim 18 \mathrm{~h}$.

Scheme 91

Reagents and conditions: i. NCS, pyridine, $\mathrm{CHCl}_{3}, 40^{\circ} \mathrm{C}$; ii. $1,2-\left(\mathrm{H}_{2} \mathrm{~N}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, EtOH , reflux, 5 h ; iii. 2- $\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$, EtOH, reflux, 5 h .

Scheme 92

$\mathrm{R}^{1}=\mathrm{H}, \mathrm{CN}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{OEt}, \mathrm{Bu}^{\mathrm{t}} ; \mathrm{Ar}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}, 2-\mathrm{MeC}_{6} \mathrm{H}_{4}$
Reagents and conditions: $i . \mathrm{Cs}_{2} \mathrm{CO}_{3}$, THF, reflux; ii. $\mathrm{ArC}(\mathrm{O}) \mathrm{Cl}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}, \mathrm{CuI}, \mathrm{Et}_{3} \mathrm{~N}$.

A simple two-step method for the selective synthesis of anomerically pure α - and β-(indol-2-yl)deoxyribosides $\alpha-286$ and $\beta-286$ involved the Sonogashira
reaction of 1α-and 1β-ethynyldeoxyribose and 2 -haloanilines followed by the Pd-catalyzed cyclization to the corresponding indolyldeoxyribosides (Scheme 93). ${ }^{107}$

Scheme 93

$R=4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}), X=\mathrm{H}, \mathrm{Cl}, \mathrm{CO}_{2} \mathrm{Me}, Y=\mathrm{H}, \mathrm{Cl}$
Reagents and conditions: i. 2-haloanilines, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeCN}, 70^{\circ} \mathrm{C}$; ii. $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$, JohnPHOS, $\mathrm{MeCN}, 120^{\circ} \mathrm{C}$.

Scheme 94

Reagents and conditions: $i . \mathrm{CH}_{2} \mathrm{CHMgBr}, \mathrm{CuBr} \cdot \mathrm{Me}_{2} \mathrm{~S}$, TMSCl, HMPA, THF, $-78{ }^{\circ} \mathrm{C}$; ii. LiAlH_{4}, THF; iii. $\mathrm{ClCH}_{2} \mathrm{CO}_{2} \mathrm{H}, \mathrm{Ph}_{3} \mathrm{P}$, diisopropyl azodicarboxylate (DIAD), THF; $i v . \mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$, THF, $\mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C} ; v . \mathrm{BnBr}, \mathrm{NaI}$, NaH, THF; vi. dimethyldioxirane (DMDO), acetone, $0^{\circ} \mathrm{C}$; vii. $\mathrm{NH}_{4} \mathrm{OH}, 60^{\circ} \mathrm{C}$; viii. 2,3-dichloropyrazine, $\mathrm{Et}_{3} \mathrm{~N}, 1,4$-dioxane; ix. DMSO, $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; $x . \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H},\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$, pyridine, toluene; xi. $\mathrm{NH}_{3}, \mathrm{MeOH}, 130^{\circ} \mathrm{C}$; xii. cyclohexene, $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{EtOH}$, reflux; xiii. 2 M HCl , MeOH.

Ye and Schneller ${ }^{\mathbf{1 0 8}}$ synthesized 5'-noraristeromycin C-nucleoside bearing imidazo[1,2-a]pyrazine aglycon mimic via the construction of aglycon on the sugar unit (Scheme 94). The yields were above 75% on almost all steps except for the key imidazole ring closure step that gave 42% product yield.

Draffan and coworkers ${ }^{44}$ reported on the synthesis of compounds $\mathbf{2 8 9}$ (Scheme 95) and $\mathbf{2 9 0}$ (Scheme 96). Structural features of these compounds required the careful choice of synthetic approaches. Thus, compound $\mathbf{2 8 9}$ was synthesized by a highly modified approach developed by Patil et al. ${ }^{\mathbf{1 0 9}}$ Slow addition of pyrrole to compound 287 at low temperature $\left(-78^{\circ} \mathrm{C}\right)$ in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ afforded a $1: 1$ anomeric mixture of the pyrrole nucleosides $\alpha-288$
and β-288 in 80% yield (see Scheme 95). Modest improvement in β-selectivity was achieved at higher temperature ($-50^{\circ} \mathrm{C} ; \alpha: \beta=1: 2$) but at the cost of the yield (60%). The mixture of α - and β-isomers 288 was separated by flash column chromatography and α-isomer was transformed to β-isomer by treatment with $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$. Subsequent construction of the triazine unit and deprotection of the hydroxy groups of the riboside moiety gave the target C-nucleoside 289.

Convergent approach (see Section 1) was unapplicable to the synthesis of pyrazolo [1,5-a][1,3,5]triazine C-nucleoside 290, therefore this compound was synthesized by linear synthesis of aglycon on a sugar unit (Scheme 96). ${ }^{44}$

Scheme 95

Reagents, conditions, and yields: i. $\mathrm{NaH}, 2,4$-dichlorobenzyl chloride; ii. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}-\mathrm{H}_{2} \mathrm{O}(9: 1)$; iii. $\mathrm{Cl}_{3} \mathrm{CCN}^{2} \mathrm{Cs}_{2} \mathrm{CO}_{3} ;$ iv. 1$) 4 \AA$ molecular sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2 \mathrm{~h}, \sim 20^{\circ} \mathrm{C}$, 2) pyrrole, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2},-50^{\circ} \mathrm{C}$ or $\left.-78^{\circ} \mathrm{C}, 3\right) \mathrm{NH}_{3}, \mathrm{MeOH},-78{ }^{\circ} \mathrm{C}$; v. $\mathrm{ClSO}_{2} \mathrm{NCO}, \mathrm{MeCN}$, DMF, $0{ }^{\circ} \mathrm{C}$; vi. $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux; vii. 1) NaH , THF, $0^{\circ} \mathrm{C}$, 2) $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{ONH}_{2}$, THF, $0^{\circ} \mathrm{C}$; viii. $\mathrm{CH}(\mathrm{NH}) \mathrm{NH}_{2} \cdot \mathrm{AcOH}$, $\mathrm{MeC}(\mathrm{O}) \mathrm{NMe}_{2}, 140^{\circ} \mathrm{C}, 1-2 \mathrm{~h}$; $i x . \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}(10 \%), 45^{\circ} \mathrm{C}, 18 \mathrm{~h}, \mathrm{NaOAc}$, MeOH, AcOH.

Scheme 96

Reagents and conditions: i. NaH , DME, $0 \rightarrow 20^{\circ} \mathrm{C}$; ii. $\mathrm{Bu}{ }^{\mathrm{t}} \mathrm{OCH}\left(\mathrm{NMe}_{2}\right)_{2}$, DMF, $60^{\circ} \mathrm{C}, 15 \mathrm{~h}$; iii. $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{HCl}, \mathrm{EtOH}, 105^{\circ} \mathrm{C}, 2 \mathrm{~h}$; $i v . \mathrm{EtOCH}=\mathrm{NCN}, 85^{\circ} \mathrm{C}$, toluene; $v . \mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 45^{\circ} \mathrm{C}, 17 \mathrm{~h}$.

It can be noted that the strategy of construction of aglycon on a pre-formed carbohydrate unit to synthesize C-nucleosides of various nature is common. The advantage of this approach is the possibility to synthesize the functionalized heterocyclic aglycons which is very important in the search for compounds with a given biological activity. However, the necessity to prepare preliminary (pseudo)ribosides bearing the moieties suitable for the subsequent aglycon synthesis significantly reduces the attractiveness of this strategy. The synthesis of these precursors often requires multi-step sequences thus negatively affecting the overall yields of the target C-nucleosides.

Conclusion

In the present review, three main strategies to the synthesis of C-nucleosides are described: the direct $\mathrm{C}-\mathrm{C}$ coupling of the pre-formed aglycon and sugar, the construction of an aglycon unit on a pre-formed sugar, and the construction of a sugar unit on a preformed aglycon. Each strategy can be used for synthesizing the compounds, which are hardly accessible by other methods.

The direct $\mathrm{C}-\mathrm{C}$ coupling under the Heck conditions enables synthesis of both 2^{\prime}-deoxyribonucleosides ${ }^{57-65}$, and carbocyclic C-nucleosides. ${ }^{31}$ The undoubted advantage of this approach is no need to fully protect all hydroxy groups of (pseudo)sugar and amino and carbonyl groups of aglycon, which significantly increases the overall yield of the target C-nucleoside since no protection and deprotection steps are required.

Another $\mathrm{C}-\mathrm{C}$ bond forming strategy involved the reactions either between ribonolactone and lithium intermediates or between the Grignard reagents and 1^{\prime}-halogenated carbohydrates or ribonolactones. In all cases, the reactions gave the mixtures of α - and β-isomers separable by column chromatography. Application of this strategy is complicated by the need to carry out the reactions at low temperatures $\left(-78 \div-100{ }^{\circ} \mathrm{C}\right)$ in anhydrous solvents under an inert atmosphere to prevent hydrolysis of organometallic reagents and intermediates. Protection of the carbonyl and amino groups to reduce the formation of the side products is required as it was clearly shown by Metobo and coworkers. ${ }^{34}$ Thus, Boc and TMS groups were found to be the suitable and convenient protective groups in the presence of which the yield could be increased from 10 to $82 \% .{ }^{45}$ The use of the
excess of the base (the Grignard reagents or its analogs) for the aglycon activation is also important. In some cases, the yields of the target products equal to $20-40 \%$ achieved in the presence of 1 equiv. of the base could be increased to $65-90 \%$ by using 3.3 equiv. of the base. This strategy is the most promising in terms of small number of steps and good yields of the target products.

More exotic variants of the direct $\mathrm{C}-\mathrm{C}$ coupling of aglycon and sugar were reported. For instance, electrochemical activation of the starting compounds, ${ }^{68}$ photocatalytic reactions, ${ }^{66}$ and Lewis-acid catalyzed glycosylation ${ }^{67}$ were described. However, in most cases these methods are limited to only a specific class of compounds, did not provide high yields and required stereoselectivity.

The construction of an aglycon unit on a (pseudo)sugar residue opens up the prospects to a wide range of various C-nucleosides. It is of note the method based on ribofuranyl alkynes ${ }^{87,88,90}$ that provided both mono- and bicyclic ${ }^{\mathbf{1 0 1}, 104,105}$ aglycon scaffolds in one-two synthetic steps in excellent yields. The drawback of this method is the use of expensive palladium catalysts. In other cases, the synthesis is multi-step, which inevitably leads to a decrease in the yield of the target compounds. Moreover, this strategy required the use of fully or partially protected starting (pseudo)sugars, which adds the additional protection/deprotection steps in the reaction sequence.

The construction of the sugar unit on an aglycon allows a selective synthesis of C-nucleosides, which are hardly accessible by a direct $\mathrm{C}-\mathrm{C}$ coupling and other methods. It should be noted that the yields of C-nucleosides upon coupling of nitrones and vinyl azoles under electrochemical conditions increased up to $92-96 \%$; while the reaction in refluxing solvent gave the target products in $75-85 \%$ yields. ${ }^{76,77}$ This approach was used in the smallest number of works published over the past 10 years, which reflected its least promise due to limitations on structural diversity of the synthesized C-nucleosides, multi-step reaction sequences, the need in expensive catalysts, as well as due to availability of simpler approaches towards C-nucleosides.

This work was financially supported by the Russian Science Foundation (Project No. 22-23-00282).

No human or animal subjects were used in this research.

The authors declare no competing interests.

References

1. E. de Clercq, Acta Pharm. Sin. B, 2012, 2, 535; DOI: 10.1016/J.APSB.2012.10.001.
2. G. Niu, H. Tan, Trends Microbiol., 2015, 23, 110; DOI: 10.1016/J.TIM.2014.10.007.
3. E. De Clercq, G. Li, Clin. Microbiol. Rev., 2016, 29, 695; DOI: 10.1128/CMR.00102-15.
4. K. Peasley, Med. Hypotheses, 2000, 55, 408; DOI: 10.1054/ MEHY.2000.1077.
5. C. Simons, Nucleoside Mimetics: Their Chemistry and Biological Properties, CRC Press, Boca Raton, 2001, 204 pp.; DOI: 10.1201/9781482283143.
6. D. A. Gruzdev, V. V. Musiyak, G. L. Levit, V. P. Krasnov, V. N. Charushin, Russ. Chem. Rev., 2018, 87, 604; DOI: 10.1070/RCR4772.
7. E. V. Verbitskiy, G. L. Rusinov, V. N. Charushin, O. N. Chupakhin, Russ. Chem. Bull., 2019, 68, 2172; DOI: 10.1007/S11172-019-2686-X.
8. L. P. Jordheim, D. Durantel, F. Zoulim, C. Dumontet, Nat. Rev. Drug Discovery, 2013, 12, 447; DOI: 10.1038/ nrd4010.
9. E. S. Matyugina, S. N. Kochetkov, A. L. Khandazhinskaya, Russ. Chem. Rev., 2021, 90, 1454; DOI: 10.1070/RCR5013/ XML.
10. L. Agrofoglio, E. Suhas, A. Farese, R. Condom, S. Richard Challand, R. A. Earl, R. Guedj, Tetrahedron, 1994, 50, 10611; DOI: 10.1016/S0040-4020(01)89258-9.
11. V. E. Marquez, M. I. Lim, Med. Res. Rev., 1986, 6, 1; DOI: 10.1002/MED. 2610060102.
12. J. Rodríguez, M. Comin, Mini Rev. Med. Chem., 2005, 3, 95; DOI: 10.2174/1389557033405331.
13. H. Wójtowicz-Rajchel, J. Fluorine Chem., 2012, 143, 11; DOI: 10.1016/J.JFLUCHEM.2012.06.026.
14. R. B. Stockbridge, G. K. Schroeder, R. Wolfenden, Bioorg. Chem., 2010, 38, 224; DOI: 10.1016/J.BIOORG.2010. 05.003.
15. K. Temburnikar, K. L. Seley-Radtke, Beilstein J. Org. Chem., 2018, 14, 772; DOI: 10.3762/BJOC.14.65.
16. K. S. Ramasamy, R. Bandaru, D. Averett, J. Org. Chem., 2000, 65, 5849; DOI: 10.1021/JO000460A.
17. B. M. Trost, L. S. Kallander, J. Org. Chem., 1999, 64, 5427; DOI: 10.1021/JO990195X.
18. J. Zhou, M. Yang, S. W. Schneller, Tetrahedron Lett., 2004, 45, 8233; DOI: 10.1016/J.TETLET.2004.09.007.
19. X. Chen, S. W. Schneller, S. Ikeda, R. Snoeck, G. Andrei, J. Balzarini, E. De Clercq, J. Med. Chem., 1993, 36, 3727; DOI: 10.1021/JM00075A0303.
20. T. K. Warren, R. Jordan, M. K. Lo, A. S. Ray, R. L. Mackman, V. Soloveva, D. Siegel, M. Perron, R. Bannister, H. C. Hui, N. Larson, R. Strickley, J. Wells, K. S. Stuthman, S. A. Van Tongeren, N. L. Garza, G. Donnelly, A. C. Shurtleff, C. J. Retterer, D. Gharaibeh, R. Zamani, T. Kenny, B. P. Eaton, E. Grimes, L. S. Welch, L. Gomba, C. L. Wilhelmsen, D. K. Nichols, J. E. Nuss, E. R. Nagle, J. R. Kugelman, G. Palacios, E. Doerffler, S. Neville, E. Carra, M. O. Clarke, L. Zhang, W. Lew, B. Ross,
Q. Wang, K. Chun, L. Wolfe, D. Babusis, Y. Park, K. M. Stray, I. Trancheva, J. Y. Feng, O. Barauskas, Y. Xu, P. Wong, M. R. Braun, M. Flint, L. K. McMullan, S. S. Chen, R. Fearns, S. Swaminathan, D. L. Mayers, C. F. Spiropoulou, W. A. Lee, S. T. Nichol, T. Cihlar, S. Bavari, Nature, 2016, 531, 381; DOI: 10.1038/nature 17180.
21. S. M. Reza Hashemian, T. Farhadi, A. A. Velayati, Drug Des., Dev. Ther., 2020, 14, 3215; DOI: 10.2147/DDDT. S261154.
22. M. Legraverend, Tetrahedron, 2008, 64, 8585; DOI: 10.1016/J.TET.2008.05.115.
23. J. Boryski, Nucleosides Nucleotides, 1996, 15, 771; DOI: 10.1080/07328319608002422.
24. A. Tokarenko, L. Poštová Slavětínská, B. Klepetářová, M. Hocek, Eur. J. Org. Chem., 2015, 7962; DOI: 10.1002/ EJOC. 201501219.
25. F. Wojciechowski, J. Lietard, C. J. Leumann, Org. Lett., 2012, 14, 5176; DOI: 10.1021/OL302150A.
26. T. Kubelka, L. Slavětínská, M. Hocek, Eur. J. Org. Chem., 2012, 2012, 4969; DOI: 10.1002/EJOC. 201200819.
27. A. Hatano, M. Okada, K. Dezaki, S. Hirai, Tetrahedron, 2015, 71, 1095; DOI: 10.1016/J.TET.2014.12.085.
28. M. Weinberger, H. A. Wagenknecht, Synthesis, 2012, 44, 648; DOI: 10.1055/S-0031-1289672.
29. M. Koszytkowska-Stawińska, E. Mironiuk-Puchalska, W. Sas, Tetrahedron Lett., 2011, 52, 1866; DOI: 10.1016/ J.TETLET.2011.02.018.
30. C. Lou, M. Shelbourne, K. R. Fox, T. Brown, Chem. Eur. J., 2011, 17, 14851; DOI: 10.1002/CHEM. 201102287.
31. M. Peifer, R. Berger, V. W. Shurtleff, J. C. Conrad, D. W. C. Macmillan, J. Am. Chem. Soc., 2014, 136, 5900; DOI: 10.1021/JA502205Q.
32. G. Wang, J. Wan, Y. Hu, X. Wu, M. Prhavc, N. Dyatkina, V. K. Rajwanshi, D. B. Smith, A. Jekle, A. Kinkade, J. A. Symons, Z. Jin, J. Deval, Q. Zhang, Y. Tam, S. Chanda, L. Blatt, L. Beigelman, J. Med. Chem., 2016, 59, 4611; DOI: 10.1021/ACS.JMEDCHEM.5B01933.
33. L. Maier, P. Khirsariya, O. Hylse, S. K. Adla, L. Černová, M. Poljak, S. Krajčovičová, E. Weis, S. Drápela, K. Souček, K. Paruch, J. Org. Chem., 2017, 82, 3382; DOI: 10.1021/ ACS.JOC.6B02594.
34. S. E. Metobo, J. Xu, O. L. Saunders, T. Butler, E. Aktoudianakis, A. Cho, C. U. Kim, Tetrahedron Lett., 2012, 53, 484; DOI: 10.1016/J.TETLET.2011.11.055.
35. A. Cho, O. L. Saunders, T. Butler, L. Zhang, J. Xu, J. E. Vela, J. Y. Feng, A. S. Ray, C. U. Kim, Bioorg. Med. Chem. Lett., 2012, 22, 2705; DOI: 10.1016/J.BMCL.2012.02.105.
36. A. Cho, L. Zhang, J. Xu, D. Babusis, T. Butler, R. Lee, O. L. Saunders, T. Wang, J. Parrish, J. Perry, J. Y. Feng, A. S. Ray, C. U. Kim, Bioorg. Med. Chem. Lett., 2012, 22, 4127; DOI: 10.1016/J.BMCL.2012.04.065.
37. A. Cho, L. Zhang, J. Xu, R. Lee, T. Butler, S. Metobo, V. Aktoudianakis, W. Lew, H. Ye, M. Clarke, E. Doerffler, D. Byun, T. Wang, D. Babusis, A. C. Carey, P. German, D. Sauer, W. Zhong, S. Rossi, M. Fenaux, J. G. McHutchison, J. Perry, J. Feng, A. S. Ray, C. U. Kim, J. Med. Chem., 2014, 57, 1812; DOI: 10.1021/ JM400201A.
38. T. A. Kirschberg, S. Metobo, M. O. Clarke, V. Aktoudianakis, D. Babusis, O. Barauskas, G. Birkus, T. Butler, D. Byun, G. Chin, E. Doerffler, T. E. Edwards, M. Fenaux, R. Lee, W. Lew, M. R. Mish, E. Murakami, Y. Park, N. H. Squires, N. Tirunagari, T. Wang, M. Whitcomb, J. Xu, H. Yang, H. Ye, L. Zhang, T. C. Appleby, J. Y. Feng, A. S. Ray, A. Cho, C. U. Kim, Bioorg. Med. Chem. Lett., 2017, 27, 1840; DOI: 10.1016/J.BMCL.2017.02.037.
39. D. Siegel, H. C. Hui, E. Doerffler, M. O. Clarke, K. Chun, L. Zhang, S. Neville, E. Carra, W. Lew, B. Ross, Q. Wang, L. Wolfe, R. Jordan, V. Soloveva, J. Knox, J. Perry, M. Perron, K. M. Stray, O. Barauskas, J. Y. Feng, Y. Xu, G. Lee, A. L. Rheingold, A. S. Ray, R. Bannister, R. Strickley, S. Swaminathan, W. A. Lee, S. Bavari, T. Cihlar, M. K. Lo, T. K. Warren, R. L. Mackman, J. Med. Chem., 2017, 60, 1648; DOI: 10.1021/ACS.JMEDCHEM. 6B01594.
40. T. Vieira, A. C. Stevens, A. Chtchemelinine, D. Gao, P. Badalov, L. Heumann, Org. Process Res. Dev., 2020, 24, 2113; DOI: 10.1021/ACS.OPRD.0C00172.
41. US Pat. 10023600B2.
42. US Pat. 2010021425A1.
43. F. Xue, X. Zhou, R. Zhou, X. Zhou, D. Xiao, E. Gu, X. Guo, J. Xiang, K. Wang, L. Yang, W. Zhong, Y. Qin, Org. Process Res. Dev., 2020, 24, 1772; DOI: 10.1021/ ACS.OPRD.0C00310.
44.A. G. Draffan, B. Frey, B. Pool, C. Gannon, E. M. Tyndall, M. Lilly, P. Francom, R. Hufton, R. Halim, S. Jahangiri, S. Bond, V. T. T. Nguyen, T. P. Jeynes, V. Wirth, A. Luttick, D. Tilmanis, J. D. Thomas, M. Pryor, K. Porter, C. J. Morton, B. Lin, J. Duan, G. Kukolj, B. Simoneau, G. McKercher, L. Lagacé, M. Amad, R. C. Bethell, S. P. Tucker, ACS Med. Chem. Lett., 2014, 5, 679; DOI: 10.1021/ML500077J.
44. T. Liu, Z. Zhu, H. Ren, Y. Chen, G. Chen, M. Cheng, D. Zhao, J. Shen, W. Zhu, B. Xiong, Y. L. Chen, Org. Chem. Front., 2018, 5, 1992; DOI: 10.1039/C8QO00165K.
45. Q. Li, E. Lescrinier, E. Groaz, L. Persoons, D. Daelemans, P. Herdewijn, S. De Jonghe, ChemMedChem, 2018, 13, 97; DOI: 10.1002/CMDC. 201700657.
46. P. Nie, E. Groaz, D. Daelemans, P. Herdewijn, Bioorg. Med. Chem. Lett., 2019, 29, 1450; DOI: 10.1016/ J.BMCL.2019.04.023.
47. P. Nie, E. Groaz, P. Herdewijn, Eur. J. Org. Chem., 2019, 6666; DOI: 10.1002/EJOC. 201901200.
48. G. B. Evans, R. H. Furneaux, G. J. Gainsford, V. L. Schramm, P. C. Tyler, Tetrahedron, 2000, 56, 3053; DOI: 10.1016/S0040-4020(00)00194-0.
49. M. Zhang, F. Xue, J. Ou, Y. Huang, F. Lu, B. Zhou, Z. Zheng, X. Y. Liu, W. Zhong, Y. Qin, Org. Chem. Front., 2020, 7, 3675; DOI: 10.1039/D0QO01026J.
50. Q. Dang, Z. Zhang, Y. Bai, R. Sun, J. Yin, T. Chen, S. Bogen, V. Girijavallabhan, D. B. Olsen, P. T. Meinke, Tetrahedron Lett., 2014, 55, 5576; DOI: 10.1016/ J.TETLET.2014.08.072.
51. Q. Dang, Z. Zhang, T. Chen, B. Tang, X. He, S. He, Y. Song, S. Bogen, V. Girijavallabhan, D. B. Olsen, P. T.

Meinke, Tetrahedron Lett., 2014, 55, 5092; DOI: 10.1016/ J.TETLET.2014.07.037.
53. Q. Li, E. Groaz, J. Rocha-Pereira, J. Neyts, P. Herdewijn, Eur. J. Med. Chem., 2020, 195, 112198; DOI: 10.1016/ J.EJMECH.2020.112198.
54. M. Minuth, W. Frey, C. Richert, Synlett, 2014, 25, 1438; DOI: 10.1055/S-0033-1341252.
55. D. K. Kölmel, L. J. Barandun, E. T. Kool, Org. Biomol. Chem., 2016, 14, 6407; DOI: 10.1039/C6OB01199C.
56. C. Glaser, Ber. Dtsch. Chem. Ges., 1869, 2, 422; DOI: 10.1002/CBER. 186900201183.
57. C. Glaser, Justus Liebigs Ann. Chem., 1870, 154, 137; DOI: 10.1002/JLAC. 18701540202.
58. Y. Luo, F. Gao, H. Liu, F. Zhang, Y. Zhao, Synthesis, 2020, 52, 1435; DOI: 10.1055/S-0039-1690808.
59. K. Sato, A. Matsuda, Curr. Protoc. Nucleic Acid Chem., 2019, 77; DOI: 10.1002/CPNC. 77.
60. H. Chapuis, T. Kubelka, N. Joubert, R. Pohl, M. Hocek, Eur. J. Org. Chem., 2012, 2012, 1759; DOI: 10.1002/ EJOC. 201101662.
61. T. Kubelka, L. Slavětínská, V. Eigner, M. Hocek, Org. Biomol. Chem., 2013, 11, 4702; DOI: 10.1039/C3OB40774H.
62. T. Kubelka, L. Slavtínská, M. Hocek, Synthesis, 2012, 44, 953; DOI: 10.1055/S-0031-1289694.
63. R. A. Dengale, S. R. Thopate, T. Lönnberg, ChemPlusChem, 2016, 81, 978; DOI: 10.1002/CPLU. 201600258.
64. M. Serpi, R. De Biasi, F. Pertusati, M. Slusarczyk, C. McGuigan, ChemistryOpen, 2017, 6, 424; DOI: 10.1002/ OPEN. 201700019.
65. J. Chiba, M. Inouye, Curr. Protoc. Nucleic Acid Chem., 2015, 61, 4.62.1; DOI: 10.1002/0471142700.NC0462S61.
66. M. Lefoix, G. Mathis, T. Kleinmann, J. C. Truffert, U. Asseline, J. Org. Chem., 2014, 79, 3221; DOI: 10.1021/ JO5000253.
67. M. Weinberger, F. Berndt, R. Mahrwald, N. P. Ernsting, H. A. Wagenknecht, J. Org. Chem., 2013, 78, 2589; DOI: 10.1021/JO302768F.
68. Y. Ma, S. Liu, Y. Xi, H. Li, K. Yang, Z. Cheng, W. Wang, Y. Zhang, Chem. Commun., 2019, 55, 14657; DOI: 10.1039/C9CC07184A.
69. H. Tachallait, M. Safir Filho, H. Marzag, K. Bougrin, L. Demange, A. R. Martin, R. Benhida, New J. Chem., 2019, 43, 5551; DOI: 10.1039/C8NJ06300A.
70. K. Okamoto, M. Tsutsui, H. Morizumi, Y. Kitano, K. Chiba, Eur. J. Org. Chem., 2021, 2479; DOI: 10.1002/ EJOC. 202100106.
71. J. Bouton, S. Van Calenbergh, J. Hullaert, Org. Lett., 2020, 22, 9287; DOI: 10.1021/ACS.ORGLETT.0C03523.
72. M. Abdel, A. El-Hashash, A. Youssef Soliman, I. E. ElShamy, Turk. J. Chem., 2021, 36, 347; DOI: 10.3906/ kim-1111-52.
73. K. Clinch, D. R. Crump, G. B. Evans, K. Z. Hazleton, J. M. Mason, V. L. Schramm, P. C. Tyler, Bioorg. Med. Chem., 2013, 21, 5629; DOI: 10.1016/J.BMC.2013.02.016.
74. Q. Wang, C. Ma, X. Li, X. Wang, R. Rong, C. Wei, P. Zhang, X. Li, Carbohydr. Res., 2018, 460, 29; DOI: 10.1016/J.CARRES.2018.02.012.
75. J. Štambaský, V. Kapras, M. Štefko, O. Kysilka, M. Hocek, A. V. Malkov, P. Kočovský, J. Org. Chem., 2011, 76, 7781; DOI: 10.1021/JO201110Z.
76. R. R. Midtkandal, P. Redpath, S. A. J. Trammell, S. J. F. MacDonald, C. Brenner, M. E. Migaud, Bioorg. Med. Chem. Lett., 2012, 22, 5204; DOI: 10.1016/J.BMCL. 2012.06.069.
77. J. Miguélez, V. R. Batchu, A. Boto, J. Org. Chem., 2012, 77, 7652; DOI: 10.1021/JO301031T.
78. S. V. Giofrè, R. Romeo, C. Carnovale, R. Mancuso, S. Cirmi, M. Navarra, A. Garozzo, M. A. Chiacchio, Molecules, 2015, 20, 5260; DOI: 10.3390/ MOLECULES20045260.
79. E. Coutouli-Argyropoulou, S. Trakossas, Tetrahedron, 2011, 67, 1915; DOI: 10.1016/J.TET.2011.01.020.
80. F. Cermola, S. Vella, M. Dellagreca, A. Tuzi, M. R. Iesce, Molecules, 2021, 26, 2341; DOI: 10.3390/ MOLECULES26082341.
81. W. A. El-Sayed, I. F. Nassar, A. A. H. Abdel-Rahman, J. Heterocycl. Chem., 2011, 48, 135; DOI: 10.1002/ JHET. 522.
82. M. A. El-Hashash, K. M. Darwish, S. A. Rizk, F. A. ElBassiouny, Glob. J. Health Sci., 2012, 4, 174; DOI: 10.5539/GJHS.V4N1P174.
83. A. Ghoneim, A. El-Farargy, Lett. Org. Chem., 2015, 12, 13; DOI: 10.2174/1570178611666140304000403.
84. S. Harusawa, H. Yoneyama, D. Fujisue, M. Nishiura, M. Fujitake, Y. Usami, Z. Y. Zhao, S. A. Mcphee, T. J. Wilson, D. M. J. Lilley, Tetrahedron Lett., 2012, 53, 5891; DOI: 10.1016/J.TETLET.2012.08.082.
85. M. Popsavin, M. Svirčev, L. Torović, G. Bogdanović, V. Kojić, D. Jakimov, S. Spaić, L. Aleksić, V. Popsavin, Tetrahedron, 2011, 67, 6847; DOI: 10.1016/J.TET. 2011. 06.090 .
86. M. Popsavin, S. Spaić, M. Svirčev, V. Kojić, G. Bogdanović, V. Popsavin, Bioorg. Med. Chem. Lett., 2012, 22, 6700; DOI: 10.1016/J.BMCL.2012.08.093.
87. M. Popsavin, V. Kojić, S. Spaić, M. Svirčev, G. Bogdanović, D. Jakimov, L. Aleksić, V. Popsavin, Tetrahedron, 2014, 70, 2343; DOI: 10.1016/J.TET.2014.02.035.
88. S. Penjarla, S. Kumar Sabui, D. Sudhakar Reddy, S. Banerjee, P. Yella Reddy, S. Penta, Y. S. Sanghvi, Bioorg. Med. Chem. Lett., 2020, 30, 127612; DOI: 10.1016/J.BMCL. 2020.127612.
89. P. V. Reddy, M. Saquib, N. N. Mishra, P. K. Shukla, A. K. Shaw, Arkivoc, 2014, Part iv, 170; DOI: 10.3998/ ARK.5550190.P008.374.
90. N. Sabat, E. Migianu-Griffoni, T. Tudela, M. Lecouvey, S. Kellouche, F. Carreiras, F. Gallier, J. Uziel, N. LubinGermain, Eur. J. Med. Chem., 2020, 188, 112009; DOI: 10.1016/J.EJMECH.2019.112009.
91. S. S. Bag, S. K. Das, Tetrahedron, 2019, 75, 3024; DOI: 10.1016/J.TET.2019.04.038.
92. H. Liu, Y. Liang, T. T. Jia, F. Han, F. Zhang, Y. Zhao, Eur. J. Org. Chem., 2017, 1443; DOI: 10.1002/EJOC. 201601506.
93. X. Zhou, T. Jia, Y. Luo, H. Liu, F. Zhang, Y. Zhao, Org. Biomol. Chem., 2020, 18, 1800; DOI: 10.1039/ C9OB02717C.
94. D. A. Bianchi, R. Moran-Ramallal, N. Iqbal, F. Rudroff, M. D. Mihovilovic, Bioorg. Med. Chem. Lett., 2013, 23, 2718; DOI: 10.1016/J.BMCL.2013.02.085.
95. F. Rudroff, D. A. Bianchi, R. Moran-Ramallal, N. Iqbal, D. Dreier, M. D. Mihovilovic, Tetrahedron, 2016, 72, 7212; DOI: 10.1016/J.TET.2015.11.048.
96. C. Solarte, M. Dos Santos, S. Gonzalez, L. S. M. Miranda, R. Guillot, A. Ferry, F. Gallier, J. Uziel, N. Lubin-Germain, Synthesis, 2017, 49, 1993; DOI: 10.1055/S-0036-1588409.
97. P. Redpath, K. A. Ness, J. Rousseau, S. J. F. Macdonald, M. E. Migaud, Carbohydr. Res., 2015, 402, 25; DOI: 10.1016/J.CARRES.2014.10.030.
98. G. Legrave, R. A. Youcef, D. Afonso, A. Ferry, J. Uziel, N. Lubin-Germain, Carbohydr. Res., 2018, 462, 50; DOI: 10.1016/J.CARRES.2018.04.005.
99. S. Kim, J. H. Hong, Nucleosides, Nucleotides Nucleic Acids, 2015, 34, 848; DOI: 10.1080/15257770.2015.1079327.
100. E. Kim, J. H. Hong, Nucleosides, Nucleotides Nucleic Acids, 2015, 34, 737; DOI: 10.1080/15257770.2015.1072636.
101. S. Kim, J. H. Hong, Nucleosides, Nucleotides Nucleic Acids, 2015, 34, 708; DOI: 10.1080/15257770.2015.1071847.
102. S. Kim, E. Kim, C.-H. Oh, K. Ho Yoo, J. Hee Hong, Bull. Korean Chem. Soc., 2014, 35; DOI: 10.5012/ bkcs.2014.35.12.3502.
103. H. Waechtler, D. P. Fuentes, J. A. Q. Suarez, D. Michalik, A. Villinger, U. Kragl, C. Vogel, Arkivoc, 2012, Part iii, 110; DOI: 10.3998/ARK.5550190.0013.310.
104. Y. Zhang, W. Ye, H. Wang, S. W. Schneller, Synthesis, 2012, 44, 723; DOI: 10.1055/S-0031-1289688.
105. I. A. S. Smellie, R. M. Paton, Arkivoc, 2012, Part i, 49; DOI: 10.3998/ARK.5550190.0013.905.
106. M. Kong, X. Zhou, Q. Chen, F. Zhang, Y. Zhao, Carbohydr. Res., 2021, 505, 108337; DOI: 10.1016/ J.CARRES.2021.108337.
107. D. Neas, D. Hidasová, M. Hocek, M. Kotora, Org. Biomol. Chem., 2011, 9, 5934; DOI: 10.1039/C1OB05844D.
108. W. Ye, S. W. Schneller, Synthesis, 2014, 47, 228; DOI: 10.1055/S-0034-1378910.
109. S. A. Patil, B. A. Otter, R. S. Klein, Tetrahedron Lett., 1994, 35, 5339; DOI: 10.1016/S0040-4039(00)73494-0.

Received May 24, 2023; in revised form July 29, 2023;
accepted September 2, 2023

[^0]: * Rusinov Vladimir Leonidovich, born in 1947, Head of the Department of Organic and Biomolecular Chemistry, Head of the Laboratory of Organic Synthesis at the Scientific and Educational Innovation Center for Chemical and Pharmaceutical Technologies at the Ural Federal University named after the first President of Russia B. N. Yeltsin (UrFU), Corresponding Member of the Russian Academy of Sciences (RAS), Honored Chemist of the Russian Federation, laureate of the Prize of the Council of Ministers of the USSR, laureate of the N. D. Zelinsky Prize of the RAS, laureate of the International Prize Prix Galien Russia. V. L. Rusinov is a recognized specialist in the field of organic, heterocyclic and medicinal chemistry. He is the author of 437 scientific and educational articles (including 7 monographs and book chapters, 22 reviews, and 401 article in Russian and foreign journals), 107 inventor's certificates and patents. V. L. Rusinov made a significant contribution to the concept of nucleophilic substitution of hydrogen. He discovered new reactions and carried out mechanistic studies on nucleophilic substitution of hydrogen in azine salts and azine N-oxides. Using ${ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ isotopic labels, the mechanisms of transformation of azines in the presence of nucleophiles were studied. He developed synthetic procedures and studied properties of a wide range of (nitroaza) purines, bearing one or more heterocyclic nitrogen atoms and an exocyclic nitro group. He participated in the development of a new class of antiviral drugs. The first representative of this series, Triazavirin, was produced on an industrial scale since 2014 and its effectiveness for the treatment and prevention of influenza, SARS, tick-borne encephalitis, and COVID-19 was confirmed. A new class of antidiabetic compounds was found; the antiglycating drug AB-19 is being introduced into practice for the prevention and treatment of the complications of type 2 diabetes mellitus. V. L. Rusinov is a supervisor of the master's program "Pharmaceutical Production Management" at UrFU. Under supervision of V. L. Rusinov, 19 PhD theses and two Doctor of Chemical Sciences (Habilitation) theses were devoted.

