Skip to main content
Log in

Physicochemical and biological properties of aqueous herbicide compositions based on N-(phosphonomethyl)glycine and succinic acid in a range of low concentrations

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Self-organization, physicochemical properties (specific electrical conductivity, surface tension), UV absorption, and fluorescence of aqueous herbicide compositions based on N-(phosphonomethyl)glycine and plant growth regulator succinic acid (SA) were studied in a range of herbicide concentrations of 1·10−19−1·10−1 g L−1 at the constant concentrations of SA 1·10−3 g L−1 (series 1) and 1·10−13 g L−1 (series 2). Such compositions are used in agriculture for decreasing toxic effects on cultural plants and environment. A comparison of the nonmonotonic concentration dependences of the size and ξ-potential of the disperse phase, properties, and bioeffects of systems 1 and 2 revealed significant distinctions in these compositions in the ability of self-organization and surfactant properties, which can cause, as a whole, their substantial difference in the degree of harmful influence on aquatic life and higher plants. The influence of the compositions of series 1 is accompanied by a decrease in the harmful effect on the chosen biological test objects compared to the herbicide, and that of series 2 results in an almost complete elimination of the harmful effect against multicellular organisms (cladocerans and wheat roots) and an insignificant effect on unicellular aquatic life (infusoria and algae). The influence of the compositions of series 2 on aquatic life is related to the formation of a negatively charged disperse phase accompanied by an increase in the fluorescence intensity in a range of 300–360 nm (λexc = 225 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hormesis: a Revolution in Biology, Toxicology and Medicine, 1st ed., Springer, New York, 2009.

  2. N. L. Shimanovskii, M. A. Epinetov, M. Ya. Mel’nikov, Molekulyarnaya i nanofarmakologiya [Molecular and Nanopharmacology], Fizmatlit, Moscow, 2010, 624 pp. (in Russian).

    Google Scholar 

  3. E. B. Burlakova, A. A. Konradov, E. L. Mal’tseva, Khim. Fiz. [Chem. Phys.], 2003, 22, No. 2, 2 (in Russian).

    Google Scholar 

  4. L. A. Fedorov, A. V. Yablokov, Pestitsidy - toksicheskii udar po biosfere i cheloveku [Pesticides As a Toxic Impact on Biosphere and Humans], Nauka, Moscow, 1999, 462 pp. (in Russian).

    Google Scholar 

  5. S. M. Ross, I. C. McManus, V. Harrison, O. Mason, Crit. Rev. Toxicol., 2013, 43, No. 1, 21; DOI: https://doi.org/10.3109/10408444.2012.738645.

    Article  CAS  Google Scholar 

  6. S. E. Hearon, M. Wang, Th. J. McDonald, T. D. Phillips, J. Environ. Sci., 2021, 100, 131; DOI: https://doi.org/10.1016/j.jes.2020.06.029.

    Article  Google Scholar 

  7. L. H. M. L. M. Santos, A. N. Araujo, A. Fachini, A. Pena, C. Delerue-Matos, M. C. B. S. M. Montenegro, J. Hazard. Mater., 2010, 175, 45; DOI: https://doi.org/10.1016/j.jhazmat.2009.10.100.

    Article  CAS  Google Scholar 

  8. F. T. Mathias, D. H. Fockink, G. R. Disner, V. Prodocimo, J. L. C. Ribas, L. P. Ramos, M. M. Cestari, H. C. Silva de Assis, Environ. Toxicol. Pharmacol., 2018, 59, 105; DOI: https://doi.org/10.1016/j.etap.2018.03.008.

    Article  CAS  Google Scholar 

  9. Yu. Li, M. A. Taggart, C. McKenzie, Z. Zhang, Yo. Lu, S. Pap, S. W. Gibb, J. Environ. Sci., 2021, 100, 18; DOI: https://doi.org/10.1016/j.jes.2020.07.013.

    Article  Google Scholar 

  10. L. K. M. Chow, T. M. Ghaly, M. R. Gillings, J. Environ. Sci., 2021, 99, 21; DOI: https://doi.org/10.1016/j.jes.2020.05.030.

    Article  Google Scholar 

  11. I. S. Ryzhkina, Yu. V. Kiseleva, L. I. Murtazina, T. V. Kuznetsova, E. R. Zainulgabidinov, I. V. Knyazev, A. M. Petrov, S. E. Kondakov, A. I. Konovalov, J. Environ. Sci., 2020, 88, 177; DOI: https://doi.org/10.1016/j.jes.2019.08.013.

    Article  Google Scholar 

  12. I. S. Ryzhkina, S. Yu. Sergeeva, L. I. Murtazina, L. R. Sabirzyanova, T. V. Kuznetsova, E. R. Zainulgabidinov, I. V. Knyazev, A. M. Petrov, A. I. Konovalov, Russ. J. Gen. Chem., 2017, 87, 2838; DOI: https://doi.org/10.1134/S1070363217120131.

    Article  CAS  Google Scholar 

  13. I. S. Ryzhkina, S. Yu. Sergeeva, L. I. Murtazina, M. D. Shevelev, L. R. Akhmetzyanova, T. V. Kuznetsova, E. R. Zaynulgabidinov, I. V. Knyazev, A. M. Petrov, A. I. Konovalov, Russ. Chem. Bull., 2018, 67, 792; DOI: https://doi.org/10.1007/s11172-018-2139-y.

    Article  CAS  Google Scholar 

  14. I. S. Ryzhkina, S. Yu. Sergeeva, L. I. Murtazina, L. R. Akhmetzyanova, T. V. Kuznetsova, I. V. Knyazev, A. M. Petrov, I. S. Dokuchaeva, A. I. Konovalov, Russ. Chem. Bull., 2019, 68, 334; DOI: https://doi.org/10.1007/s11172-019-2389-3.

    Article  CAS  Google Scholar 

  15. I. S. Ryzhkina, L. I. Murtazina, L. A. Kostina, D. A. Sharapova, M. D. Shevelev, E. R. Zainulgabidinov, A. M. Petrov, A. I. Konovalov, Russ. Chem. Bull, 2021, 70, 81.

    Article  CAS  Google Scholar 

  16. N. P. Tarasova, A. S. Makarova, Russ. Chem. Bull., 2016, 65, 1383; DOI: https://doi.org/10.1007/2Fs11172-016-1467-z.

    Article  CAS  Google Scholar 

  17. D. Marotta, A. Marini, K. Banaudha, S. V. M. Maharaj, W. B. Jonas, Int. J. Neurosci., 2003, 113, 491; DOI: https://doi.org/10.1080/00207450390162245.

    Article  Google Scholar 

  18. Yu. I. Zakhar’eva, A. L. Vereshchagin, Sovr. Probl. Nauki Obraz. [Modern Problems of Science and Education], 2015, 3, 589 (in Russian).

    Google Scholar 

  19. F. F. Niyazi, N. V. Kuvardin, E. A. Fat’yanova, Bull. South-West. State Univ. [Izv. Yugo-Zapad. Gos. Un-ta], 2012, 40, No. 1, 248 (in Russian).

    Google Scholar 

  20. I. Ryzhkina, L. Murtazina, Kh. Gainutdinov, A. Konovalov, Front. Chem., 2021, 9, 623860; DOI: https://doi.org/10.3389/fchem.2021.623860.

    Article  CAS  Google Scholar 

  21. A. S. Lukatkin, A. S. Semenova, A. A. Lukatkin, Agrokhimiya [Agrochemistry], 2016, 73 (in Russian).

  22. D. V. Kotlyarov, V. V. Kotlyarov, Yu. P. Fedulov, Fiziologicheski-aktivnye veshchestva v agrotekhnologiyakh [Physicologically Active Substances in Agricultural Technologies], KubGAU, Krasnodar, 2016, 224 pp. (in Russian).

    Google Scholar 

  23. I. S. Ryzhkina, L. I. Murtazina, S. Yu. Sergeeva, L. A. Kostina, D. A. Sharapova, M. D. Shevelev, A. I. Konovalov, Environmental Technol. Innovation, 2021, 101215; DOI: https://doi.org/10.1016/j.eti.2020.101215.

  24. http://www.agro.basf.ruroundup_sert.pdf.

  25. Federative Environmental Normative Document (FEND) T 14.1:2:3.13-06, T 16.1:2.3:3.10-06, Metodika opredeleniya toksichnosti otkhodov, pochv, osadkov stochnykh, poverkh-nostnykh i gruntovykh vod metodom biotestirovaniya s ispol’sovaniem ravnoresnichnykh infuzorii Paramecium caudatum Ehrenberg [Procedure for determination of toxicity of wastes, soils, and deposits in sewage, surface, and subsoil waters by biotesting using Holotricha infusoria Paramecium caudatum Ehrenberg] (in Russian); http://fles.stroyinf.ru/Data2/1/4293767/4293767837.htm.

  26. Federal Register 1.39.2007.03221, Metodika opredeleniya toksichnosti vody i vodnykh vytyazhek iz pochv, osadkov stochnykh vod, otkhodov po smertnosti i izmeneniyu plodovitosti tseriodafnii [Procedure for Determination of Toxicity of Water and Aqueous Extracts from Soils, Sewage Deposits, and Wastes from Mortality and Changing Fertility of Ceriodaphnia dubia], AKVAROS, Moscow, 2007, 52 pp. (in Russian); http://gostrf.com/normadata/1/4293842/4293842244.pdf.

  27. Federative Environmental Normative Document (FEND) T 14.1:2:3:4.10-04, T 16.1:2:2.3:3.7-04, Metodika opredeleniya opticheskoi plotnosti kul’tury vodorosli khlorella Chlorella vulgaris Beijer dlya opredeleniya toksichnosti pit’evykh, presnykh prirodnykh vytyazhek iz gruntov, pochv, osadkov stochnykh vod otkhodov proizvodstva i potrebleniya [Procedure for determination of the absorbance of the culture of Chlorella vulgaris Beijer algae for determination of toxicity of drinking, sweet natural, and sewage waters, aqueous extracts from grounds, soils, and sewage deposits from industry and consumers] (in Russian); https://standartgost.ru/g/%D0%9F%D0%9D%D0%94_%D0%A4_%D0%A2_14.1: 2:3:4.10-04.

  28. MR 2.1.7.2297-07. Obosnovanie klassa opasnosti otkhodov proizvodstva i potrebleniya po fitotoksichnosti. 2.1.7. Pochva. Ochistka naselennykh mest. Bytovye i promyshlennye otkhody [Substantiation of the Class of Danger of Industrial and Consumer Wastes on Phytotoxicity. 2.1.7. Soil. Decontamination of Populated Localities. Domestic and Industrial Wastes], Federal Center of Hygiene and Epidemiology of Rospot-rebnadzor, Moscow, 2007, 7 pp. (in Russian).

  29. I. S. Ryzhkina, S. Yu. Sergeeva, R. A. Safiullin, S. A. Ryzhkin, A. B. Margulis, L. I. Murtazina, A. P. Timosheva, A. V. Chernova, M. K. Kadirov, A. I. Konovalov, Russ. Chem. Bull., 2016, 65, 1327; DOI: https://doi.org/10.1007/s11172-016-1477-x.

    Article  Google Scholar 

  30. I. S. Ryzhkina, Yu. V. Kiseleva, O. A. Mishina, L. I. Murtazina, A. I. Litvinov, M. K. Kadirov, A. I. Konovalov, Russ. Chem. Bull., 2015, 64, 579; DOI: https://doi.org/10.1007/s11172-015-0903-9.

    Article  CAS  Google Scholar 

  31. A. I. Konovalov, I. S. Ryzhkina, Russ. Chem. Bull., 2014, 63, 1; DOI: https://doi.org/10.1007/s11172-014-0388-y.

    Article  CAS  Google Scholar 

  32. I. S. Ryzhkina, L. I. Murtazina, M. D. Shevelev, L. R. Akhmetzyanova, I. V. Galkina, T. V. Kuznetsova, I. V. Knyazev, A. M. Petrov, A. I. Konovalov, Phosphorus, Sulfur, and Silicon and the Related Elements, 2019, 194, 497; DOI: https://doi.org/10.1080/10426507.2018.1540485

    Article  CAS  Google Scholar 

  33. I. S. Ryzhkina, S. Yu. Sergeeva, Yu. V. Kiseleva, A. P. Timosheva, O. A. Salakhutdinova, M. D. Shevelev, A. I. Konovalov, Mendeleev Commun., 2018, 28, 66; DOI: https://doi.org/10.1016/j.mencom.2018.01.022.

    Article  CAS  Google Scholar 

  34. A. I. Konovalov, E. L. Mal’tseva, I. S. Ryzhkina, L. I. Murtazina, Y. V. Kiseleva, V. V. Kasparov, N. P. Pal’mina, Dokl. Phys. Chem., 2014, 456, No. 2, 86; DOI: https://doi.org/10.7868/S0869565214170174.

    Article  CAS  Google Scholar 

  35. I. S. Ryzhkina, Yu. V. Kiseleva, L. I. Murtazina, N. P. Pal’mina, V. V. Belov, E. L. Mal’tseva, E. D. Sherman, A. P. Timosheva, A. I. Konovalov, Dokl. Phys. Chem., 2011, 438, No. 5, 109; DOI: https://doi.org/10.1134/S0012501612110036.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Ryzhkina.

Additional information

The authors are sincerely grateful to I. V. Knyazev and E. R. Zainulgabidinov (Institute for Problems of Ecology and Mineral Wealth Use, Tatarstan Academy of Sciences) for studying the effect of aqueous compositions of herbicide Raundup and succinic acid on the growth and development of aquatic life and plants.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 20-03-00069).

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

† Deceased.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1499–1508, August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryzhkina, I.S., Murtazina, L.I., Kostina, L.A. et al. Physicochemical and biological properties of aqueous herbicide compositions based on N-(phosphonomethyl)glycine and succinic acid in a range of low concentrations. Russ Chem Bull 70, 1499–1508 (2021). https://doi.org/10.1007/s11172-021-3245-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3245-9

Key words

Navigation