Skip to main content
Log in

Chemical vapor deposition of iron-containing films during the decomposition of trimethylamine borane-ferrocene (or iron pentacarbonyl) mixtures: a thermodynamic modeling

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Chemical vapor deposition (CVD) of films of complex composition using trimethylamine borane- ferrocene (or iron pentacarbonyl) mixtures in the systems B-C-N-H-Fe-O and B-C-N-H-Fe at reduced pressures (0.1–10 Torr) in a wide temperature range of 300–1300 K was simulated. The corresponding CVD diagrams were calculated and the regions of formation of the phase complexes BN + Fe + C, BN + Fe2C + C, and BN + Fe2C + FeB + C were determined. Simulation of the systems C-H-Fe-Ar, C-H-Fe-Si-Ar, C-H-Fe-Si-O-Ar, and C-H-Fe-Al-O-Ar during the decomposition of ferrocene on substrates of different nature (Si, SiO2, Al2O3) was carried out. The possibility of formation of transition layers containing (i) iron silicides and silicon carbide on the Si and SiO2 substrates already at low temperatures and (ii) aluminum carbide on the Al2O3 substrate at high temperatures is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Liang, X. Liao, Q. Zhu, Z. Yang, D. Jia, Y. Zhou, J. Am. Ceram. Soc., 2020, 103, 4189; DOI: https://doi.org/10.1111/jace.17168.

    Article  CAS  Google Scholar 

  2. G. Barroso, Q. Li, R. K. Bordia, G. Motz, J. Mater. Chem. A, 2019, 7, 1936; DOI: https://doi.org/10.1039/c8ta09054h.

    Article  CAS  Google Scholar 

  3. I. S. Merenkov, H. Katsui, M. N. Khomyakov, V. S. Sulyaeva, R. V. Pushkarev, R. Tu, T. Goto, M. L. Kosinova, J. Eur. Ceram. Soc., 2019, 39, 5123; DOI: https://doi.org/10.1016/j.jeurceramsoc.2019.08.006.

    Article  CAS  Google Scholar 

  4. N. B. Kondrashova, A. I. Lebedev, S. N. Lysenko, V. A. Valtsifer, V. N. Strelnikov, Inorg. Mater., 2019, 55, 673; DOI: https://doi.org/10.1134/S0020168519060062.

    Article  CAS  Google Scholar 

  5. R. A. Dvorikova, M. M. Il’in, A. A. Korlyukov, M. I. Buzin, I. V. Shchetinin, Russ. Chem. Bull., 2020, 69, 1151; DOI: https://doi.org/10.1007/s11172-020-2882-8.

    Article  CAS  Google Scholar 

  6. R. A. Dvorikova, A. S. Peregudov, A. A. Korlyukov, M. I. Buzin, I. V. Nagornova, V. A. Vasnev, Russ. Chem. Bull., 2019, 68, 1435; DOI: https://doi.org/10.1007/s11172-019-2573-5.

    Article  CAS  Google Scholar 

  7. A. M. Demin, T. G. Khonina, E. V. Shadrina, E. A. Bogdanova, D. K. Kuznetsov, A. V. Mekhaev, V. Ya. Shur, V. P. Krasnov, Russ. Chem. Bull., 2019, 68, 1178; DOI: https://doi.org/10.1007/s11172-019-2536-x.

    Article  CAS  Google Scholar 

  8. R. Wei, E. Langa, C. Rincon, J. H. Arps, Surf. Coat. Technol., 2006, 201, 4453; DOI: https://doi.org/10.1016/j.surfcoat.2006.08.091.

    Article  CAS  Google Scholar 

  9. L. Chareyre, S. Cerneaux, D. Cornu, V. Rouessac, Thin Solid Films, 2013, 527, 87; DOI: https://doi.org/10.1016/j.tsf.2012.12.004.

    Article  CAS  Google Scholar 

  10. L. Qiu, Y. Du, L. Wu, S. Wang, J. Zhu, W. Cheng, Z. Tan, L. Yin, Z. Liu, A. Layyous, Surf. Coat. Technol., 2019, 378, 124956; DOI: https://doi.org/10.1016/j.surfcoat.2019.124956.

    Article  CAS  Google Scholar 

  11. R. Pushkarev, N. Fainer, V. Kirienko, A. Matsynin, V. Nadolinnyy, I. Merenkov, S. Trubina, S. Ehrenburg, K. Kvashnina, J. Mater. Chem. C., 2019, 7, 4250; DOI: https://doi.org/10.1039/c9tc00299e.

    Article  CAS  Google Scholar 

  12. Y. Feng, X. Guo, H. Gong, Y. Zhang, Y. Liu, X. Lin, J. Mao, Ceram. Inter., 2018, 44, 10420; DOI: https://doi.org/10.1016/j.ceramint.2018.03.058.

    Article  CAS  Google Scholar 

  13. C. Skjöldebrand, G. Hulsart-Billström, H. Engqvist, C. Persson, Materials, 2020, 13, 2074; DOI: https://doi.org/10.3390/ma13092074.

    Article  PubMed Central  CAS  Google Scholar 

  14. D. Zhong, E. Sutter, J. J. Moore, G. G. W. Mustoe, E. A. Levashov, J. Disam, Thin Solid Films, 2001, 398–399, 320; DOI: https://doi.org/10.1016/S0040-6090(01)01344-X.

    Article  Google Scholar 

  15. C. Kainz, N. Schalk, M. Tkadletz, C. Mitterer, C. Czettl, Thin Solid Films, 2019, 688, 137283; DOI: https://doi.org/10.1016/j.tsf.2019.05.002.

    Article  CAS  Google Scholar 

  16. J. Houska, P. Steidl, J. Vlcek, J. Martan, Ceram. Inter., 2016, 42, 4361, DOI: https://doi.org/10.1016/j.ceramint.2015.11.115.

    Article  CAS  Google Scholar 

  17. J. Vlček, P. Steidl, J. Kohout, R. Čerstvý, P. Zeman, Š. Prokšová, V. Peřina, Surf. Coat. Technol., 2013, 215, 186; DOI: https://doi.org/10.1016/j.surfcoat.2012.08.084.

    Article  CAS  Google Scholar 

  18. Q. Ma, F. Zhou, Q. Wang, Z. Wu, K. Chen, Z. Zhou, L. Kwok-Yan Li., RSC Adv., 2016, 6, 47698; DOI: https://doi.org/10.1039/c6ra09264k.

    Article  CAS  Google Scholar 

  19. X. Meng, T. Zhang, J. Zhang, G. Qu, L. Wu, H. Liu, H. Zhao, B. Zhong, L. Xia, X. Huang, G. Wen, Nanotechnology, 2020, 31, 255710; DOI: https://doi.org/10.1088/1361-6528/ab758c.

    Article  CAS  PubMed  Google Scholar 

  20. R. Nandan, K. K. Nanda, J. Mater. Chem. A, 2017, 5, 16843; DOI: https://doi.org/10.1039/c7ta04597b.

    Article  CAS  Google Scholar 

  21. S. D. Nehate, A. K. Saikumar, A. Prakash, K. B. Sundaram, Mater. Today Adv., 2020, 8, 100106; DOI: https://doi.org/10.1016/j.mtadv.2020.100106.

    Article  Google Scholar 

  22. L. Souqui, J. Palisaitis, H. Hogberg, H. Pedersen, J. Mater. Chem. C, 2020, 8, 4112; DOI: https://doi.org/10.1039/d0tc00616e.

    Article  CAS  Google Scholar 

  23. V. S. Sulyaeva, Yu. M. Rumyantsev, M. L. Kosinova, A. N. Golubenko, N. I. Fainer, F. A. Kuznetsov, Surf. Coat. Technol., 2007, 201, 9009; DOI: https://doi.org/10.1016/j.surfcoat.2007.04.016.

    Article  CAS  Google Scholar 

  24. M. L. Kosinova, E. A. Maximovskii, Yu. M. Rumyantsev, N. I. Fainer, F. A. Kuznetsov, Nucl. Inst. Methods Phys. Res., A, 2001, 470, 253; DOI: https://doi.org/10.1016/S0168-9002(01)01070-1.

    Article  CAS  Google Scholar 

  25. V. S. Sulyaeva, M. L. Kosinova, Yu. M. Rumyantsev, V. G. Kesler, F. A. Kuznetsov, Surf. Coat. Technol., 2013, 230, 145; DOI: https://doi.org/10.1016/j.surfcoat.2013.06.018.

    Article  CAS  Google Scholar 

  26. O. Baake, P. S. Hoffmann, M. L. Kosinova, A. Klein, B. Pollakowski, B. Beckhoff, N. I. Fainer, V. A. Trunova, W. Ensinger, Anal. Bioanal. Chem., 2010, 398, 1077; DOI: https://doi.org/10.1007/s00216010-3965-4.

    Article  CAS  PubMed  Google Scholar 

  27. J. Zhang, W. Xie, X. Xu, S. Zhang, J. Zhao, Chem. Mater., 2016, 28(14), 5022; DOI: https://doi.org/10.1021/acs.chemmater.6b01764.

    Article  CAS  Google Scholar 

  28. Y. Fang, I. S. Merenkov, X. Li, J. Xu, S. Lin, M. L. Kosinova, X. Wang, J. Mater. Chem. A, 2020, 8(26), 13059; DOI: https://doi.org/10.1039/d0ta04593d.

    Article  CAS  Google Scholar 

  29. M. Zhang, M. Zhou, Z. Luo, J. Zhang, S. Wang, X. Wang, Chem. Commun., 2020, 56, 2558; DOI: https://doi.org/10.1039/c9cc09524a.

    Article  CAS  Google Scholar 

  30. P. Chithaiah, K. Pramoda, G. U. Kulkarni, C. N. R. Rao, Eur. J. Inorg. Chem, 2020, 2020(13), 1230; DOI: https://doi.org/10.1002/ejic.201901362.

    Article  CAS  Google Scholar 

  31. S. Zeng, W. Feng, H. Luo, Y. Tan, Y. Wang, H. Zhang, T. Zhang, S. Peng, Chem. Phys. Lett., 2017, 674, 164; DOI: https://doi.org/10.1016/j.cplett.2017.02.075.

    Article  CAS  Google Scholar 

  32. J. Lü, H. Li, P. Zhu, X. Lü, Y. Li, Appl. Surf. Sci., 2011, 257, 4963; DOI: https://doi.org/10.1016/j.apsusc.2011.01.004.

    Article  CAS  Google Scholar 

  33. Silicon Carbide - Materials, Processing and Applications in Electronic Devices, Ed. M. Mukherjee, InTech, Rijeka, Croatia, 2011, 546 p.

    Google Scholar 

  34. P. S. Hoffmann, O. Baake, M. L. Kosinova, B. Beckhoff, A. Klein, B. Pollakowski, V. A. Trunova, V. S. Sulyaeva, F. A. Kuznetsov, W. Ensinger, X-Ray Spectrometry, 2012, 41, 240; DOI: https://doi.org/10.1002/xrs.2387.

    Article  CAS  Google Scholar 

  35. P. A. Dowben, O. Kizilkaya, J. Liu, B. Montag, K. Nelson, I. Sabirianov, J. I. Brand, Mater. Lett., 2009, 63, 72; DOI: https://doi.org/10.1016/j.matlet.2008.09.004.

    Article  CAS  Google Scholar 

  36. V. A. Shestakov, V. I. Kosyakov, M. L. Kosinova, Russ. Chem. Bull., 2019, 68, 1983; DOI: 1066-5285/19/6811-1983.

    Article  CAS  Google Scholar 

  37. V. I. Kosyakov, V. A. Shestakov, M. L. Kosinova, Russ. J. Inorg. Chem., 2018, 63, 822; DOI: https://doi.org/10.1134/S0036023618060153.

    Article  CAS  Google Scholar 

  38. A. A. Titov, A. N. Golubenko, M. L. Kosinova, F. A. Kuznetsov, Russ. J. Phys. Chem., 2010, 84, 1891; DOI: https://doi.org/10.1134/S0036024410110129.

    Article  CAS  Google Scholar 

  39. F. A. Kuznetsov, A. N. Golubenko, M. L. Kosinova, Appl. Surf. Sci., 1997, 113, 638; DOI: https://doi.org/10.1016/S0169-4332(96)00816-1.

    Article  Google Scholar 

  40. N. I. Fainer, R. V. Pushkarev, S. B. Ehrenburg, S. V. Trubina, V. A. Shestakov, I. S. Merenkov, M. Terauchi, J. Struct. Chem., 2018, 59, 1588; DOI: https://doi.org/10.1134/S0022476618070107.

    Article  CAS  Google Scholar 

  41. F. A. Kuznetsov, V. A. Titov, S. V. Borisov, V. N. Vertoprakhov, Data Bases of Properties of Electronic Materials/CODATA Bulletin: Abstracts, 11th Int. CODATA Conference, Karlsruhe, Germany, No. 68, 1988, p. 9.

  42. V. P. Glushko, L. V. Gurvich, I. V. Veyts, V. A. Medvedev, G. A. Khachkuruzov, V. S. Yungman, G. A. Bergman, V. F. Baybuz, V. S. Iorish, N. M. Aristova, V. N. Vdovin, S. I. Gorbov, L. N. Gorokhov, A. V. Gusarov, M. S. Demidova, O. V. Dorofeeva, Yu. S. Ezhov, M. E. Efimov, A. G. Efimova, Yu. M. Efremov, V. Yu. Zitserman, V. A. Kulemza, L. F. Kuratova, V. Ya. Leonidov, M. F. Moskovskaya, I. I. Nazarenko, E. L. Osina, I. N. Przhevalskiy, A. L. Rogatskiy, N. P. Rtishcheva, V. G. Ryabova, I. V. Sidorova, P. I. Tolmach, S. E. Tomberg, L. R. Fokin, Yu. G. Khait, N. E. Khandamirova, Yu. S. Khodeev, E. A. Shenyavskaya, G. N. Yurkov, A. Ya. Yakobson, Termodinamicheskie svoystva individual’nykh veshchestv [Thermodynamic Properties of Individual Substances], Nauka, Moscow, 1979, Vol. 2, Part 2, 395 pp. (in Russian).

    Google Scholar 

  43. S. Cui, I.-H. Jun, CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 2017, 56, 108; DOI: https://doi.org/10.1016/j.calphad.2016.11.003.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Shestakov.

Additional information

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1446–1453, August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shestakov, V.A., Kosinova, M.L. Chemical vapor deposition of iron-containing films during the decomposition of trimethylamine borane-ferrocene (or iron pentacarbonyl) mixtures: a thermodynamic modeling. Russ Chem Bull 70, 1446–1453 (2021). https://doi.org/10.1007/s11172-021-3238-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3238-8

Key words

Navigation