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Abstract
We experimentally study a class of pie-sharing games with alternating roles from 
a decision-making perspective. For this, we consider a variant of a two-stage  
alternating-offer game which introduces an imbalance in the protagonists’ bargain-
ing powers. This game class enables us to investigate how exposure to risk and 
strategic ambiguity affects one’s bargaining behaviour. Two structural econometric 
models of behaviour, a naïve and a sophisticated one, capture remarkably well the 
observed deviations from the game-theoretic benchmark. Our findings indicate, in 
particular, that a higher exposure to strategic ambiguity leads to a behaviour that 
is less responsive to the game’s parameters and to distorted, yet consistent, beliefs 
about other’s behaviour. We also find evidence of a backward-reasoning whereby 
first-stage decisions relate to the second-stage ones but which do not call for the 
counterfactual reasoning that characterises rationality in such settings.
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1 Introduction

Consider a lottery yielding a positive prize N with probability p and a 0-payoff 
otherwise. The monetary expectation of this lottery, Np, depends symmetrically 
on N and p. While the literature has extensively reported on how people perceive 
probabilities and evaluate monetary gains and losses in such lottery contexts (see, 
e.g., Wakker, 2010), little is known about the way people approach N and p in 
strategic contexts, and in particular how they trade them off in a multi-stage set-
ting. In this paper, we investigate these questions in the context of alternating-
offer bargaining games, à la Ståhl (1972) and Rubinstein (1982), which have 
been extensively studied in the laboratory (see Roth, 1995 for an early survey). 
These games typically feature a finite number of stages of bargaining to share a 
pie according to Ultimatum Game (UG, henceforth) rules with alternating roles 
of proposer and responder. Rubinstein (1982) solves such games via backward 
induction and predicts a first-stage agreement which, in a two-stage setting with 
a second-stage pie of size N and a probability p that the second stage occurs, 
consists in offering (and accepting) the monetary expectation of the above lottery 
example.

Despite the simplicity of this prediction, the experimental evidence on these 
games reports systematic deviations (i.e., larger-than-expected offers and frequent 
first-stage disagreements) which have been explained in terms of payoff-based 
social preferences (Ochs & Roth, 1989; Bolton, 1991; Goeree & Holt, 2000; 
Cooper & Kagel, 2016), reputation (Embrey et  al., 2015), or failures to recog-
nise that sequential interaction requires backward induction reasoning (Binmore  
et al., 1985; Neelin et al., 1988; Binmore et al., 1988). The latter argument has 
been further investigated by Binmore et al. (2002) and Johnson et al. (2002) who  
show that even though players may have fairness concerns, their failure to back-
ward induct mostly results from a limited cognition that impedes game-theoretic  
reasoning. Ho & Su (2013) propose a dynamic level-k model to rationalise 
these failures and attribute them to players’ limited inductive reasoning and/or  
their inability to update their beliefs about others’ depth of reasoning as the game 
unravels. A common feature of the above rationales is their reliance on some form  
of expected utility maximisation.

In this article, we forego the notion of expected utility maximisation alto-
gether and experimentally investigate whether behaviour in two-stage bargaining 
games can be rationalised in terms of risk (induced by a known probability and 
resolved by nature) and strategic ambiguity (induced by ignorance of the other’s 
intentions and the probability of each alternative being chosen, and resolved by 
the other’s decision). In the setting we study, “risk” is captured by the probabil-
ity p that a second stage occurs if no first-stage agreement is reached. There is 
ample evidence that, besides nonlinear evaluations of monetary payoffs, people’s 
probability misperceptions can affect their decisions and expectations when con-
fronting risky decisions (see e.g., Tversky & Kahneman, 1992; Quiggin, 1982; 
Barberis, 2012). In this regard, the players’ misperceptions of the probability p 
and attitudes to risk may well affect their expectations and drive behaviour in 
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our bargaining games. As for “strategic ambiguity,” it results from the lack of 
some critical knowledge to entertain beliefs about others’ behaviour. Its effect is 
typically put in perspective by comparing behaviour in treatments that manipulate 
players’ ambiguity-generating information and/or by eliciting their preferences or 
cognitive skills. Although this type of strategic uncertainty has proven very use-
ful to organise behaviour in experiments on coordination, labour-markets, public  
goods, asset markets, and one-stage bargaining games (see, e.g., Heinemann 
et al., 2009; Cabrales et al., 2010; Di Mauro & Finocchiaro Castro, 2011; Li et al., 
2017; Akiyama et al., 2017; Greiner, 2018), it remains unclear whether it results 
from players’ aversion to ambiguous events (which is emotional and reflects peo-
ple’s dislike of ambiguous situations, see Li, 2017, p. 245) or from their beliefs 
about others’ behaviour (which is cognitive). Li et al. (2019) address this question 
in the context of trust games and propose belief-free measures of ambiguity aver-
sion and of a(mbiguity generated)-insensitivity, i.e., an insensitivity to likelihood 
changes. They show, in particular, that strategic ambiguity has a two-fold effect on 
behaviour: it can trigger ambiguity-aversion, which leads players to prefer using  
safe strategies, and/or a-insensitivity, which makes them less likely to act based 
on their beliefs (see also Li et al., 2020). Although these measures do not suit the 
analysis of games with a richer interaction like bargaining games with alternating 
roles, the identified two-fold effect provides a useful grasp to study the roles of 
strategic ambiguity and risk in a simplified version of these games.

To best highlight the effect of strategic ambiguity, we assign dictatorial power 
to the second-stage proposer, i.e., her/his payoff is not affected by the second-
stage responder’s decision, as in an Impunity Game (Bolton, 1991, IG hence-
forth). By doing so, we leave the game-theoretic prediction unchanged and we 
remove all cognitive difficulty for the second-stage proposer to decide what to 
offer. That is, the first-stage responder only has to deal with the strategic ambigu-
ity of the first stage and the uncertainty (risk) of a second stage of interaction, 
whereas the first-stage proposer has to cope with the additional strategic ambigu-
ity of the second stage.

Next, we assess the roles of ambiguity aversion and a-insensitivity in these 
games with two structural models that are inspired from a descriptive analysis of 
the observed behaviour and that forego expected utility maximisation. The simplest, 
naïve, model assumes that players perceive the two stages as being more or less 
dependent on the second-stage parameters (p and N) so their strategies are belief-
free (or safe). This model only aims at capturing ambiguity aversion concerns. The 
sophisticated model, which allows for probability misperceptions and for a link 
between the first- and second-stage decisions, aims at capturing both ambiguity 
aversion and a-insensitivity, and it nests the game-theoretic model with backward 
induction as a special case.

Finally, we document these behavioural traits in a relatively large game class by 
confronting participants to multiple (N,  p)-constellations that characterise a range 
of dilemmas that spans from a UG-like game (i.e., when both N and p are small) 
to Rubinstein-like games (i.e., when p is close to one). For each of these constella-
tions, we use the strategy method to elicit dyadic decisions (i.e., an offer for the first 
stage and an acceptance threshold for the second stage or vice versa) and provide no 
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feedback on the stage or round outcome to avoid the confounding effect of the play-
ers’ repeated interactions on our conclusions.

We summarise our findings in the following three points. First, observed behav-
iour is best fit by a variant of the sophisticated model which supports a "backward 
reasoning" for the determination of first-stage decisions. Unlike the fully rational 
backward induction that underlies the game-theoretic prediction, this reasoning  
is based on what players expect to receive or to offer given their respective roles 
in each stage (proposer or responder), the likelihood of a second stage (p), and the 
second-stage pie (N). The model fits the first-stage behaviour remarkably well and 
indicates that proposers tend to offer more than what responders request. This holds 
when participants with an almost invariant behaviour are discarded from the estima-
tions and thus suggests the use of safe strategies that are in line with the ambiguity 
aversion induced by the players’ roles. First-stage proposers are also found to be 
substantially more a-insensitive than first stage responders, so the participants’ first-
stage behaviour is consistent with their respective exposures to strategic ambiguity. 
Yet, first-stage disagreements occur but these are mostly observed when both N and 
p are large, i.e., about 40% of the time.

Second, the model’s estimates indicate that the higher the first-stage offers 
(requests), the higher the second-stage requests (offers). This pattern is positively 
related to the players’ a-insensitivities, and thus, in line with their exposures to strate-
gic ambiguity. Requesting or offering positive amounts in the second stage is clearly 
suboptimal but in line with the "emotional commitment" rationale of Yamagishi et al. 
(2009) for such behaviour in single-stage IG experiments: players do so because they 
emotionally commit to what they consider to be a fair share of the pie to request or 
to offer.1 In this regard, the players’ backward reasoning organises their first-stage 
decisions and supports the role of strategic ambiguity in explaining the observed 
misbehaviour.

Third, the estimated model predicts that on average second-stage interactions end 
in disagreement as is observed for 60% of the time after a first-stage disagreement 
when both N and p are large. However, when the estimations discard participants 
with an almost invariant behaviour in the first stage, the model predicts virtually 
identical second-stage offers and requests. Since players received no feedback on the 
stage- or round-outcomes, this suggests that despite the players’ asymmetric expo-
sures to strategic ambiguity (which affects their a-insensitivity), their beliefs about 
each other’s behaviour are consistent on average and that those with an almost invar-
iant behaviour in the first stage failed to match the other’s choices because they were 
most ambiguity averse.

The game class we study and the strategic ambiguity considerations we pursue in 
this study are presented in the next section. Section 3 discusses the experimental pro-
tocols and procedures. Section 4 reports a descriptive analysis of observed behaviour. 

1 It also follows from Yamagishi et al. (2009) that this argument cannot be confounded with signalling 
anger (by responders) or generosity (by proposers) because participants were not informed of eventual 
rejections.
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Section 5 spells out the naïve and sophisticated structural models and reports the esti-
mation results, and Section 6 concludes.

2  The game class

The game class we study involves two players, A and B, who bargain over a prize of 
100 and who both know that a second-stage of bargaining over a prize of N < 100 
might occur with probability p if no agreement is reached in the first stage. In what 
follows, we describe the sequence of individual decisions to be taken by each player at 
each stage.

The first-stage proposer (henceforth A) is asked to offer an amount y, with 
0 < y < 100 , to the first-stage responder (henceforth B) who is asked to determine an 
acceptance threshold y , with 0 < y < 100 . If y ≥ y , then there is a first-stage agreement 
that B earns the amount y and A the residual 100 − y . If y < y , then there is no agree-
ment and both parties earn zero payoffs with probability (100 − p) , where 0 < p < 100 
stands for the probability that a second stage occurs (expressed in percentage for con-
venience). With probability p, A and B reverse their roles and engage in a second stage 
to share 0 < N < 100 as B decides: B can offer any amount x with 0 < x < N to A and  
keeps the remainder N − x for herself, whereas A can only choose an acceptance thresh-
old x , with 0 < x < N . If x ≥ x , then A gets x, and B keeps N − x . Any offer x smaller  
than x is lost for both parties.

Denoting by 1(
y≥y

) and 1(x≥x) the indicator functions, taking the value 1 for y ≥ y 

and x ≥ x , respectively, and 0 otherwise, the players’ payoffs are defined as:

and

The determination of the players’ optimal (equilibrium) decisions invokes expected-
profit maximisation and backward induction. Thus, in the second stage, A should 
accept any positive offer x and set x = 0 , whereas B should keep as much as pos-
sible of N so that B’s (second-stage) expected payoff Np determines B’s acceptance 
threshold in the first stage. Moving (backwards) to the first stage, A foresees her sec-
ond-stage payoff of 0 and therefore offers y = Np in the first stage. Any offer y < Np 
would be rejected by B and would drag A into a probable second stage that yields 
a 0 payoff, whereas any offer y > Np would be overly generous (to B), i.e., A could 
further increase her payoff by offering some y closer to Np. This defines the players’ 
optimal agreement which is to be reached in the first-stage. Thus, given (N, p) the 
optimal offer and acceptance threshold are:

1(
y≥y

) × (100 − y) +

[
1 − 1(

y≥y
)
]
×

{
1(x≥x) × x, with probability p

0, with probability (100 − p)
for A

1(
y≥y

) × y +

[
1 − 1(

y≥y
)
]
×

{
(N − x), with probability p

0, with probability (100 − p)
for B.

xopt = xopt = 0 and yopt = yopt = Np.
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2.1  Strategic ambiguity considerations

The literature offers a profusion of definitions for “strategic ambiguity” and we will 
summarily define it as characterising an interactive decision context where ambigu-
ity emanates from the fact that the probability distributions of others’ decisions are 
unknown and resolved by others’ decisions. Such strategic ambiguity can be game-
theoretically resolved by assuming common(ly) known rationality, but it emerges 
peremptorily when that assumption is relaxed.

Strategic ambiguity is inherent to our context and leads to two broad types of 
modelling approaches. The first maintains the assumption of expected utility maxi-
misation and relaxes full rationality by allowing for inconsistent beliefs about oth-
ers’ behaviour. This applies, for example, to the case of reinforcement-learning mod-
els (see Nawa et al. 2002), and of the level-k models of Stahl & Haruvy (2008) (for  
UG-like settings) and of Ho & Su (2013) (for sequential games) which assume that 
players best-respond to protagonists who are less rational than themselves, i.e., 
whose depth-of-reasoning is one step lower than their own.2

The second, which we pursue here, is to forego the assumption of expected utility 
maximisation and revert to the use of simple heuristics like (i) treating the decisions 
to be taken at each stage as being more or less independent of each other, as if play-
ers opted for a “complexity reduction,” see Kovářák et al. (2016), (ii) opting for an 
equal-split of the pie, as Binmore et al. (1985) and Stahl & Haruvy (2008) report 
in their experiments, or (iii) emotionally responding to the game’s parameters (N  
and p), as in Yamagishi et al. (2009). Alternatively, one could revert to the formula-
tion of beliefs or predictions about others’ decisions which may be biased by prob-
ability misperception. These heuristic- and belief-based alternatives are not neces-
sarily mutually exclusive and may complement each other in many possible ways. 
For example, although the use of heuristics (or safe strategies) reflects a behaviour 
that maintains ambiguity aversion, it does not prevent the formation of possibly dis-
torted beliefs about others’ behaviour or probabilistic events which would reflect a 
player’s a-insensitivity. The experiments aim at checking whether these two effects 
help organising behaviour in these games.

The players’ respective dilemmas in this game class can be summarised as fol-
lows. As p increases, the second stage becomes a less risky alternative to be con-
sidered by first-stage responders especially when N is large, whereas for first-stage 
proposers it becomes more likely that their payoff will entirely depend on the good-
will of the second-stage proposers if a second stage occurs. Thus, the players’ incen-
tives to reach a first-stage agreement are not aligned, especially when both p and N 
become large; and this leads first-stage proposers to trade off their strategic ambigu-
ity with ultimatum power (in the first stage) for risk and strategic ambiguity with no 

2 Crawford et al. (2013) review more elaborate level-k models (for one-stage games) in which the play-
ers’ lower depths-of-reasoning are Poisson distributed. It is also worth noting that the recursive nature of 
these models render their predictions sensitive to how one defines the behaviour of level-0 players, i.e., 
those with a zero depth of reasoning – the latter are typically assumed to display a uniformly random 
behaviour over the set of available choices.
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veto power (in the second) whereas first-stage responders simply need to trade off 
strategic ambiguity (in the first stage) for risk (in the second).

3  Experimental procedures

The experiment implements our game class by confronting participants to multiple 
(N, p)-constellations to assess how they react to changes in N (holding p constant), 
in p (holding N constant), and in both N and p (holding Np constant).

Table  1 displays the (N, p)-constellations used in the experiments and the cor-
responding first-stage agreement predictions (N − 1)p , where N is expressed in 
Experimental Currency Units (ECU) and p in percentages. In each round of play, 
participants are confronted to a randomly drawn (N,  p)-constellation, and we use 
the strategy method to elicit an offer and an acceptance threshold for each stage  
(see the Instructions and screenshots in Online Resource A). Thus, A speci-
fies an offer y ∈ {1, 2,… , 99} for the first stage and an acceptance threshold 
x ∈ {1, 2,… ,N − 1} for the second, whereas B specifies an acceptance threshold 
y ∈ {1, 2,… , 99} for the first stage and an offer x ∈ {1, 2,… ,N − 1} for the second. 
Since participants could only enter positive integer amounts, the optimal second- 
and first-stage choices are amended as:

and the payoffs are defined as:

• if y ≥ y then A earns 100 − y and B earns y (both in ECUs);
• if y < y then B earns N − x with probability p and 0 probability (100 − p) , 

whereas A earns x in case of x ≥ x with probability p and 0 otherwise.

To best assess how participants deal with the strategic ambiguity and risk of this 
game class and to prevent confounding effects from their repeated play and accu-
mulated experience, participants were given no end-stage or end-of-round feedback. 
They were also explained that their rewards for participating in the experiments 
would be determined by matching their choices for the 25 rounds with those of 
another randomly chosen participant (of the other type, A or B) and by accumulating 

xopt = xopt = 1 and yopt = yopt = (N − 1)p,

Table 1  First-stage benchmark 
predictions

N (in ECU)

5 25 50 75 95
5 0.2 1.2 2.5 3.7 4.7
25 1 6 12.3 18.5 23.5

p (in %) 50 2 12 24.5 37 47
75 3 18 36.8 55.5 70.5
95 3.8 22.8 46.6 70.3 89.3
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the payoffs from these 25 interactions. The resulting amount was then converted into 
Euros at the exchange rate of €0.005 per ECU and added to a show-up fee of €5.

The experiment’s only treatment variation relates to the sequence in which partic-
ipants’ choices for each stage were elicited. In a "Forward" (control) treatment, their 
first- and second-stage choices are elicited in sequence as outlined in the previous 
section, whereas in a "Backward" treatment, second-stage choices are elicited first to 
induce participants to think about their respective roles in that stage and document 
how this affects their respective first-stage choices.

The experiments were conducted at the Max Planck Laboratory of Experimen-
tal Economics in Jena (Germany) with a total of 716 participants recruited online 
from a pool of students in Business Administration, Sciences, and Engineering from 
the University of Jena.3 ,4 The sessions took no longer than two and a half hours to 
complete (including the time needed to read instructions) and participants earned 
on average €10.55 (s.d. 6.00) in the Forward treatment and €10.65 (s.d. 6.10) in the 
Backward treatment in addition to their show-up fee.

4  Descriptive Data Analysis

We start with providing an overview of A- and B-players’ behaviour in each stage 
of the Forward and Backward treatments to unravel prominent behavioural traits 
and document the outcomes of their interactions. In this regard, we first check for 
significant differences in the behaviour of A- and of B-players in the Forward and 
Backward treatments by conducting, for each player type and role (Proposer and 
Responder), a constellation-specific Wilcoxon rank-sum test that checks for a sig-
nificant treatment difference. This generates 25 test outcomes (p-values) for each 
type of player and role which we use to test the joint null hypothesis that all 25 null 
hypotheses hold against the alternative that at least one of the null hypotheses is 
rejected with the sequential Holm-Bonferroni procedure (HB, henceforth, see Holm, 
1979). We report the details of test outcomes and of the HB procedure in Online 
Resource B. As we find no significant difference to report, we pooled the data of the 
Forward and Backward treatments.

3 The experiments originally involved a total of 308 participants. However, we conducted additional 
sessions with "perturbed" (N, p)-constellations, i.e., sessions where each of the 25 (N, p)-constellations 
of Table 1 had symmetric deviations of size −2 , 0, or +2 in N and in p, to confront participants to an 
even richer environment with 75 possible constellations. These sessions took about half an hour longer 
to complete and involved an additional 408 participants who received a show-up fee of €2.5. Since the 
data of (N, p)-constellations with a 0-deviation displayed no significant difference with the original data 
on sessions with 25 ("unperturbed") constellations, we included it in our analysis, see Table in Online 
Resource B for test outcomes on the samples’ comparison.
4 The experiments were programmed in z-tree (Fischbacher, 2007) and participants were recruited using 
ORSEE (Greiner, 2015).
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4.1  First‑stage behaviour

Figure  1 displays box plots with the superimposed means (red/large circles) of 
A-players’ offers and B-players’ thresholds for each cell of Table 1 when constella-
tions are sorted by N and p. The plots document three salient behavioural patterns.

First, both mean offers and thresholds closely match predictions in only two con-
stellations: in (50,  95), where deviations are not significant for B-players only (t  
test: p-value = 0.183), and in (95, 50) where they are not significant for both player 
types (t test: p-values = 0.782 for A and = 0.838 for B). Note that these constella-
tions characterise settings where "the stakes are full (N = 95) and the chances are 
half (p = 50)," or vice versa and for which the solution is an almost equal division 
of the original pie of 100 (47), so this finding could simply obtain from the use of 
prominent reference measures (i.e., "maximum and half") that "naturally lead" to  
an (almost) equal split of 100.

Second, mean offers and thresholds are always greater than predicted when    
(N −1)p < 50 and always lower otherwise. The deviations from equilibrium predic-
tions are also inversely related to the benchmark predictions when   (N −1)p < 50  
and they increase otherwise, which suggests that both player types share some 
behavioural traits that render the (50, 95)- and (95, 50)-constellations pivotal. This 
is supported by the finding that, on average, offers are typically higher than thresh-
olds when (N −1)p < 50 and lower (implying disagreement) otherwise, and the  
"offer-threshold" absolute differences are inversely related to the benchmark predic-
tions when (N −1)p < 50 and are increasing otherwise.

Third, B-players are more responsive to changes in N and p than A-players, and 
especially to changes in p when N ≥ 50 . In this case, the bulk of offers is around 
50 no matter N or p, whereas for a given N, thresholds sharply increase with p. 
Further evidence on this asymmetric responsiveness to the game’s parameters can 
be found in the players’ frequencies of invariant choices reported in Table 2. The 
figures reveal that 12% of A-players appear to always make the same offer (11% 
always offer 50), whereas only 6% of B-players always request the same amount (2% 
always request 50). This holds when considering participants with at least 80% of 
invariant choices since 23% of A-players and 15% of B-players then still do so, with 
20% offering 50 and 4% requesting 50 so that A-players are more prone to overlook 
important information about the games they play than B-players. Such invariant 

Fig. 1  A-players’ offers and B-players’ thresholds in stage 1.
Note: Box plots of A-player’s offer and B-player’s threshold by N and p. Red (large) and green (small) 
circles represent means and benchmark ((N – 1) p) predictions, respectively
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behaviour is consistent with the loads of strategic ambiguity and risk induced by 
the players’ roles in each stage. Indeed, recall that while both player types face risk 
(via p), A-players must also deal with strategic ambiguity in both stages, whereas 
B-players only do so in the first stage. Thus, following Li et al. (2019), this invariant  
behaviour can be expected to relate to the players’ insensitivity to the game’s  
parameters, N and p, that is induced by their exposure to strategic ambiguity. In this 
regard, since B-players experience less strategic ambiguity than A-players, they are 
also expected to react more to the game’s parameters, as we find.

4.2  Second‑stage behaviour

Figure 2 displays box plots with superimposed means (red/large circles) of A-players’  
thresholds and B-players’ offers against N and p. The plots indicate that both requests 
and offers are greater than the benchmark prediction of 1 and that they both signifi-
cantly increase with N. However, conditional on N, the deviations from predictions 
are largely invariant to p so the players’ behaviour is not contingent on irrelevant 
information like p. Furthermore, A-players’ average thresholds are all higher than 
B-players’ average offers so that "money is typically left on the table", and this is 
more likely as N increases.5

In terms of invariant behaviour, participants can be sorted into three catego-
ries: those who accept anything and offer 1 whatever N (14.8% of A-players and 
28.72% of B-players); those who always request or offer more than 1 ECU (34.1% 
and 23.5%, respectively); and the remainder who request or offer 1 ECU when N 
is small and more otherwise (51.1% and 47.8%, respectively). We also checked for 
"equal-splitters" who only offer or request N/2 but found no compelling evidence of 
such behaviour; and the few who did hardly ever did so in the first stage, as Stahl & 
Haruvy (2008) conjecture.

In sum, over two-thirds of participants display a second-stage behaviour that 
is inconsistent with expected utility maximisation and suggests that A-players’ 

Table 2  Invariance of behaviour 
to N and p in stage 1

*: % of times a participant submits/requests the same amount

A’s offer B’s threshold

Invariance % * 100% ≥ 80%   100% ≥ 80%  
# participants  

(%)
42/358 
(11.7%)

82/358 
(22.9%)

21/358 
(5.9%)

55/358 
(15.4%)

Modal y and y
40 – – 42.86% 32.73%
50 95.24% 89.02% 33.33% 29.09%
other numbers 4.76% 10.98% 23.81% 38.18%

5 See Tables C.3 and C.4 in Online Resource for detailed (constellation-specific) statistics.
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thresholds reveal (or relate to) their beliefs about what they expect to receive from 
B-players.

4.3  Disagreement rates

An important economic aspect of the game class we study is the extent to what the 
(N,  p)-constellations considered yield inefficient outcomes, i.e., a first-stage disa-
greement. To assess disagreement rates, we recombined participants’ choices for 
each (N, p)-constellation 25,000 times and report in Table  3 the mean and stand-
ard deviation of the proportion of matches under each constellation that ended in 
conflict.

The outcomes for the first-stage interactions indicate an overall disagreement rate 
of 32.2% and suggest three distinct clusters of constellations: those with N ≥ 75 
and p ≤ 25 which generate a low disagreement rate of about 24%, those with N and 

Fig. 2  A’s thresholds and B’s offers in stage 2.
Note: Box plots of A-player’s offer and B-player’s threshold by N and p. Red circle represent means. The 
benchmark prediction is 1 for all constellations

Table 3  Disagreement rates

Figures are calculated by randomly re-matching A- and B-participants for 25,000 times and by taking the 
average of the resulting frequencies that the (N, p)-constellation considered ended in conflict. Standard 
deviations are reported in parentheses. Second-stage unconditional disagreement rates assume that the 
second stage is always reached

First stage Unconditional second stage

N N

5 25 50 75 95 5 25 50 75 95
5 0.320 

(.015)
0.284 
(.014)

0.263 
(.014)

0.249 
(.014)

0.235 
(.014)

5 0.306 
(.013)

0.440 
(.014)

0.451 
(.014)

0.460 
(.014)

0.489 
(.013)

25 0.298 
(.014)

0.263 
(.014)

0.247 
(.014)

0.235 
(.014)

0.235 
(.013)

10 0.319 
(.013)

0.459 
(.013)

0.447 
(.014)

0.486 
(.014)

0.487 
(.013)

p 50 0.307 
(.014)

0.308 
(.013)

0.251 
(.013)

0.272 
(.013)

0.314 
(.013)

p 50 0.320 
(.013)

0.438 
(.013)

0.460 
(.014)

0.477 
(.014)

0.483 
(.014)

75 0.326 
(.015)

0.323 
(.014)

0.302 
(.013)

0.400 
(.014)

0.467 
(.014)

75 0.326 
(.012)

0.448 
(.014)

0.454 
(.014)

0.470 
(.014)

0.483 
(.013)

95 0.329 
(.014)

0.331 
(.014)

0.369 
(.013)

0.558 
(.014)

0.566 
(.014)

95 0.333 
(.013)

0.483 
(.013)

0.479 
(.013)

0.493 
(.013)

0.486 
(.013)
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p ≥ 75 which yield about 50% of disagreements, and those with N ≤ 50 that gener-
ate about 31% of disagreements.6 Interestingly, the 32% chance of a disagreement in 
the (5, 5)-constellation, whose "insignificant" second stage makes it most similar to 
a UG setting, is also in line with the one-third rejection rate reported by Güth et al. 
(1982) for their UG experiments.7

As for the second-stage interactions (where a disagreement implies a zero pay-
off for A-players only), we find a lowest disagreement rate of about 31% when 
N = 5 no matter p. This is in line with the 30% reported by Yamagishi et al. (2009)  
for their one-stage IG experiments. Otherwise, a second-stage disagreement is 
observed between 40% and 50% of the time, which is remarkably high.8

5  Econometric modelling

Having highlighted some salient characteristics of A- and B-players’ behaviour in 
each stage and their consequences on the outcomes, we proceed with proposing two 
structural econometric models to organise the observed behaviour in the light of 
the strategic ambiguity and risk. For this, we consider two simultaneous equation 
models of the players’ behaviour in either role, with one equation for the first-stage 
choices and one equation for the second-stage choices. These models characterise a 
"naïve" and a "sophisticated" way of dealing with strategic ambiguity and risk, and 
each of them is separately estimated for each type of player.

In what follows, let i ∈ S denote the generic A- or B-player in sample S and Ω the  
set of (N, p)-constellations. Recall that for each (N, p)-constellation, A-players sub-
mit an offer yi for the first stage and an acceptance threshold xi for the second,  
whereas B-players submit an acceptance threshold yi for the first stage and an offer 
xi for the second stage, so for expository convenience we simplify these notations by 
denoting A-players’ choices for first and second stages by Yi(N, p) and Xi(N, p) ; and 
those of B-players for the first and second stages by Yi(N, p) and Xi(N, p).

5.1  The naïve model

This model characterises a "naïve" approach in that it assumes players to perceive each 
stage in isolation and to possibly take account of the parameters N and/or p in their 

6 In their study of legal case outcomes in the US, Ashenfelter & Currie (1990) report an average disa-
greement rate of 40% which is the one observed in our setting when both the stakes and the chances of a 
second stage are relatively high, namely N = p = 75.
7 The mean offer and mean threshold for this constellation are also in keeping with what is typically 
reported in UG settings, see Güth & Kocher (2014).
8 We also looked at conditional probabilities of second-stage "disagreement" (i.e., conditional on having 
a disagreement in the first stage and the second stage occurs) and found that they are typically smaller 
than the unconditional ones when N < 50 and typically larger otherwise, what suggests that second-stage 
"disagreements" are more likely when the stakes are large, see Online Resource D.
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first- and second-stage choices. Player i’s first-stage choice Yi(N, p) , i.e., an A-player’s 
offer or a B-player’s threshold, is modelled as a function of an individual-specific inter-
cept �i and a polynomial l(N, p) that is common to all players of the same type and that 
captures the players’ possible reactions to the second-stage parameters N and p. It also 
involves a stochastic term ci(N,p) that captures noise in i’s first-stage decisions and that 
has mean 0 and standard deviation 𝜎c = �̌�c

√
exp (𝜅Np) , where � captures the extent of 

heteroscedasticity as a function of Np.

The second stage choice X∗
i
(N, p) is modelled via the individual-specific inter-

cept �i and a polynomial m(N) that is common to all players of the same type 
and that accounts for players’ eventual nonlinear evaluations of N. Most impor-
tantly, the model assumes that X̃i(N) is indirectly observed via a latent function 
X∗
i
(N, p) = X̃i(N) + di(N,p) , which is inferred from the data through the observation 

rule Xi(N, p) = max
[
X∗
i
(N, p), 1

]
 . This latent function captures a player’s expecta-

tion for the second stage and assumes that this expectation does not affect the play-
er’s first-stage choice. We treat A- and B-players’ choices for the second stage as 
being left-censored at 1. Noise in second-stage choices is modelled via d(N,p) with 
mean 0 and standard deviation 𝜎d = �̌�d

√
exp (𝜄N) , where exp (�N) controls for het-

eroscedasticity as a function of N via the parameter � . Finally, the intercepts �i and �i 
have a joint normal distribution, like the stochastic terms ci(N,p) and di(N,p) and these 
joint normal distributions (with � , � and � standing for the mean, standard deviation 
and correlation coefficient, respectively) are estimated along with the other param-
eters of the model.9

(1)
{

Yi(N, p) = �i + l(N, p) + ci(N,p)

X∗
i
(N, p) = X̃i(N) + di(N,p) = �i + m(N) + di(N,p)

∀(N, p) ∈ Ω

(2)Xi(N, p) = max
[
X∗
i
(N, p), 1

]

(3)
(
�i
�i

)
∼ NID

[(
��

��

)
,

(
�2
�

�������
������� �2

�

)]

(4)
(
ci(N,p)
di(N,p)

)
∼ NID

[(
0

0

)
,

(
�2
c

�cd�c�d
�cd�c�d �2

d

)]

(5)𝜎c = �̌�c
√
exp (𝜅Np)

(6)𝜎d = �̌�d
√
exp (𝜆N)

9 The joint distribution of the model’s structural parameters has been estimated as in Conte et al. (2011) 
who study individual choice under risk. We refer the interested reader to Online Resource E for further 
estimation details, including the derivation of the likelihood function.
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5.1.1  The naïve model: Outcomes

The left panel of Table 4 collects the results of the naïve model when the estima-
tions refer to the whole data set. The reported specifications have been selected via 
likelihood-ratio tests for nested alternatives and Akaike Information Criteria (AIC) 
for non-nested ones.

First‑stage behaviour The estimates of �� , the mean of the first-stage random inter-
cept, reflect the means of A-players’ offers and B-players’ thresholds and confirm 
the finding that offers tend to be significantly higher than requests, cf. Fig. 1. The 
estimated standard deviations, �� , vouch for a substantial heterogeneity in behaviour, 
especially in B-players’ choices. The estimated polynomial l(N, p) reveals a positive 
and significant effect of N and Np that is similar for both roles, whereas the cumula-
tive effect of p and p2 indicates that as the likelihood of a second stage increases, 
offers increase less (and are capped at p = 0.75 ) whereas thresholds increase more. 
Further, a Wald test for the joint significance of the parameters in l(N, p) overwhelm-
ingly rejects the null for both roles and both samples and thus suggests that, on aver-
age, participants took account of the second-stage parameters N and p in their first 
stage decisions.

Second‑stage behaviour The means of the second-stage random intercepts, �� , are 
significantly negative for both roles and their standard deviations, �� , also support 
a substantial heterogeneity, especially in A-players’ choices. As for the estimated 
polynomial m(N) , it is increasing with an almost concave shape in N that is similar  
across roles. These estimates confirm the patterns reported in Section 4.2, namely 
that the average A-player always requests more than what the average B-player offers.  
They also define critical values of N for each player-type, N∗

A
= 20 and N∗

B
= 40 ,  

at which the average A-player expects to receive and the average B-player intends 
to give the minimal amount (1 ECU). For N larger than these critical values, the 
average A-player expects to receive positive amounts that increase with N, what is 
in keeping with the emotional argument of Yamagishi et al. (2009), and the average 
B-player intends to offer positive amounts that also increase with N. For N smaller 
than these critical values, the negative intercept estimates suggest that the average 
A-player requests more than N and the average B-player offers less than 1 (or equiv-
alently requires a larger pie for her/himself). We could read this as the two play-
ers deeming the second-stage pie too small and requesting a compensation if their 
choice alternatives were not censored at 1.10

Stage‑to‑stage behaviour The significant correlations between the random intercept 
of the first- and second-stage equations, ��� , suggest that, for both roles, offers are on  
average positively related to thresholds. Thus, the more (less) A-players offer in the 

10 See e.g. List (2007) and Bardsley (2008) who both study taking vs. giving behaviour in dictator exper-
iments.
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first stage, the more (less) they expect to receive in the second, whereas the more 
(less) B-players request in the first stage, the more (less) they intend to offer in  
the second. Such behaviour alludes again to the emotional commitment argument 
of Yamagishi et  al. (2009) and suggests a consistency between the players’ behav-
iour in the first stage and their expectations for the second. To this extent, A-players  
would emotionally commit to what they expect to be a fair share of the second stage-
pie, whereas B-players would emotionally commit to their first-stage requests.

As a robustness check of our findings, we trimmed off the data of "almost invari-
ant" participants, i.e., who submitted the same first-stage choice at least 80% of the 
time, and report the estimation results in the left panel of Table 4. The gap in the 
players’ intercepts pertaining to the first stage gets smaller but remains significant, 
and thus, confirms an intrinsic difference as to how "regular" A- and B-players per-
ceive the first stage, with the former tending to submit overly generous offers no 
matter N or p. These positive intercepts estimates actually indicate the use of safe 
strategies, what Li et al. (2019) observed to be a characteristic of ambiguity-averse 
individuals (in trust games), and their difference can be explained here in terms of 
A-players’ higher exposure to strategic ambiguity, cf.  Fig.  1. Otherwise, the esti-
mated polynomial l(N, p) , the second-stage intercepts, and the estimated polynomial 
m(N) hardly change and confirm the reported differences between A- and B-players 
with regard to N and/or p.

5.2  The sophisticated model

This model builds on the naïve one by (i) accounting for features that characterise 
individual decision making under risk and ambiguity that may bias their decisions, 
like (individual) probability misperceptions as defined in Cumulative Prospect The-
ory (Tversky & Kahneman, 1992), and (ii) allowing for a possible backward reason-
ing that takes account of the second-stage choice to determine the first-stage one.

The first stage offers or thresholds Yi(N, p) in Eq.  (7) are modelled as an affine 
function of the second-stage outcome with a random intercept term �i and a sto-
chastic term meant to capture noise in participant i’s first-stage decisions, ei(N,p) . 
The latter follows a normal distribution with mean 0 and standard deviation 
𝜎e = �̌�e

√
exp (𝛿Np) , where the parameter � controls for heteroscedasticity as a func-

tion of Np.

(7)

{
Yi(N, p) = �i + wi(p)

[
N − X̃i(N)

]
+ ei(N,p)

X∗
i
(N, p) = X̃i(N) + ui(N,p) = �i + z(N) + ui(N,p)

∀(N, p) ∈ Ω

(8)Xi(N, p) = max
[
X∗
i
(N, p), 1

]

(9)wi(p) = exp (−𝜑(− log (p))𝛾i) 𝜑, 𝛾i > 0
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Players are assumed to misperceive the probability p of a second stage via Prelec’s 
(1998) Probability Weighting Function (PWF) wi(p) = exp (−�(− log (p))�i ) , with 
𝜑, 𝛾i > 0 . This PWF has two key parameters, �i which is individual-specific and 
� which is common to all players; and it implies no probability distortion when 
�i = � = 1 . �i captures the under- or over-weighting of probabilities: the PWF has 
an S-shape when 𝛾i > 1 so that small (large) probabilities are underweighted (over-
weighted) and it has an inverted-S shape when 𝛾i < 1 so that small (large) proba-
bilities p are overweighted (underweighted). As �i → 0 , the PWF becomes a step 
function that is flat everywhere except at the edges of the probability interval and 
characterises what Tversky & Fox (1995) called “ambiguity-generated insensi-
tivity” or “a-insensitivity”, i.e., people’s inability to distinguish between different 
likelihoods or to “understand the ambiguous decision situation from a cognitive  
perspective” (Li, 2017, p. 242). The coefficient � determines the PWF’s elevation: 
given �i , a larger � implies a lower wi(p) for each p or equivalently, a less “attrac-
tive” gamble (Gonzalez & Wu, 1999).11

This model can be seen as a normal-form representation of a two-stage game 
where the second-stage outcome is characterised by 

[
N − X̃i(N)

]
 . Here, the second-

stage offer function X̃i(N) is defined by �i + z(N) , with �i standing for an individual-
specific intercept term and z(N) for a polynomial in N that is common to all players 
of the same type and that possibly accounts for a nonlinear evaluation of N. Note 
that this polynomial affects first-stage decisions via the latent function and wi(p) , so 
it captures risk aversion concerns à la CRRA-CARA on the players’ first- and sec-
ond-stage decisions without imposing a particular structure. This specification can 
also represent subject i’s preferences for how to split N in risky/ambiguous condi-
tions, including an equal-split (as reported in Binmore et al., 1985) or a fully rational 
behaviour.

As in the naïve model, X̃i(N) is indirectly observed via a latent function 
X∗
i
(N, p) = X̃i(N) + ui(N,p) , inferred from the data via the observation rule 

Xi(N, p) = max
[
X∗
i
(N, p), 1

]
 . We treat A’s and B’s second-stage choices as being 

(10)
⎛
⎜⎜⎝

�i
�i

log
�
�i
�
⎞
⎟⎟⎠
∼ NID

⎡
⎢⎢⎣

⎛
⎜⎜⎝

��

��

��

⎞
⎟⎟⎠
,

⎛
⎜⎜⎝

�2
�

������� �������
������� �2

�
�������

������� ������� �2
�

⎞
⎟⎟⎠

⎤
⎥⎥⎦

(11)
(
ei(N,p)
ui(N,p)

)
∼ NID

[(
0

0

)
,

(
�2
e

�eu�e�u
�eu�e�u �2

u

)]

(12)𝜎e = �̌�e
√
exp (𝛿Np)

(13)𝜎u = �̌�u
√
exp (𝜄N)

11 For an extensive discussion on PWF curvature and elevation and their meanings, see Abdellaoui et al. 
(2010).
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left-censored at 1. The additive error term ui(N,p) follows a normal distribution with 
mean 0 and standard deviation 𝜎u = �̌�u

√
exp (𝜄N) , where exp (�N) controls for hetero-

scedasticity as a function of N via the parameter � . The model also assumes that �i , �i , 
and log

(
�i
)
 , are individual-specific and follow the joint normal distribution in Eq. 

(10) and that the error terms ei(N,p) and ui(N,p) follow the bivariate normal distribution 
in Eq. (11).12 Finally, note that when the distributions of �i , �i , and �i are degenerate 
with point mass one at zero, zero, and one, respectively, � is set to one and  
all the coefficients in Z(N) are set to zero, the model collapses the game-theoretic 
benchmark.

Let us clarify here the interpretation of A-players’ behaviour in this model and 
what it brings in addition to the naïve model. Recall that the fully rational approach 
calls for backward induction and thus for an A-player to solve the B-player’s deci-
sion problem and act accordingly to reach a first-stage agreement. To this end, A 
must anticipate the offer that s/he will receive from B in the second stage (while B 
determines her/his own second-stage payoff directly). The proposed sophisticated 
model relaxes, without discarding, the full rationality assumption and posits that 
A-player’s second-stage threshold actually reveals this crucial information, whereas 
the naïve model posits that it only is a belief-free request. To this extent, a com-
parison of the models’ goodness-of-fit performances would vindicate (or not) this 
assumption regarding how A-players’ second-stage thresholds reveal their beliefs 
about B’s second-stage offers.

To summarise, this model includes elements inspired from Game Theory, like a 
backward reasoning that encompasses the game-theoretic backward induction as a 
special case, and from empirical/experimental findings, like probability distortion 
and its implications in terms of strategic ambiguity. In addition, by comparing its 
goodness-of-fit to that of the naïve model, it can document or confirm the roles of 
ambiguity aversion and a-insensitivity in explaining behaviour in this game class.

5.2.1  The sophisticated model: Outcomes

The estimation results are reported in Table  5 and complement the behavioural 
insights from the naïve model in terms of strategic ambiguity and risk.

First‑stage behaviour The means of the first-stage random intercepts, �� , con-
firm that on average, A-players offer more than what B-players request. This holds  
when the estimations discard "almost invariant" participants and thus confirms the 
use of safe strategies that are in keeping with the ambiguity aversion induced by the 
exposure of each player’s type to strategic ambiguity. The estimated PWFs for A- and 
B-players display the well-documented inverse-S shape pattern as the means of �i are 
substantially smaller than 1 for both player roles and smaller for A-players than for 
B-players, i.e., 0.1703 (std. err. 0.0123) and 0.3890 (std. err. 0.0245), respectively.13 

12 See Online Resource E for further details.
13 Recall that �

i
 follows a log-normal distribution LN(�� , �

2
�
) so its mean is exp

(
�� + �2

�
∕2

)
.
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As for the estimated � parameters, they are substantially larger than 1 for both roles 
and larger for A-players than for B-players, so that the prospect of reaching a second 
stage is more “unattractive” for A-players than for B-players. It thus follows from the 
estimated PWFs that A-players are more a-insensitive than B-players; see Fig. 3 for a 
display of these PWFs with their bounds encompassing 95% of the estimated distri-
butions of �i . These behavioural biases are confirmed when discarding "almost invari-
ant" participants from the estimations as A-players then appear even more a-insensi-
tive (and less heterogeneous) than B-players, see Fig. F.1 in Online Resource F, and 
their intercept estimates still suggest that they are also more ambiguity averse.

Second‑stage behaviour The negative mean of the random intercepts of the offer 
and threshold (latent) functions, �� , are significantly larger for A- than for B-players 
and the estimates characterising z(N) indicate a nonlinear increasing relationship 
between the players’ choices and N that is role-invariant. While this is in keeping 
with the inferences made from the naïve model, the estimation outcomes pertain-
ing to the Trimmed Data reveal that the intercepts, like the polynomial estimates, 
are no more significantly different between A- and B-players, as if the expectations 
to receive from B-players and to concede to A-players of "regular" average A- and 
B-players are virtually identical. This vindicates our assumption that A-players’ 
second-stage choices reveal their predictions about B-players’ behaviour, and shows 
that the reported gap in the intercepts when estimating the model with all partici-
pants is mostly due to the presence of "almost invariant" A-players. As such, these 
participants would be most affected by the strategic ambiguity bored by the games 
they play and, consequently, they are unable to form unbiased expectations about 
B-players’ behaviour.14

Fig. 3  Estimated Prelec’s Probability Weighting Function

14 According to Satisficing Theory (Simon, 1956), the B-players’ requests can be seen as revealing a 
minimal aspiration to reach a first-stage agreement, whereas A-players’ requests can be seen as revealing 
what they deem satisficing if a second stage is reached. See Online Resource G for more on this.
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Backward reasoning The sophisticated specification outperforms the naïve one in 
terms of goodness-of-fit (measured by AIC), and thus, indicates that participants 
did use some “backward reasoning” to determine their first-stage choices.15 Unlike 
the game-theoretic backward induction that hinges on expected utility maximisation 
and calls for counterfactual thinking, this reasoning refers to a multi-stage thinking 
based on what one expects to receive (for A-players) or to concede (for B-players) 
given N and p. To this extent, this finding indicates that the emotional commitment 
that characterises the players’ second-stage behaviour can be actually traced-back to 
their first-stage choices in our experiments, what gives a grounding to the emotional 
commitment rationale of Yamagishi et al. (2009) for single-stage IG settings.

Stage‑to‑stage behaviour A Wald test of the joint null that the restrictions on the 
sophisticated model that turn it into the game-theoretic benchmark model hold 
against the alternative that they do not is overwhelmingly rejected for both roles, 
so the observed stage-to-stage behaviour is inconsistent with what game theory pre-
dicts. The significantly positive correlation between the intercepts �i and �i , ��� , and 
their significantly negative correlations with log

(
�i
)
 , ��� , and ��� , unveil the central 

role of the players’ a-insensitivity (partly captured by their �i parameter) in explain-
ing the observed behaviour. Indeed, these estimated correlations indicate that a more 
a-insensitive A-player will offer more in the first stage and expect to receive more in 
the second and, likewise, a more a-insensitive B-player will request more in the first 
stage and expect to concede more in the second. This pattern becomes salient for 
A-players when the "almost invariant" participants are discarded from the estima-
tions since their estimated ��� coefficient is then significantly different and thrice 
larger (in absolute value) than the one for B-players. We interpret this as evidence 
that A-players’ exposure to strategic ambiguity compounds their ambiguity aversion 
and a-insensitivity more than what B-players’ exposure does.

The other side of the coin revealed by the estimated correlations indicates that a 
less a-insensitive A-(B-)player will offer (request) less in the first stage and expect 
to receive (concede) less in the second. This points to behaviour much closer to the 
benchmark prediction.

Figure 4 puts in perspective the above findings for the Trimmed Data by display-
ing the estimated offers and thresholds for each stage and player’s type as func-
tions of N and p, along with the benchmark predictions (darkest surfaces) and aver-
age data for each (N, p)-constellation (dots). The surface-plots in the upper panels 
indicate that the sophisticated model fits the data remarkably well – there only is 
a mild underestimation of A-players’ average first-stage offers in the (50,50)- and 
(75,50)-constellations and a mild overestimation of B-players’ average thresholds 
when p equals 95. The upper-right panel further indicates that the model predicts a 
disagreement when p > 50 and that the latter increases with N, which is in keeping 
with the simulated disagreement rates of Table 3.16

15 The “best” model according to these criteria, which includes a penalisation for the number of param-
eters estimated, is the one with the smallest AIC value.
16 See Online Resource F for the surface-plots pertaining to the full dataset (All Data).
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As for the players’ second-stage average decisions, they are overestimated by cen-
soring. The surface-plots in the lower panels predict that on average, A- and B-players 
request and offer (respectively) the minimum of 1 ECU for N < 40 and they otherwise 
request and offer very similar amounts that increase with N (cf. lower-right panel). The 
latter finding suggests that A- and B-players have a similar understanding of how to 
behave in this game class. As already noted above, the trimming of "almost invariant" 
players mostly concerns A-players whose use of safe strategies suggests that they were 
most ambiguity averse. To this extent, the similarity of the predicted second-stage 
behaviour of "regular" A- and B-players is most surprising given A-players’ higher 
a-insensitivity and the non-provision of end-of-stage or end-of-round information 
feedback, as if players’ distorted beliefs about each other’s average behaviour were 
indeed consistent.

6  Conclusion

We experimentally investigate the role of strategic ambiguity and risk on behaviour 
in a class of pie-sharing games with alternating roles. The games we consider char-
acterise a wide range of bargaining contexts and share the common features that 

Fig. 4  Estimated offer and threshold functions for the first and second stages, Trimmed Data.
Note: The darkest surfaces (red dots) characterise the benchmark predictions (average data). The yellow 
surfaces for A-player and the green surfaces for B-player stand for the sophisticated model predictions 
for an average player type and are based on Trimmed Data estimates in Table 5
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the second stage of interaction follows the rules of an Impunity Game (i.e., the pro-
poser’s offer cannot be vetoed by the responder but the latter can reject a positive 
offer without affecting the responder’s payoff) and is uncertain (i.e., it occurs with a 
known probability p if no agreement is reached in the first stage).

The experimental evidence on similar two-stage bargaining games reports sys-
tematic deviations from the benchmark predictions that point to a limited cognition 
that would impede rational (game-theoretic) reasoning. Yamagishi et al. (2009) show 
in particular that rejected offers in single-stage Impunity Games can be rationalised 
in terms of responders’ emotional commitment to what they believe to be a fair share 
of the pie for them to receive. As such rejections revert to “leaving money on the 
table,” it follows that no matter one’s beliefs about others’ lower rationality (as in the 
level-k model of Ho & Su, 2013), such behaviour can hardly be rationalised in terms 
of expected utility maximisation. Furthermore, since proposers in these experiments 
received no end-of-stage or end-of-round information feedback, such rejections can-
not be attributed to anger or moral disgust (since the responder’s decision would not 
be disclosed to the proposer) neither to other-regarding preferences (since rejections 
exacerbate rather than reduce inequality, see Yamagishi et al., 2009).

Therefore, we propose to study these games through the lens of strategic ambi-
guity and risk without referring to expected utility maximisation or beliefs about 
others’ rationality. Strategic ambiguity refers to the players’ ignorance of the other’s 
intentions and of the likelihoods of the other’s possible actions, whereas risk refers 
to the known probability p of a second stage of interaction if no first-stage agree-
ment is reached. The game class we consider introduces an asymmetry in the play-
ers’ bargaining power, and thus, in their overall exposure to strategic ambiguity: a 
first-stage responder is exposed to strategic ambiguity in the first stage and to the 
risk of a second stage, whereas the first-stage proposer is additionally exposed to the 
strategic ambiguity of the second stage.

To assess the role of strategic ambiguity on the players’ behaviour, we follow Li 
et al. (2019), who show that in a (trust) game context, it can trigger ambiguity aver-
sion, i.e., an emotional response reflecting one’s dislike of ambiguous situations and 
which calls for the use of safe strategies, and/or a-insensitivity, i.e., which is cogni-
tive and makes one less likely to use belief-based strategies. As for risk, we assume 
that players may misperceive its role as in Cumulative Prospect Theory.

We investigate the relevance of these traits to organise behaviour with two struc-
tural models. The first is naïve in that it assumes that the players’ first-stage deci-
sions are not affected by their second-stage choices, although they may factor in 
details of the second-stage interaction (N and/or p). Since this model only allows the 
use of belief-free (or safe) strategies for the first and second stages, it only captures 
the players’ ambiguity aversion. The second is sophisticated and builds on the naïve 
one by additionally allowing for probability distortions and for the first-stage deci-
sions to be affected by the second-stage ones. Since it allows the use of safe and/
or belief-based strategies, it can capture both ambiguity aversion and the players’ 
a-insensitivities – and it nests the game-theoretic benchmark model.

The estimations indicate that the sophisticated specification with a backward rea-
soning fits the data best. The model fits remarkably well the players’ average behav-
iour in the first stage as well as their stage-to-stage behaviour. We find in particular 
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that first-stage offers are hardly affected by the game’s parameters and that they tend 
to be higher than requests (as long as N and p are not too large), which is in keep-
ing with the use of safe strategies that characterise ambiguity aversion and with the 
higher exposure of first-stage proposers to strategic ambiguity. These players also 
distort probabilities more than first-stage responders, and in a way that expresses 
more a-insensitivity, i.e., an insensitivity to likelihood changes. Further, the average 
second-stage decisions (offers or requests) are positively related to the average first 
stage ones (requests or offers). Such a stage-to-stage pattern is captured by the back-
ward reasoning and suggests that the players’ emotional commitments can actually 
be traced-back to their first-stage decisions. Interestingly, the saliency of this pattern 
increases with the players’ a-insensitivity and thus with their exposure to strategic 
ambiguity.

These patterns are confirmed when we discard participants who display an almost 
invariant behaviour (i.e., the most ambiguity averse) from the estimations. In this 
case, besides the model’s improved ability to explain first-stage decisions, it also 
predicts virtually identical decisions for the second-stage average proposer and aver-
age responder. This indicates that the least ambiguity averse players predict what the 
other expects to receive or intends to give almost perfectly on average, despite the 
higher a-insensitivity of "regular" A-players. Finally, since participants received no 
end-of-stage or end-of-round feedback, such matching predictions suggest that the 
players’ beliefs about their protagonists were actually consistent and that most of the 
second-stage "disagreements" result from their heterogeneous play.

Deciding as a proposer or a responder in alternating-offer bargaining is a complex 
task which has drawn a lot of attention in the economics literature. The settings we study 
and the structural models we propose provide new insights into the analysis of strategic 
behaviour that highlight the role of strategic ambiguity in a multi-stage context.
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