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Abstract
Expected Utility Theory (EUT) provides axioms for maximizing utility in risky 
choice. The Independence Axiom (IA) is its most demanding axiom: preferences 
between two options should not change when altering both options equally by mix-
ing them with a common gamble. We tested common consequence (CC) and com-
mon ratio (CR) violations of the IA over several months in thousands of stochastic 
choices using a large variety of binary option sets. Three monkeys showed con-
sistently few outright Preference Reversals (8%) but substantial graded Preference 
Changes (46%) between the initial preferred gamble and the corresponding altered 
gamble. Linear Discriminant Analysis (LDA) indicated that gamble probabilities 
predicted most Preference Changes in CC (72%) and CR (88%) tests. The Akaike 
Information Criterion indicated that probability weighting within Cumulative Pros-
pect Theory (CPT) explained choices better than models using Expected Value (EV) 
or EUT. Fitting by utility and probability weighting functions of CPT resulted in 
nonlinear and non-parallel indifference curves (IC) in the Marschak-Machina trian-
gle and suggested IA non-compliance of models using EV or EUT. Indeed, CPT 
models predicted Preference Changes better than EV and EUT models. Indifference 
points in out-of-sample tests were closer to CPT-estimated ICs than EV and EUT 
ICs. Finally, while the few outright Preference Reversals may reflect the long expe-
rience of our monkeys, their more graded Preference Changes corresponded to those 
reported for humans. In benefitting from the wide testing possibilities in monkeys, 
our stringent axiomatic tests contribute critical information about risky decision-
making and serves as basis for investigating neuronal decision mechanisms.
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1 Introduction

Most decisions we face include some degree of uncertainty. Economic decision 
theories that quantify the uncertainty associated with the choice options propose 
rigorous mathematical foundations for choice under risk. Expected Utility Theory 
(EUT), large parts of which were formalized by von Neumann and Morgenstern 
(1944), defines a mathematical framework based on four simple axioms, com-
pleteness, transitivity, continuity and independence. These axioms constitute the 
necessary and sufficient conditions for maximizing a specific subjective quantity, 
Expected Utility (EU): we simply choose the option with the highest EU. Utility 
(U) is the subjectively assigned value to a reward magnitude m ( U = u(m) ), and 
the subjective value of a probabilistic reward corresponds to the expected value 
of the utility distribution, called Expected Utility ( EU =

∑
u(mi) ⋅ pi).

The independence axiom (IA) constitutes the fourth EUT axiom and is cen-
tral to defining EU as subjective value. Together with the continuity axiom, the 
IA defines how magnitude and probability are combined to compute the global, 
subjective value of a risky choice option. The IA had been implicitly assumed 
by von Neumann and Morgenstern in their description of EUT tests and formu-
lated, discussed and empirically tested by Marschak (1950); Allais (1953); and 
Savage (1954). The IA states that our preferences should not change when mix-
ing all choice options with a common gamble. However, experiments have shown 
for decades that humans fail to comply with the IA (Allais, 1953; Kahneman & 
Tversky, 1979; Loomes & Sugden, 1987; Moscati, 2016; Starmer, 2000), which 
motivated additions to the existing utility theories, including prominently Pros-
pect Theory (Kahneman & Tversky, 1979; Tversky & Kahneman, 1992).

Several sources of IA violations have been proposed, including subjective proba-
bility weighting, the certainty effect, the fanning-out hypothesis and heuristic schemes 
(Camerer, 1989; Kahneman & Tversky, 1979; Katsikopoulos et al., 2008; Machina, 
1982; Savage, 1954). Past studies have also suggested that violations may not be as 
systematic as initially thought, reporting a significant proportion of EUT-compliant 
subjects (Harless & Camerer, 1994; Hey & Orme, 1994). Moreover, among the stud-
ies showing significant failures of the IA, high variability and conflicting types of 
violations have been reported (Battalio et al., 1990; Blavatskyy et al., 2022; Conlisk, 
1989; List & Haigh, 2005; Ruggeri et al., 2020; Wu & Gonzalez, 1998). The type 
and strength of violations also differed among distinct populations of subjects (Huck 
& Müller, 2012). Finally, human choices were usually tested with a small choice set 
and not repeated, missing effects of choice variability within each subject. Altogether, 
these results leave a fragmented picture on the extent, types and causes of IA viola-
tions. Clarifying these aspects would crucially contribute to understanding the mech-
anism underlying economic decisions.

The IA has not been tested in non-human primates, leaving an open question 
about the limits of compliance with EUT of our closest, experimentally viable, evo-
lutionary relative. Monkeys can choose between actual outcomes that are tangibly 
delivered after every choice (as opposed to hypothetical outcomes) and can perform 
hundreds of daily choices. Monkeys allow systematic and incentive-compatible tests 
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of EUT axioms in the same subject across a wide range of tests. Their reliable and 
stable performance minimizes errors and rules out insufficient learning, as noted for 
rodent tests of the IA axiom (Camerer, 1989; Kagel et al., 1990). Monkeys’ choices 
satisfy first-, second- and third-order stochastic dominance, allow comparisons 
between risky and riskless utility functions, reveal nonlinear probability weighting, 
comply with the EUT continuity axiom, and can respect the Independence of Irrel-
evant Alternatives of two-component bundles (Bujold et al., 2021; Ferrari-Toniolo 
et al., 2019, 2021; Genest et al., 2016; Pastor-Bernier et al., 2017; Pelé et al., 2014; 
Stauffer et al., 2014, 2015). However, without testing the IA, these choice data do 
not yet allow us to identify specific forms of subjective value computation. Work on 
monkeys is particularly suitable for achieving this goal, as the typical collection of 
large data sets facilitates thorough comparisons of economic models. As ultimate 
goal, well-defined behavioral assessments of EUT axioms, and in particular of the 
IA, would allow stringent, concept-based brain investigations of economic choice 
mechanisms with the high precision of primate single-cell neurophysiology. Given 
the evolutionary relationship between humans and monkeys, evidence of similar IA 
violations in the two species would help further our understanding of human deci-
sion making, both from an economic perspective and from a neurophysiological one.

Here, we used the IA to test the conditions and limits of utility-maximizing sto-
chastic choices in three rhesus monkeys. The animals performed thousands of choices 
between gambles to identify specific forms of value computation, notably utility and 
probability-weighting. We systematically varied the gambles’ probabilities in com-
mon consequence and common ratio tests across the whole Marschak-Machina tri-
angle to gain a comprehensive and detailed view of axiom compliance and violation. 
The animals consistently showed relatively few outright Preference Reversals, possi-
bly due to their extended experience with the gambles, but substantial graded Prefer-
ence Changes. Comparisons between economic model fits to the measured choices 
demonstrated that the probability weighting of Cumulative Prospect Theory (CPT) 
explained the choices better than models using Expected Value (EV) or EUT. The 
graded Preference Changes in our monkeys compared in frequency and strength to 
those reported for humans. These axiom-driven experiments identified the critical 
decision variables for utility-maximizing choices according to the IA and provide a 
basis for investigating the underlying neuronal signals in primates.

2  Methods

2.1  Animals

Three adult male rhesus macaques (Macaca mulatta) were used in this experiment: 
Monkey A (13 kg), Monkey B (11.5 kg) and Monkey C (11 kg). The animals were 
born in captivity at the Medical Research Council’s Centre for Macaques (CFM) in 
the UK. Monkey A (’Tigger’) and Monkey B (’Ugo’) had been surgically implanted 
with a headpost and a recording chamber for neurophysiological recording; they were 
headposted for 2—3 h on each test day of the current experiment, which was intermin-
gled with neuronal recordings on separate days. Both animals had previous experience 
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with the visual stimuli and experimental setup (Ferrari-Toniolo et al., 2019). Monkey 
C (’Aragorn’) had no implant, no head posting and no previous task experience.

All experimental procedures had been ethically reviewed and approved and were 
regulated and continuously supervised by the following institutions and individuals 
in the UK and at the University of Cambridge (UCam): the Minister of State at the 
UK Home Office, the Animals in Science Regulation Unit (ASRU) of the UK Home 
Office implementing the Animals (Scientific Procedures) Act 1986 with Amend-
ment Regulations 2012, the UK Animals in Science Committee (ASC), the local 
UK Home Office Inspector, the UK National Centre for Replacement, Refinement 
and Reduction of Animal Experiments (NC3Rs), the UCam Animal Welfare and 
Ethical Review Body (AWERB), the UCam Governance and Strategy Committee, 
the Home Office Establishment License Holder of the UCam Biomedical Service 
(UBS), the UBS Director for Governance and Welfare, the UBS Named Information 
and Compliance Support Officer, the UBS Named Veterinary Surgeon (NVS), and 
the UBS Named Animal Care and Welfare Officer (NACWO).

2.2  Task design

Each animal was seated in custom-made a primate chair (Crist instruments) in which 
he chose on each trial between two discrete and distinct options that were simultane-
ously presented at the right and left on a computer monitor at a distance of 50 cm in 
front of it. The animal indicated its choice by moving a joystick (Biotronix Work-
shop, University of Cambridge) either to the right or the left by an equal distance. 
The position of the joystick was monitored via custom code using Psychtoolbox 3 in 
Matlab (The MathWorks). The animals were first trained in > 10,000 trials to learn 
the independently set reward magnitudes (m) and probabilities (p) that were indicated 
by a specifically set visual stimulus. Reward magnitude was signaled by the vertical 
position of a horizonal line; the probability of receiving that reward magnitude was 
proportional to the length of the horizonal line away from stimulus center (Fig. 1A). 
A stimulus with a full-length, single horizontal line corresponded to a sure reward 

Fig. 1  Experimental design for testing the independence axiom (IA). (A) Visual stimulus predicting a 
three-outcome gamble. The vertical position of each horizontal bar represents reward amount (m1, m2, 
m3; ml of juice); the length of each bar represents reward probability (p1, p2, p3) of the respective 
amounts m1, m2, m3. (B) Principle of testing the IA with two option sets {A,B} and {C,D}. Options 
C and D are obtained by adding the same gamble G to both options A and B, weighted by probability 
p. (C) Common consequence test and its representation in the Marschak-Machina triangle. The x-and 
y-axes represent the probabilities of the low outcome (p1) and high outcome (p3), respectively (probabil-
ity of middle outcome: p2 = 1-p1-p3). Blue dots represent the original option set {A,B}, and green dots 
represent its modified set {C,D} for testing the IA. The yellow arrow indicates how option set {A,B} 
becomes option set {C,D} by adding the same probability k to the probability p1 of the low outcome m1 
in both gambles A and B. Grey lines connect gambles with same expected value and highlight the linear 
and parallel nature of indifference curves tested by the IA. IA compliance requires same preferences: if 
(A ≻ B) then (C ≻ D), or if (A ≺ B) then (C ≺ D) and same choice probabilities. (D) Common ratio test. 
Multiplication of option set {A,B} by the same ratio r results in test option set {C,D}. Option set {A,B} 
becomes option set {C,D} by multiplying a common ratio r with the probability of the middle outcome 
(p2) of gamble A and with the probability of the high outcome (p3) of gamble B. * and ** and lengths 
of red lines indicate different distances of gambles from expected values (grey lines), which may result 
in potential preference changes between the two option sets without necessarily indicating IA violation

▸
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(i.e. a degenerate gamble, p = 1), whereas multiple horizontal lines with less than full 
length indicated multiple possible gamble outcomes. At the end of each trial, the cho-
sen option, and no other option, was paid out. From that paid-out option, one, and 
only one, of the outcomes was delivered to the animal. Thus, both the options and 
the outcomes of each option were mutually exclusive and collectively exhaustive. We 
used three fixed reward magnitudes: 0 ml (low; m1), 0.25 ml (middle; m2) and 0.5 ml 
(high; m3) of the same fruit juice or water; reward probabilities of the three reward 
magnitudes (p1, p2, p3) varied between 0 and 1, with a minimum step of 0.02. All 
option sets alternated pseudo-randomly. More details can be found in our previous 
study employing the same presentation design (Ferrari-Toniolo et al., 2021).
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2.3  Revealed preference and choice indifference

Each animal’s preferences were considered to be revealed from its choices and used 
as a basis for quantification in later analyses. Preference was defined as the probabil-
ity of choosing one gamble over the alternative gamble in the same binary option 
set; a gamble was considered to be revealed preferred to another gamble if the first 
gamble was chosen with P > 0.5. Thus, for a binary option set {A,B}, a stochastic 
preference relation was defined as P(A|{A,B}) =  NA/NAB, where  NA was the num-
ber of trials in which the monkey chose A over B, and  NAB was the total number 
of trials with the {A,B} gamble set. When P(A|{A,B}) > 0.5 (i.e. when A was cho-
sen in more than 50% of the trials), the monkey stochastically revealed preferred 
A to B. We used the binomial test (P < 0.05; 1-tailed) to assess the statistical sig-
nificance of such preference relation in a specific direction (either P{A,B} > 0.5 or 
P{A,B} < 0.5) against choice indifference (probability of choosing each option with 
P = 0.5). When P(A|{A,B}) = 0.5, the animal was indifferent between two options A 
and B (i.e. gamble A was as much revealed preferred as gamble B).

2.4  Defining the IA

The IA states that for any gamble A that is preferred to a gamble B, the combina-
tion of gamble A with gamble G should be preferred to the combination of gamble 
B with gamble G; the combined options are themselves gambles and are called C 
and D. Compliance with IA requires that the commonly added gamble G does not 
change the preference for the options. Thus, individuals who prefer gambles A to B 
should also prefer gambles C to D (Fig. 1B). Any preference change constitutes an 
IA violation. These notions are formally stated as follows:

with A, B and G as gambles and p as probability. Gamble A was always a degener-
ate gamble with only a safe middle reward (m2, p2 = 1), as used in Allais’ original 
test (Allais, 1953).

2.5  Testing the IA

We assessed IA compliance in two commonly used tests: the common consequence 
(CC) test and the common ratio (CR) test.

The CC test consisted of adding (or subtracting) the same specific probability 
of an outcome (’common consequence’) commonly to both options. Gamble A had 
a single outcome (m2 = 0.25 ml, p2 = 1), gamble B had three outcomes with fixed 
magnitudes m1, m2, m3 and varying probabilities p1, p2, p3 (Fig. 1C). For the CC 
test, we added a common probability k to the probability of the lower outcome (p1) 
to gambles A and B, which defined two new gambles C and D; probability k equals 
p2 of option B. Adding probability k to the p1 of gambles A and B consisted of 
reducing the original p2 by k in both gambles (and thus reducing p2 in gamble B to 
0) to maintain the sum = 1.0 of all probabilities in each gamble.

(1)∀A ≻ B ⇒ pA + (1 − p)G ≻ pB + (1 − p)G; ∀G, ∀p ∈ [0, 1]
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The CR test consisted of multiplying the same ’common ratio’ with the prob-
abilities of all non-zero outcomes commonly for both gambles A and B. Gamble A 
had the same single outcome as in the CC test (m2 = 0.25 ml, p2 = 1), but gamble B 
had two outcomes with fixed magnitudes m1, m3 and varying probabilities p1, p3 
(Fig. 1D). For the CR test, we multiplied a common ratio r with the probability of 
the middle outcome (p2) of gamble A and with the probability of the high outcome 
(p3) of gamble B and thus defined two new gambles C and D (thus, p2 and p3 of the 
new gambles C and D equalled p2 and p3 of gambles A and B commonly multiplied 
by r; p1’s of gambles C and D were adjusted to maintain the sum = 1.0 of all prob-
abilities in each gamble).

The Marschak-Machina triangle constitutes an elegant scheme for graphically 
representing choice options and highlighting the predictions and consequences of 
IA compliance and violation (Machina, 1982; Marschak, 1950). In this abstract 
space (Fig.  1C, D, bottom), the x-axis represents the probability of obtaining the 
low outcome (p1) and the y-axis represents the probability of obtaining the high 
outcome (p3). The probability of the middle outcome (p2) derives from all prob-
abilities summing to 1.0: p2 = 1—p1—p3. Each point inside the triangle represents 
a gamble. An IA test with two option sets is represented by two parallel lines that 
connect the original gambles A and B (blue), and the compounded gambles C and D 
(green) (note that these lines simply connect the gambles and do not indicate choice 
indifference; see below). In CC tests, the probability of the highest magnitude (p3) 
remains unchanged between gambles B and D (Fig.  1C bottom); thus, gamble D 
has the same vertical position as gamble B (y-axis). Thus, the change from option 
set {A,B} to option set {C,D} is graphically represented by a horizontal shift of the 
option set by probability k. In CR tests, probability p3 changes between gambles B 
and D; these gambles have different vertical positions along the hypotenuse (Fig. 1D 
bottom). The change from option set {A,B} to option set {C,D} is graphically rep-
resented by a horizontal shift of gamble A to become gamble C, and by a downward 
shift along the hypotenuse from gamble B to gamble D.

In the Marschak-Machina triangle, equally revealed preferred gambles are con-
nected by indifference curves (IC), whereas unequally preferred gambles are posi-
tioned on different ICs (see Fig.  5). While ICs should be linear and parallel with 
physical Expected Values (EV) and with utilities estimated according to EUT, they 
become non-parallel or curved with violations of the IA axiom.

2.6  Definitions of IA violations

We used two measures for IA violation, Preference Reversal and Preference Change, 
both of which were based on the revealed preference of gamble A to gamble B indi-
cated by the probability of choice of the initial gambles P(A|{A,B}). Thus, we used 
stochastic choices and correspondingly stochastic models to test the IA. While both 
outright Preference Reversal and graded significant Preference Change can detect 
IA violations, they cannot assess significant axiom compliance, as this corresponds 
to the null hypothesis of our statistical test. Nonlinear and non-parallel indifference 
curves in the Marschak-Machina triangle demonstrate IA violations, as proposed 
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by several non-EU theories (Bhatia & Loomes, 2017; Bordalo, 2012; Kahneman & 
Tversky, 1979; Machina, 1982; Savage, 1954).

Our first, binary measure for IA compliance was Preference Reversal. When 
the fixed gamble A was stochastically revealed preferred to gamble B, Preference 
Reversal was manifested as stochastically preferring gamble D to gamble C:

This reversal, in a non-stochastic setting, was originally observed in humans (Allais-
type reversal; Allais, 1953; Kahneman & Tversky, 1979). To adapt this measure to sto-
chastic choices, we assessed the significance of the initial preference P(A|{A,B}) > 0.5 
in comparison with choice indifference (P(A|{A,B}) = 0.5) using the binomial test 
(statistical P < 0.05; 1-tailed). Then Preference Reversal was evidenced as significant 
stochastic preference in the opposite direction (P(C|{C,D}) < 0.5) (binomial test).

To the opposite, when gamble B was stochastically revealed preferred to gam-
ble A, we defined Preference Reversal as stochastically preferring gamble C to 
gamble D:

We assessed the significance of this reverse Allais-type Preference Reversal (Blavatskyy,  
2013b; Conlisk, 1989) in analogy to the (regular) Allais-type reversal.

Our second, more graded measure for IA violation was Preference Change. 
We used the metric S introduced by Conlisk (1989) who had assessed IA viola-
tions non-stochastically from single choices of multiple human participants. We 
adapted the Conlisk’S assessment to repeated, stochastic choices of individual 
animals and quantified Preference Change stochastically as ratio of probabilities 
of Allais-type and reverse Allais-type reversals:

P(AD) indicates the probability of Allais-type reversals: P(A|{A,B}) > 0.5 and P 
(D|{C,D}) > 0.5. P(BC) indicates the probability of reverse Allais-type reversals: P 
(B|{A,B}) > 0.5 and P(C|{C,D}) > 0.5. We set Conlisk’S = 0 when P(AD) + P(BC) = 0.

Assuming that choices in different trials were independent, we computed 
P(AD) = P(A|{A,B}) P(D|{C,D}), obtaining:

The Conlisk’S measure is a real number that varies between -0.5 and 0.5. We defined 
the significance of Conlisk’S as difference from zero (P < 0.05 on pooled sessions 
from a given monkey; one-sample t-test). To avoid unreasonably large violation 
measures from infrequent violations, we weighted the Conlisk’S with respect to the 
total proportion of violations and obtained the Preference Change S:

(2)P(A|{A,B}) > 0.5 & P(C|{C,D}) < 0.5

(3)P(A|{A,B}) < 0.5 & P(C|{C,D}) > 0.5

(4)Conlisk�S =
P(AD)

P(AD) + P(BC)
− 0.5

(5)Conlisk�S =
P(A|{AB}) ⋅ P(D|{CD})

P(A|{AB}) ⋅ P(D|{CD}) + P(B|{AB}) ⋅ P(C|{CD})
− 0.5

(6)S = Conlisk�S ⋅ [P(AD) + P(BC)]; with P((AD) + P(BC)) ≤ 1.0
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In this way, S is a real number that still varies between -0.5 and 0.5 and indicates 
the same direction of systematic IA violation as Conlisk’S but corresponds better to 
the fraction of trials producing the violation. The S is a measure of how much the 
preferences vary between option sets {A,B} and {C,D} (i.e. the non-vertical nega-
tive and positive slopes, indicating S > 0 and S < 0, respectively, in our preference 
comparisons in Figs. 2 and 3, red). All subsequent analyses used this S as measure 
of Preference Change.

With repeated choices, IA violations may seem to occur simply because of 
some random variability in preferences, but the measure of S cancels out random 
violations in opposite directions and thus results in a robust measure of Preference 
Change. Compliance with the IA is manifested as Preference Changes resulting in 
S = 0, which reflects either an absence of IA violations or a balanced number of ran-
dom IA violations in the two directions. Preference Changes are manifested by posi-
tive or negative S values that differ significantly from zero (P < 0.05; one-sample 
t-test).

In our stochastic version of EUT, Preference Changes (significant S ≠ 0) repre-
sent IA violations in CC tests in which gambles B and D have equal distance from 
the respective parallel choice indifference lines representing equal expected utility 
in the Marschak-Machina triangle (Fig. 1C); the equal utility difference should pre-
serve their preference within their respective option sets and thus maintain linear 
and parallel ICs. By contrast, Preference Changes in CR tests are necessary but not 
sufficient for defining IA violations. The CR test places gambles B and D at different 
distances from the respective parallel indifference lines (Fig. 1D) that reflect differ-
ent expected utility differences for the two option sets that may result in preference 

Fig. 2  Preference Changes S during IA common consequence tests. (A) Significant violations with posi-
tive Preference Change measure S (P < 0.05 on pooled sessions from a given monkey; one-sample t-test 
against zero). Each panel shows at the left the small Marschak-Machina triangle for the tested options. 
The center plot shows the probability of choosing one option over the other option (Options A and C 
on the left; Options B and D on the right). Each dot represents the probability of choosing A over B or 
C over D in one session; red vertical bars represent averages of probability of choices (A—B or C—D) 
across sessions; red intervals show the 95% confidence interval; blue intervals show Standard Deviations 
(SD); the black line links preferences in one example session (red dotted line: average across sessions). 
Small histograms (right) show the distribution of S’s that quantifies the IA violation, across sessions. (B) 
Significant negative Preference Changes S. (C) Insignificant Preference Changes S
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changes (but not outright preference reversals) without indicating IA violation. In 
other words, when using a stochastic model, linear and parallel ICs can produce 
non-zero S values in the CR test. Thus, non-zero S values do not necessarily indicate 
IA violations in CR tests.

2.7  Classification analysis

To check whether the Preference Changes in the IA tests depended on reward proba-
bility, we performed classification analyses. We used a Linear Discriminant Analysis 
(LDA) classifier (fitcdiscr function in Matlab) to predict the sign of the Preference 
Change measure S. We characterized the changes with a leave-one-out procedure 
using Linear Discriminant Analysis (LDA). We trained the LDA with all data except 
for those from the predicted leave-out choice tests to build 36 models (18 CC tests 
and 18 CR tests) for each animal (we discarded one option set in CR tests with Mon-
key C in which S was zero). As each of the 36 models was used to predict the left-
out data, we obtained 36 predictions for each animal. We compared these predic-
tions to the measured directions of Preference Change to check the accuracy of the 
prediction. To illustrate the test sensitivity (true positive rate / ability to predict one 
class) and specificity (false positive rate / ability to predict the other class), we drew 
a confusion matrix for the CC and CR tests, separately for each animal (see Fig. 4).

2.8  Economic modeling of choice behavior

We defined a standard discrete choice softmax function (McFadden, 2001) to describe 
stochastic preferences. The probability P of choosing a generic option A over another 
option B was defined as:

Fig. 3  Preference Changes (S) during IA common ratio tests. (A) Significant positive Preference Change 
measure S (all P < 0.05; one-sample t-test). For conventions, see Fig. 2. (B) Significant negative Prefer-
ence Changes S. (C) Insignificant Preference Changes S
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Fig. 4  Probability dependency of IA Preference Changes. (A) Common consequence test. The x- and 
y-axes show the probabilities of low and high magnitudes of option B, respectively. Purple and cyan dots 
represent positive and negative Preference Change measures S, respectively. Black circles around dots 
indicate significance (P < 0.05; one-sample t-test). Insets show confusion matrices from classifications 
using Linear Discriminant Analysis (LDA). (B) Common ratio test. The x- and y-axes show the ration 
and the probability of high magnitudes of option B, respectively. One option set with S = 0 not shown in 
Monkey C
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where λ represents the noise parameter, defining the steepness of the preference 
function (steeper for higher λ values). Based on EV theory, EUT and Cumulative 
Prospect Theory (CPT), we used three models to define the value (V) of gambles. 
These models returned different estimates of choice probability according to Eq. 7.

In the EV model, each option’s value was its objective Expected Value:

For a generic three outcome gamble in our task, it corresponded to ( m1 was zero in 
our task and therefore p1 ⋅ m1 = 0):

In the EUT model, each option’s subjective value was defined via the utility function 
(u) as its Expected Utility:

In our gambles’ space this mapped to:

In the CPT model, each option’s subjective value was called a Prospect Value and 
defined by a utility function (u) together with a probability weighting function (w), 
combined in a cumulative form (Tversky & Kahneman, 1992):

where �i = w(pi + ... + pn) − w(pi+1 + ... + pn) , with n indicating the number of out-
comes, and index i corresponding to the outcomes ordered from worst to best ( m1 
and m3 respectively, in our task). For a generic three-outcome gamble (with prob-
abilities p1, p2, p3 ), Eq. 12 becomes:

which, with our set of magnitudes and normalized utility, corresponds to

In these three value-estimating equations, each pi represents the probability of get-
ting the respective reward magnitude ( mi ): p1 and m1 represent the probability and 
magnitude of the lowest outcome (0 ml); p2 and m2 the probability and magnitude 
of the middle outcome (0.25  ml); p3 and m3 are relative to the highest outcome 
(0.5 ml). In the EUT and CPT models, the utility function was defined as a power 
function (free parameter ρ ), normalized to the highest magnitude level:

(7)P(A|AB) = 1∕(1 + e−λ(VA−VB))

(8)EV =
∑

i
pi ⋅ mi

(9)EV
(
p1, p2, p3

)
= p2 ⋅ m2 + p3 ⋅ m3

(10)EU =
∑

i
pi ⋅ u(mi)

(11)EU
(
p1, p2, p3

)
= p2 ⋅ u

(
m2

)
+ p3 ⋅ u

(
m3

)

(12)Prospect Value =
∑

i
�i ⋅ u(mi)

(13)
Prospect Value = u

(
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)
⋅

(
1 − w

(
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))
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(
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)
⋅

(
w
(
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)
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(
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(
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(
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)
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(
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(
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(
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+ w
(
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The ρ parameter defines a convex ( ρ > 1 ) or concave ( ρ < 1 ) utility function, with 
ρ = 1 corresponding to linear utility. Note that having only three magnitude levels in 
the current experiment implied that the only meaningful utility value was that of the 
middle outcome magnitude (m2) in relation to the other two outcomes (m1 and m3). 
Thus, although a larger set of magnitudes may result in more complex utility func-
tions, a power function would be sufficient to account for the difference in subjective 
evaluation of the three reward magnitudes used in our study.

In the CPT model, cumulative probability weighting was defined as a two-parameter 
Prelec function (Prelec, 1998; Stott, 2006) as in our earlier study (Ferrari-Toniolo et al., 
2019):

where � allows the function to vary from inverse-S-shaped ( 𝛼 < 1 ) to S-shaped 
( 𝛼 > 1 ), while β shifts the function vertically.

We estimated the functions’ parameters ( � ) with the maximum likelihood esti-
mation (MLE) method, by maximizing the log-likelihood function defined (for a 
choice between generic options A and B; using fminsearch in Matlab) as:

The experimental choice outcome was defined for each trial i by the binary variable 
yi (1 when A chosen, 0 when B chosen) and y′

i
 (1 when B chosen).

To validate our economic models, we used an out-of-sample dataset that con-
sisted of a set of gambles that differed from the gamble set used for the IA tests. 
We presented monkeys with choices between one fixed option (J) on the x axis 
(p1 between 0 and 0.8 in 0.2 increments) or on the y axis (p3 between 0.2 and 
0.8 in 0.2 increments) and another option (K) with variable p1 (and p3) and fixed 
p2 (with p2 between 0.2 and 1, in 0.2 increments). For each option J, by vary-
ing the probability p1 in option K, we identified an indifference point (IP) as the 
point within the triangle where a fitted softmax preference function would take 
the value of 0.5. All choice trials in the out-of-sample test were pseudo-randomly 
intermingled. IPs were estimated separately in each weekdaily session.

2.9  Comparison with human choices

We tested whether the observed IA violations in the 18 CC tests in monkeys cor-
responded to the violations reported in 39 human studies (Blavatskyy et al., 2015), 
using data pooled from all three monkeys. We used two different comparison meth-
ods, a confusion matrix using binary classes of Preference Change (either S > 0 or 
S < 0), and a Pearson correlation using real-number Preference Changes (S varying 
between -0.5 and + 0.5). However, the gambles used in our monkeys differed from 
the gambles used in the human studies (see Fig. 7A). Therefore, for more accurate 

(15)u(mi) =

(
mi

m3

)�

(16)w(p) = e−�(−ln(p))
�

(17)LL(�|y) =
∑n

i=1
yi ∗ ���(P(A|AB)) +

∑n

i=1
yi ∗ ���(P(B|AB))
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comparisons, we first needed to predict the Preference Changes S that would have 
occurred in our monkeys had we used the exact same gambles as in humans; to con-
trol for directionality of testing, we also needed to predict, in the reverse direction, 
the Preference Changes S that would have occurred in the human studies had they 
used the same gambles as we did in our monkeys.

For the confusion matrix, we predicted the S’s for the unused gambles with an 
LDA classifier trained on the S’s of the actually used gambles. For predicting the 
monkey S’s for the gambles used in the human studies, we trained the LDA with the 
binary monkey S’s (S > 0, S < 0), and the probabilities for the low and the high mag-
nitudes of the monkey gambles (p1, p3). In the reverse direction, for predicting the 
human S’s for the gambles used in our monkeys, we trained the LDA with the binary 
human S’s, the probabilities for the low and the high magnitudes of the human gam-
bles (p1, p3), and the ratio of the middle and high magnitudes of the human gambles 
(m2 / m3). Then we used the confusion matrix to compare measured human S’s with 
predicted monkey S’s (see Fig. 7C left) and, vice versa, measured monkey S’s with 
predicted human S’s (see Fig. 7D left). The accuracy of the comparison was defined 
in percent from the ratio: (total number of successful comparisons) / (total number 
of comparisons). For example, in the confusion matrix shown in Fig. 7C, the total 
number of successful comparisons is (6 + 26) / (6 + 7 + 0 + 26) = 0.82, which equals 
82%.

For the Pearson correlation, we predicted the S’s for the unused gambles with two 
different multiple linear regression systems depending on the direction of compari-
son. The regression for the comparison of measured human Preference Changes S 
with predicted monkey S’s first estimated the beta parameters for the S’s measured 
in monkeys as follows:

with p1-monkey and p3-monkey as probabilities of lowest and highest magnitude of 
the gambles used in option B in monkeys. Then we applied the estimated betas from 
Eq. 18 to all gambles used in the 39 human studies to predict the numeric Prefer-
ence Change S for these gambles in monkeys:

with p1-human and p3-human as probabilities of lowest and highest magnitude of 
the gambles used in option B in humans. Then we compared the measured human 
S’s with the predicted monkey S’s using a Pearson correlation (see Fig. 7C right).

In the reverse direction, comparing measured monkey S’s with predicted human 
S’s, the regression first estimated the beta parameters for the Preference Change S 
measured in humans with the modified regression model:

with p1-human and p3-human as probabilities of lowest and highest magnitudes of 
gamble B, and m2-human and m3-human as middle and highest magnitude used 
in humans (magnitudes varied across the human studies but were constant in all 

(18)Measured�Smonkey = b0 + b1 ⋅ p1−monkey + b2 ⋅ p3−monkey

(19)Predicted�Smonkey = b0 + b1 ⋅ p1−human + b2 ⋅ p3−human

(20)
Measured�Shuman = b

0
+ b1 ⋅ p1−human + b2 ⋅ p3−human + b3 ⋅ (m2−human∕m3−human)
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monkey gambles). Then we applied the estimated betas from Eq. 20 to all gambles 
used in our monkeys to predict the numeric Preference Change S for these gambles 
in humans:

with p1-monkey and p3-monkey as probabilities of lowest and highest magnitudes 
of gamble B, and m2-monkey and m3-monkey as middle and highest magnitude 
used in monkeys. Then we compared the measured monkey S’s with the predicted 
human S’s using Pearson correlation (see Fig. 7D right).

3  Results

3.1  Experimental design

We used stochastic choices to test compliance with the independence axiom (IA) 
in three monkeys. Two visual bar stimuli indicated two respective choice options 
on a computer monitor in front of the animal. The animal chose by moving a joy-
stick towards one of the two options and 1.0 s later received the reward of the cho-
sen option. Each option was a gamble defined by three reward magnitudes (m1, m2, 
m3; ml of fruit juice) occurring with specific probabilities (p1, p2, p3; sum = 1.0) 
(Fig. 1A). Reward magnitude was indicated by bar height (higher was more), and 
the probability of delivering each magnitude was indicated by bar length away from 
stimulus center (longer was higher).

Testing the IA began with two gambles A and B that formed option set {A,B}. 
Gamble A was a degenerate gamble with safe and fixed middle reward magnitude 
(m2 = 0.25 ml; p2 = 1.0), whereas gambles B, C and D were two- or three-outcome 
gambles. The test gambles C and D derived from the common addition of gamble G 
and constituted option set {C,D} (Eq. 1). Stochastic compliance with the IA requires 
that preferences do not change significantly between option sets {A,B} and {C,D} 
(Fig. 1B). We assessed the IA in the common consequence (CC) test and in the com-
mon ratio (CR) test (see Sect. 2 for definitions; Fig. 1C, D). When representing the 
gambles in the Marschak-Machina triangle, an IA test was plotted as a parallel shift 
of the line connecting the two gambles of each option set ({A,B} and {C,D}), with 
an additional line length change for a CR test.

3.2  IA violations

We performed 18 different CC tests and 18 different CR tests in each of the three 
monkeys; each test was repeated on average 7.5 times per daily session for Monkey 
A, 17.7 times per session for Monkey B and 6.1 times per session for Monkey C. We 
systematically varied the reward probabilities and thereby tested the IA across the 
whole range represented by the Marschak-Machina triangle. We tested two violation 

(21)
Predicted�Shuman = b

0
+ b1 ⋅ p1−monkey + b2 ⋅ p3−monkey + b3 ⋅ (m2−monkey∕m3−monkey)



334 Journal of Risk and Uncertainty (2022) 65:319–351

1 3

directions: either gamble A was stochastically revealed preferred to gamble B (prob-
ability of choice P(A|{A,B}) > 0.5) and gamble D was stochastically preferred to 
gamble C (P(C|{C,D}) < 0.5) (Allais-type violation; Allais, 1953), or gamble B was 
revealed preferred to gamble A (P(A|{A,B}) < 0.5) and gamble C was stochastically 
preferred to gamble D (P(C|{C,D}) > 0.5) (reverse Allais-type violation; Blavatskyy, 
2013b). We considered two IA violation types, the more substantial binary Prefer-
ence Reversals and the more subtle graded Preference Changes.

Preference Reversals across option sets {A,B} and {C,D} were defined by Eqs. 2 
and 3 for AD and BC preference directions and tested for significance using the 
1-tailed binomial test applied separately to Allais-type and reverse Allais-type rever-
sals (P < 0.05; see Sect. 2). IA violations indicated by significant Preference Rever-
sals occurred only in a few of the 36 tests (N = 8 for Monkey A, N = 1 for Monkey 
B, N = 0 for Monkey C; total of 8% (CC: 11%, CR: 6%); Table  1). Note that all 
animals were highly familiar with gamble variations from tens of thousands of trials 
performed during several months of weekdaily experimentation.

Preference Changes were defined by Eqs.  4 - 6 that computed the variable S 
derived from Conlisk’S and tested for significance using a one-sample t-test against 
S = 0 in pooled sessions from a given monkey (P < 0.05). In contrast to the few out-
right Preference Reversals, significant Preference Changes using the metric S were 
rather frequent in all animals (N = 21 for Monkey A, N = 12 for Monkey B, N = 17 
for Monkey C; total of 46% (CC: 41%, CR: 52%); Table 2).

Preference Changes are sufficient for defining IA violations in CC tests; here, 
gambles B and D have equal distance from the respective parallel choice indifference 

Table 1  Preference Reversals 
while testing the independence 
axiom

x ≻ y indicates ’x preferred to y’, x ≺ y indicates ’y preferred to x’. 
A ≻ B leading to C ≺ D constitutes a stochastic Allais-type Pref-
erence Reversal, as indicated by significant probability of choice: 
P(C|{C,D}) < 0.5 (statistical P < 0.05; 1-tailed; binomial test) (see 
Eq. 2). By contrast, A ≺ B leading to C ≻ D constitutes a stochastic 
reverse Allais-type Preference Reversal: (P(D|{C,D}) < 0.5 (statisti-
cal P < 0.05) (see Eq. 3)
CC common consequence test, CR common ratio test

Test Preference Reversal

Monkey A CC A ≻ B ⇒ C ≺ D 0/18
A ≺ B ⇒ C ≻ D 5/18

CR A ≻ B ⇒ C ≺ D 0/18
A ≺ B ⇒ C ≻ D 3/18

Monkey B CC A ≻ B ⇒ C ≺ D 1/18
A ≺ B ⇒ C ≻ D 0/18

CR A ≻ B ⇒ C ≺ D 0/18
A ≺ B ⇒ C ≻ D 0/18

Monkey C CC A ≻ B ⇒ C ≺ D 0/18
A ≺ B ⇒ C ≻ D 0/18

CR A ≻ B ⇒ C ≺ D 0/18
A ≺ B ⇒ C ≻ D 0/18



335

1 3

Journal of Risk and Uncertainty (2022) 65:319–351 

lines representing equal expected utility in the Marschak-Machina triangle (Fig. 1C); 
the equal utility difference should preserve their preference within their respective 
option sets and thus produce no violation. Preference Changes S can be conveniently 
graphed as slopes between option sets {A,B} and {C,D}; negative and positive slopes 
indicate S > 0 and S < 0, respectively (Fig.  2). The strongest positive Preference 
Changes S were significant across sessions in all animals: S = 0.026 ± 0.013 (Monkey 
A), S = 0.095 ± 0.015 (Monkey B), S = 0.052 ± 0.010 (Monkey C) (mean ± Standard 
Error of the Mean, SEM; all P < 0.05; one-sample t-test) (Fig.  2A). The strongest 
negative S’s were also significant across sessions in all animals: S = -0.254 ± 0.020 
(Monkey A), S = -0.167 ± 0.014 (Monkey B), S = -0.123 ± 0.014 (Monkey C) 
(Fig. 2B). The weakest absolute S’s differed only insignificantly from zero and thus 
failed to demonstrate IA violation (Fig. 2C). Fig. S1 shows the full pattern of Prefer-
ence Changes in all CC tests.

In CR tests, Preference Changes are only necessary and not sufficient for IA viola-
tions; the test places gambles B and D at different distances from the respective parallel 
indifference lines (Fig. 1D), reflecting different expected utility differences for the two 
option sets that may result in graded Preference Changes and thus non-zero S values 
(but not outright Preference Reversals) but do not indicate IA violations. The strong-
est positive Preference Changes S were significant across sessions: S = 0.095 ± 0.0143 
(Monkey A), S = 0.014 ± 0.015 (Monkey B), S = 0.078 ± 0.009 (Monkey C); all 
P < 0.05) (Fig. 3A), as were the strongest negative S’s: S = -0.183 ± 0.014 (Monkey A), 
S = -0.227 ± 0.019 (Monkey B), S = -0.086 ± 0.012 (Monkey C) (Fig. 3B). The small-
est measured absolute S’s were insignificant (Fig. 3C). Fig. S2 shows the full pattern 
of Preference Changes in all CR tests.

Table 2  Preference Changes 
while testing the independence 
axiom

Preference Changes were measured as real-number S based on a 
modification of Conlisk’S (see Eqs. 4 - 6) and tested for significance 
at P < 0.05 (one-sample t-test against zero). Preference Changes rep-
resent IA violations for CC tests but are only necessary and not suf-
ficient for claiming IA violations in CR tests
CC common consequence test, CR common ratio test

Test Preference Change

Monkey A CC S > 0 1/18
S < 0 8/18

CR S > 0 1/18
S < 0 11/18

Monkey B CC S > 0 2/18
S < 0 3/18

CR S > 0 2/18
S < 0 5/18

Monkey C CC S > 0 2/18
S < 0 6/18

CR S > 0 1/18
S < 0 8/18
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To summarize, all monkeys showed significant Preference Changes in both CC 
and CR tests. Below we describe these results in more detail to identify possible fac-
tors contributing to the observed patterns of Preference Changes.

3.3  Probability dependency of preference changes

Whereas previous human studies tested specific gambles, behavioral studies with 
monkeys can last several months during which large numbers of behavioral tests can 
be carried out. We have therefore been able to study choices of gambles over larger 
ranges of probabilities that fill wider areas of the Marschak-Machina triangle. This 
possibility allowed us to test whether the Preference Changes might depend on the 
probabilities of gamble outcomes, irrespective of particular preferences between the 
initial gambles A and B.

For the CC test, we varied the probability of the low outcome of gamble 
B (Bp1; i.e. the probability of receiving 0  ml in option B) and the probability of 
the high outcome (Bp3; i.e. the probability of receiving 0.5 ml in option B; thus, 
Bp2 = 1—Bp3—Bp1). In accordance with the definition of the CC test, we defined 
gambles C and D by adding a common probability k to options A and B (Fig. 1C). 
This corresponded to adding probability Bp2 to the probabilities p1 of gambles A 
and B (and thus reducing the original p2 of gambles A and B). Therefore, we fully 
identified each CC test by the set of probabilities for gamble B (Bp1, Bp3), without 
the need to explicitly introduce the probability k. Significant IA Preference Changes 
occurred in both directions in different parts of the Marschak-Machina triangle 
(Fig. 4A; S > 0, purple dots; S < 0, cyan dots; black circles indicate P < 0.05, one-
sample t-test against zero). As shown in the confusion matrices, LDA classifications 
correctly predicted 14 out of 18 tests (78%) in each of Monkey A and Monkey B, 
and 11 out of 18 tests (61%) in Monkey C, which exceeded random prediction (50%) 
and was no less than prediction with majority class (i.e. the majority type of the 
direction of Preference Change for each monkey; 72% for Monkey A, 50% for Mon-
key B and 61% for Monkey C) (Fig. 4A insets). These results suggested a systematic 
relationship between Preference Changes and reward probabilities in the CC test.

For the CR test, we varied the ratio r and the high-outcome probability in gamble 
B (Bp3; i.e. the probability of receiving 0.5 ml in option B; thus, Bp1 = 1—Bp3). We 
defined gambles C and D by multiplying the common ratio r with the probabilities 
of all non-zero outcomes of gambles A and B. Therefore, the two variables Bp3 and 
r defined fully a particular CR test. Significant IA Preference Changes occurred in 
both directions in different parts of the parameter space (Fig. 4B; S > 0, purple dots; 
S < 0, cyan dots; P < 0.05). The confusion matrices showed that LDA classifications 
correctly predicted 17 out of 18 tests (94%) in Monkey A, 15 out of 18 tests (83%) in 
Monkey B, and 15 out of 17 tests (88%) in Monkey C, all of which exceeded random 
prediction and was no less than prediction with majority class (94% for Monkey A, 
67% for Monkey B, 82% for Monkey C) (Fig. 4B insets). Hence, similar to the CC 
test, the Preference Changes in the CR test depended on gamble probabilities.

The systematic nature of the observed Preference Changes in both the CC tests 
and the CR test encouraged us to model the observed changes mathematically using 
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economic theory. Therefore, we next fitted our data using different economic choice 
models and tested whether these models might explain the observed violations.

3.4  Economic models characterizing preference changes

We compared different economic choice models in their ability to explain the 
observed pattern of Preference Changes. We fitted choice data to stochastic imple-
mentations of basic constructs of three economic theories: objective Expected Value 
(EV), Expected Utility Theory (EUT) and Cumulative Prospect Theory (CPT).

We defined a standard discrete choice softmax function (McFadden, 2001) to 
describe stochastic preferences as the probability of choosing one option over another, 
in repeated trials (Eq. 7). This function calculates the probability of choosing the first 
of two options from the value difference between the two options and includes a noise 
term that accounts for variability in choices. The difference between the choice mod-
els consisted of different value computations: in the EV model, each option’s value 
corresponded to its objective Expected Value (EV; Eqs. 8 and 9); in the EUT model, 
value was defined as Expected Utility using a utility function (EU; Eqs. 10 and 11); 
in the CPT model, value was defined as Prospect Value and resulted from a utility 
function (u) and a probability weighting function (w), combined in a cumulative form 
(Eqs. 12–14). The utility function was a power function (one free parameter), normal-
ized to the highest magnitude (Eq. 15). The probability weighting function was a two-
parameter Prelec function (Eq. 16). These parametric functions have been shown to 
maximize the information extraction from participant data (Stott, 2006). Finally, we 
used a maximum likelihood estimation procedure to identify the model parameters 
that best represented the behaviorally measured probability of choice: we estimated 
the parameters that maximized the standard log-likelihood function (Eq. 17).

We used the Akaike Information Criterion (AIC) for an initial comparison of the 
accuracy of each model, based on the maximum likelihood function (lower AIC val-
ues indicate better fit). The AICs of the EV model were 204.4 ± 11.4 for Monkey 
A, 144.8 ± 4.8 for Monkey B, and 216.8 ± 8.0 for Monkey C (mean ± standard error 
of the mean, SEM). The AICs of the EUT model across sessions were 149.5 ± 10.8 
for Monkey A, 118.7 ± 4.2 for Monkey B, and 115.6 ± 4.2 for Monkey C. The AICs 
of the CPT model were 140.5 ± 10.1 for Monkey A, 114.4 ± 4.1 for Monkey B, and 
110.4 ± 4.3 for Monkey C. The differences between the three AIC values were sig-
nificant in each animal (P = 6.08∙10–05 for Monkey A, P = 1.50∙10–06 for Monkey B, 
and P = 4.67∙10–33 for Monkey C; one-way ANOVA). Pairwise post-hoc compari-
son showed significant differences between the EUT and EV models (P = 2.98∙10–16 
for Monkey A, P = 8.47∙10–20 for Monkey B, and P = 5.55∙10–30 for Monkey C; 
paired t-test) and between the CPT and EUT models (P = 8.41∙10–10 for Monkey 
A, P = 2.02∙10–10 for Monkey B, and P = 8.58∙10–11 for Monkey C). Thus, the CPT 
model showed the lowest AIC values in all three monkeys and thus explained our 
choice data best. We therefore used the CPT model for our further analyses.

According to the CPT model, Monkey A had basically a linear utility function 
(U(m); estimated parameter: ρ = 1.01) and a probability weighting function with an 
S shape (W(p); estimated parameters: α= 1.86; β = 0.42), whereas Monkeys B and C 
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had convex utility functions (ρ = 1.43 and ρ = 1.63, respectively) and S-shaped prob-
ability weighting functions (α = 1.31; β = 1.13 and α = 1.37; β = 0.767, respectively) 
(Fig. 5A, insets).

To better understand and visualize how the CPT model might explain the IA 
violations, we computed the indifference curves (ICs) in the Marschak-Machina tri-
angle (Fig. 5A left), based on the utility and probability weighting functions esti-
mated from the best-fitting CPT model (Fig. 5A, insets). According to the EV and 
EUT models, the ICs in the Marschak-Machina triangle should be linear and paral-
lel to each other, while CPT produces non-linear and non-parallel ICs. The indif-
ference map (i.e. the full set of ICs) computed from the best fitting CPT model in 
each animal showed monkey-specific patterns of non-linear ICs, which reflected the 
subjective value of choice options (Fig. 5A, colored lines). We considered the “fan-
ning” direction of the ICs to further characterizes IA violations (Machina, 1982); 
“fanning-out” (higher ICs more horizontal than lower ones) characterizes Allais-
type violations, and “fanning-in” characterizes reverse Allais-type violations. We 
observed a predominantly fanning-in pattern, although areas of fanning-out existed 
within the triangle. This pattern reflected the mostly negative values of the measured 
Preference Changes, supporting the idea that IA violations reflected a non-linear 
distribution of subjective values within the Marschak-Machina triangle, which is 
incompatible with EUT.

To examine how well CPT explained the observed Preference Changes, we cal-
culated the S values that were predicted by the model for each CC and each CR test. 
On a session-by-session basis, we estimated the choice probability from outcome 
probability and magnitude according to Eq. 7 together with Eqs. 12 - 14. The esti-
mated choice probability was then used to calculate each S using Eq. 6. When com-
paring the measured and predicted S values for each session, we found significant 
Pearson correlation coefficients in all monkeys in the CC test (Monkey A: ρ = 0.46, 
P = 2.1∙10–53; Monkey B: ρ = 0.21, P = 8.9∙10–9; Monkey C: ρ = 0.29, P = 4.4∙10–49) 
as well as in the CR test (Monkey A: ρ = 0.74, P = 1.1∙10–188; Monkey B: ρ = 0.60, 
P = 2.4∙10–72; Monkey C: ρ = 0.64, P = 2.6∙10–287) (Fig. 5B). Thus, the CPT model 
was compatible with the observed pattern of violations.

We tested the robustness of the CPT model’s IC estimation with out-of-sample tests. 
The animal chose between a fixed option, plotted on one of the axes of the Marschak-
Machina triangle, and a varying two- or three-outcome gamble (see Sect. 2). In each 
session, indifferent points (IPs) were estimated by fitting a softmax function to the 
measured animal’s choices. If the modeled indifference map reflected the true subjec-
tive evaluation pattern, the modeled IPs should be close to the measured ICs. A graphi-
cal comparison between the IPs and the ICs in Fig. 6A predicted by the CPT model 
demonstrated good correspondence between the out-of-sample IPs (colored points) and 
the modeled ICs (lines with same color as IPs). When quantifying the distance between 
the measured out-of-sample IPs and the ICs predicted by the EV, EUT or CPT models, 
we found significant residuals in all three models (P < 0.01 against the ICs; one-sample 
t-test). The residuals were significantly different across the models in all three monkeys, 
as revealed by one-way ANOVA tests (P = 3.10∙10–86 for Monkey A, P = 2.66∙10–33 
for Monkey B, and P = 5∙10–324 for Monkey C); post-hoc paired t-tests demonstrated 
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Fig. 5  Cumulative prospect theory (CPT) modeling can explain the measured Preference Changes. (A) 
Choice indifference curves (ICs) in the Marschak-Machina triangle. Each line represents one IC, and all 
gambles on a given line are equally preferred to each other. Insets show estimated utility and probabil-
ity weighting functions, using the CPT model, from all trials (common ratio and common consequence 
tests). The three monkeys had individually differing, mostly non-linear utility and probability weighting 
functions. Note that utility functions were only estimated for three points (black dots), which were the 
only three magnitudes used in the experiment (m1, m2, m3); thus, the dashed lines do not represent the 
full shape of the utility function. (B) Pearson correlations between measured S’s and S’s predicted by 
the CPT-modeled utility and probability weighting functions for the common consequence and common 
ratio tests
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smaller residuals for the CPT model compared to the EV and EUT models (Fig. 6B), 
except for data from Monkey B resulting in a non-significant difference between EUT 
and CPT model residuals (EUT vs EV: P = 5.24∙10–26 for Monkey A, P = 2.84∙10–32 
for Monkey B, and P = 1.35∙10–134 for Monkey C; CPT vs EUT: P = 1.28∙10–08 for 
Monkey A, P = 0.734 for Monkey B, and P = 9.26∙10–22 for Monkey C). Thus, the CPT 
model captured the out-of-sample IPs more accurately than the other models.

Although in their original deterministic formulation the EV and EUT models 
would not theoretically produce all-or-none Preference Reversals, their stochastic 
versions using the softmax choice function could in principle result in graded Pref-
erence Changes, in particular in the CR test (see Sect. 2 below Eq. 6). We thus inves-
tigated in more detail how much the EUT and EV models would explain our data 
(Figs. S3, S4). Our analysis showed that EV and EUT models failed to explain viola-
tions in the CC test, always predicting null Preference Changes (S = 0) (Fig. S3B, 
inset). On the other hand, both models predicted the violation pattern in the CR test 
to some degree (Figs. S3B, S4B), consistent with previous studies employing sto-
chastic versions of the EUT model (Blavatskyy, 2007). However, the Pearson cor-
relation coefficients of the EV and EUT models had worse prediction power (smaller 
correlation coefficients) compared to the CPT model (EV: ρ = 0.26, P = 3.1∙10–18 for 
Monkey A, ρ = 0.51, P = 9.3∙10–50 for Monkey B, and ρ = 0.22, and P = 1.7∙10–28 for 
Monkey C; and EUT: ρ = 0.55, P = 4.4∙10–86 for Monkey A, ρ = 0.59, P = 2.1∙10–69 
for Monkey B, and ρ = 0.52, P = 8.6∙10–172 for Monkey C) (Figs. S3 and S4).

As a further control, we explicitly tested the hypothesis of ICs being linear and 
parallel, as implied by EUT (Fig.  S5). Because previous human studies usually 
performed tests on only a few gambles, as plotted in the Marschak-Machina trian-
gle (Fig. 7A; Blavatskyy et al., 2015), this method has never been used to investi-
gate EUT. In the current study, we tested separately the linearity and parallelism 
of the ICs. To test for parallelism, we assumed linear ICs and used a least-squares 
model to estimate the slopes of the ICs and compare them (Kruskal–Wallis one-way 
ANOVA; Fig.  S5A, B). The linearity of the ICs was tested through the residuals 
of indifferent points in each IC that were estimated with linear least squares using 
out-of-sample IPs (one-sample t-test against 0; Fig. S5C). We found significant non- 
linearity (p < 0.001) and non-parallelism (p < 0.05) for some ICs, suggesting that 
EUT was not able to capture the subjective values for varying probabilities. This 
result demonstrates systematic violations in EUT, which was consistent with our 
AIC and residual analyses. The pattern of generally increasing ICs slopes (Fig. S5B) 
also served as confirmation for a mostly fanning-in direction of the indifference 
map, which explained the observed pattern of IA violations with mostly negative 
Preference Change values.

Taken together, these results showed that the CPT-based economic choice model 
predicted the IA violations in both CC and CR tests, outperforming both the EV and 
the EUT models. These findings suggest that the observed violation pattern might 
arise from the subjective, non-linear weighting of reward probabilities, in line with 
the explanation provided by CPT.
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Fig. 6  Out-of-sample tests on indifference curves (ICs) modeled by Cumulative Prospect Theory (CPT). 
(A) Close relationship between measured out-of-sample indifference points (IP, colored dots) and ICs 
modeled by CPT (colored lines) in common ratio and common consequence tests. Colored dots show 
mean IPs across all sessions, corresponding to the same-colored ICs; lines show Standard Deviations 
(SD) of IPs across all sessions. (B) Left: bar charts of means and Standard Errors of the Mean (SEM) of 
model residuals (distances between model ICs and the measured out-of-sample IPs). Asterisks: P < 0.05 
in post-hoc paired t-test (n.s.: not significant). Right: residual differences from different models (means 
from individual sessions; top: Expected Value (EV) minus Expected Utility Theory (EUT); bottom: EUT 
minus CPT. Dotted line: mean value; P: post-hoc paired t-test p-value. Smaller residuals for CPT than 
EUT or EV indicate that CPT better captured the pattern of the measured out-of-sample IPs
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3.5  Comparison of preference changes with humans

To explore the possibility of common economic decision mechanisms between evo-
lutionary close species, we compared the observed IA violations in monkeys with 
those found in humans. We considered results from 39 human studies investigating 
the CC effect (Blavatskyy et al., 2015). Many of these studies repeated the Allais 
test; others defined different tests which, when represented in the Marschak-Machina 
triangle (as p1 and p3 of gamble B), were mostly concentrated in the lower left area 
(Fig. 7A). The human studies reported significant Preference Changes characterized 
by S > 0 or S < 0, as well as insignificant changes (S ~ 0) (Fig. 7B).

We used two methods to compare our monkey data with the published human 
data, a confusion matrix and a Pearson correlation. The gambles used in the human 
studies differed from each other and from those used in monkeys. To nevertheless 
allow accurate comparisons, we predicted the Preference Changes S for the untested 

Fig. 7  Correspondence of Preference Changes S between monkeys and humans. (A) Gamble positions 
in the Marschak-Machina triangle of 39 independent human common consequence studies (Blavatskyy 
et al., 2015). The x-axis represents the probability of getting the low outcome in option B and the y-axis 
represents the probability of getting the high outcome in option B (see option B in Fig. 1D). The diagram 
illustrates the location of the reward probability tested in the human studies (black dots). Gray circles cor-
respond to the CC tests we performed on monkeys in the current study. (B) Results from the 39 human 
studies. Blue and green bars refer to option sets 1 {A, B} and 2 {C, D}, respectively (see Fig. 1B). The 
y-axis indicates the probability of choosing option 1 (A or C). (C) Correspondence between measured 
human S’s (39 studies; B) and predicted monkey S’s. Left: confusion matrix of classes of human S’s and 
classes of monkey S’s predicted from actually used monkey gambles by Linear Discriminant Analysis 
(LDA). The LDA prediction of monkey S’s allowed comparison of same gambles between the two spe-
cies. Right: Pearson correlation between measured human S’s and monkey S’s predicted by regression 
(Eqs. 18, 19), using the same gambles. (D) Correspondence between measured monkey S’s and predicted 
human S’s. This inverse control test relative to the test shown in C was based on the actual gambles used 
in monkeys and employed predictions of human S’s for these gambles via different LDA and regression 
(Eqs. 20, 21; see Sect. 2)
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gambles with an LDA classifier for the confusion matrix, and with two multiple lin-
ear regressions for the Pearson correlation (see Sect. 2; Eqs. 18 - 21).

For the missing gambles, we first used the LDA and the regressions (Eqs. 18 and 
19) to predict the S’s in our monkeys for the gambles that had been used in humans. 
Then we compared the actually measured human S’s with the predicted monkey S’s. 
The confusion matrix showed that the actual measured S’s in humans corresponded 
successfully to the LDA-predicted S’s in monkeys with 82% accuracy (Fig. 7C left), 
which exceeded random (50%) and majority class (i.e. the majority type of the direc-
tion of S’s across all human studies, 67%). The Pearson correlation between human 
S’s that had been measured and monkey S’s that had been predicted by regression 
(Eqs. 18 and 19) was significant (ρ = 0.56, P = 2.44∙10–4) (Fig. 7C right).

To test the robustness of these comparisons, we reversed the direction of pre-
dicting S’s for untested gambles: using LDA and regressions (Eqs. 20 and 21), we 
predicted the S’s in humans for the gambles we had used in monkeys. The confusion 
matrix showed that the measured monkey S’s corresponded to the LDA-predicted 
human S’s with 70% accuracy, which exceeded random (50%) and majority class 
(61%) (Fig.  7D left). The Pearson correlation between the measured monkey S’s 
and the regression-predicted human S’s (Eqs. 20 and 21) was significant (ρ = 0.45, 
P = 5.61∙10–4; Fig. 7D right).

Thus, while we saw less Preference Reversals than are generally reported in 
humans, the Preference Changes in our monkeys corresponded well to those in 
humans. The result suggests shared decision mechanisms across primate species and 
encourages neurophysiological investigations in monkeys of neuronal signals and 
circuits that may underlie these common choice mechanisms.

4  Discussion

We studied stochastic choices in rhesus monkeys in the two most widely used tests 
of the IA, common consequence and common ratio, which provide stringent assess-
ment for utility maximization. All three tested monkeys showed consistently few 
outright Preference Reversals between the initial and the altered option sets, pos-
sibly due to the animals’ extended laboratory experience with weekdaily tests; how-
ever, the animals showed substantial graded Preference Changes (Figs.  2 and 3; 
Tables 1 and 2) that depended on gamble probabilities and were largely explained 
by nonlinear probability weighting (Figs. 4 and 5). According to AIC and out-of-
sample analyses, a CPT model with probability weighting explained the choices bet-
ter than EUT and EV models without probability weighting (Fig. 6). Classification 
and regression analyses demonstrated similarities between our monkeys’ choices 
and reported human choices (Blavatskyy et al., 2015, 2022) (Fig. 7). Together, these 
results indicate systematic Preference Changes in IA tests in monkeys that can be 
explained by probability weighting of CPT.

While human studies played a crucial role in identifying and explaining IA viola-
tions, in particular non-linear probability weighting (Blavatskyy, 2007; Blavatskyy 
et al., 2022; Camerer & Ho, 1994; Conlisk, 1989; Harman & Gonzalez, 2015; Quiggin, 
1982; Ruggeri et al., 2020; Schneider & Day, 2016; Tversky & Kahneman, 1992), the 
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studies were restricted by a number of species-specific factors, including limited trial 
numbers, limited test variations, limited test repetitions, insufficient learning, behavio-
ral errors and, of course, language and cultural influences. To compensate for limits of 
trial numbers, some human studies combined data from multiple participants; however, 
the validity of such tests depends on the subjectivity of individual utility functions and 
on cultural differences (Loubergé & Outreville, 2011; Ruggeri et al., 2020). Thus, more 
comprehensive assessments of IA compliance would benefit from wider test variations 
with more trials than are feasible in humans. This is where monkeys come in. Working 
with monkeys not only avoids cultural biases but also allows large variations of test 
conditions during thousands and tens of thousands of trials during weekdaily tests over 
weeks and months. With such large trial numbers, errors are minimized and learning 
would be completed and thus play no uncontrolled role. The resulting consistent per-
formance allowed us to investigate the robustness of economic models that confirm the 
dominant role of probability weighting in common consequence and common ratio IA 
tests.

This study found fewer outright Preference Reversals (8%) than those seen in 
human studies; we saw primarily graded Preference Changes. The limited violations 
in the IA tests resemble the compliance of the Independence of Irrelevant Alterna-
tives of two-component bundles (Pastor-Bernier et al., 2017). Good compliance in 
the two tests may be due to the high task familiarity of the animals tested in thou-
sands of trials. To assure well-controlled test conditions, our monkeys performed 
in our specific primate testing laboratory away from their living area in the animal 
house. For ethical reasons, such laboratory tests are limited to a few animals. How-
ever, in this highly standardized test situation the different animals performed very 
consistently and similarly to each other. In support of this notion, further four mon-
keys in two separate studies in our laboratory showed consistent risk attitude that 
was compatible with S-shaped, convex-linear-concave utility functions with increas-
ing juice volumes (Genest et  al., 2016; Stauffer et  al., 2015). Thus, while ethical 
considerations, general welfare and individual comfort are essential for obtaining 
reliable results from cooperative animals, the presented research on monkeys adds 
important data to the notion of assessing utility maximization with the IA axiom 
that had so far been tested in humans and, in select cases, in rodents (Battalio et al., 
1985; Kagel et al., 1990).

Probability weighting is a particularly interesting and important explanation for 
IA violations. Although reward probability can influence the type and level of IA 
violations, most human IA violation tests used only limited levels of probability. We 
tested many probability levels across the Marschak-Machina triangle and substanti-
ated probability weighting as major mechanism underlying Preference Changes in 
both the common consequence and the common ratio tests. We did not make any 
hypothesis about the existence of probability weighting but instead demonstrated 
empirically that probability weighting explains Preference Changes. Specifically, 
our leave-one-out classification with LDA demonstrate probability as key factor 
underlying IA Preference Changes in both common consequence and common ratio 
tests (Fig.  4), and the CPT probability weighting function fitted to the measured 
behavioral choices successfully predicted Preference Changes (Fig.  5). Thus, our 
study provides a detailed and robust account of the role of probability weighting in 
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IA tests. In addition to probability weighting, it has been proposed that the salience 
of the visual cues for reward probability information (i.e., the length of the stimulus 
bar in our study) could contribute to choice biases (Spitmaan et al., 2019), suggest-
ing a future direction for investigating its role in IA violations.

Past studies have reported different shapes of the probability weighting function. 
Humans show anti-S and S-shape probability weighting with instructed and expe-
rienced probabilities, respectively (Cavagnaro et  al., 2013; Farashahi et  al., 2018; 
Gonzalez & Wu, 1999). Monkeys show anti-S probability-weighting with pseudor-
andomly varying probabilities (Stauffer et al., 2015) and S-shape weighting in trial 
blocks (Ferrari-Toniolo et  al., 2019). When presenting a larger set of magnitudes 
and probabilities, and allowing for more complex shapes of the utility function, our 
monkeys’ choices were best explained by a mostly concave probability weighting 
function (Ferrari-Toniolo et al., 2021). Humans show a similar concave probability 
weighting function (Blavatskyy, 2013a). Our current results confirm concave prob-
ability weighting with a larger set of finely varying probabilities in three-outcome 
gambles that allowed us to uniformly sample the whole probability space (Fig. 5A). 
Our results highlight a series of possible factors contributing to the estimated shape 
of the probability weighting function: the choice of the functional form for utility 
and probability weighting, the range and resolution of the tested magnitudes and 
probabilities, and the complexity and representation of choice options (especially 
two- and three-outcome gambles). Further investigations are required to better iso-
late the factors influencing the shape of the probability weighting function, includ-
ing task particulars and elicitation procedures.

Past studies graphed IA violations via the fanning-in and fanning-out directions of 
ICs in the Marschak-Machina triangle (Machina, 1982). Non-linear ICs, compatible 
with nonlinear probability weighting, produce different local fanning directions in 
different areas of the triangle (Fig. 5A) (Camerer & Ho, 1994; Wu & Gonzalez, 1998; 
Kontek et al., 2018). Furthermore, different stochastic versions of EUT (Blavatskyy, 
2007) and, more in general, different contributions of noise to the value computation 
mechanism (Bhatia & Loomes, 2017; Hey & Orme, 1994; Woodford, 2012) might 
explain IA violations without nonlinear probability weighting. These considerations 
highlight the complexity in the relation between the shape of the probability weight-
ing function, the pattern of indifference curves and the experimentally revealed types 
of IA violations. Further theoretical work and model simulations, which are outside 
of the scope of the current work, should help to elucidate these relations.

Human tests of the IA describe Preference Changes characterized by S > 0 or 
S < 0 (Allais, 1953; Blavatskyy et al., 2022; Starmer, 2000). Because of these viola-
tions, many economic theories have been developed to explain economic choices 
under risk, including Rank-Dependent Utility (Quiggin, 1982), Cumulative Prospect 
Theory (Tversky & Kahneman, 1992), and Target-Adjusted Utility (Schneider & 
Day, 2016). Consistent with human choices, we found that our monkeys’ choices 
show both types of violations in the two most studied tests (common consequence 
and common ratio). Interestingly, although humans and monkeys may show differ-
ent probability weighting functions, the Preference Changes S seen in the repeated, 
stochastic choices of our monkeys correspond with 70%—82% accuracy to the S’s 
computed from choices averaged across human participants (Fig. 7C, D). This result 
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is not only interesting for general inter-species comparisons but indicates that viola-
tions in primates are similar and robust despite methodological differences, such as 
trial numbers and averaging within subjects as opposed to across subjects.

The IA is arguably the most constrained and direct test that defines Expected 
Utility, and its maximization, on a numeric, cardinal scale. With these properties, 
the IA provides for a stringent test framework for investigating brain mechanisms 
of economic choice. So far, human fMRI studies demonstrate subjective value cod-
ing in reward-related brain regions, including the ventral striatum, midbrain, amyg-
dala, and orbitofrontal and ventromedial prefrontal cortex (Gelskov et al., 2015; Hsu 
et al., 2009; Seak et al., 2021; Wu et al., 2011). Neurophysiological studies in mon-
keys demonstrate the coding of subjective value in midbrain dopamine neurons and 
orbitofrontal cortex (Kobayashi & Schultz, 2008; Lak et al., 2014; Padoa-Schioppa 
& Assad, 2006; Stauffer et al., 2014; Tremblay & Schultz, 1999) and formal util-
ity coding in dopamine neurons (Stauffer et al., 2014). Further, neurons in monkey 
orbitofrontal cortex carry single-dimensional utility signals for two-dimensional 
choice options designed according to Revealed Preference Theory (Pastor-Bernier 
et al., 2019). However, despite attempts of economic decision theories to explain IA 
violations (such as prospect theory), the neuronal mechanisms underlying IA viola-
tions are unknown. To address the issue, an animal model would be desirable that 
demonstrates IA violations similar to those seen and analyzed in humans. Our own 
studies showed that monkeys’ choices follow indifference curves of Revealed Prefer-
ence Theory, satisfy first-, second- and third-order stochastic dominance, demon-
strate probability weighting, and comply with the first three EUT axioms (complete-
ness, transitivity, continuity) (Ferrari-Toniolo et al., 2019, 2021; Genest et al., 2016; 
Pastor-Bernier et al., 2017; Stauffer et al., 2015), all of which suggests compliance 
with fundamental concepts of economic choice. The current study describes compli-
ance and violation of the fourth EUT axiom, IA, which is the most demanding and 
investigated EUT axiom in humans. Tests in rodents have revealed globally similar 
IA violations as in humans (Battalio et al., 1985; Kagel et al., 1990), but the results 
have so far not been used for neurophysiological investigations in this species. As 
the performance of our monkeys in IA tests is also consistent with that in humans, 
researchers may want to use neurophysiology in animals  to understand neuronal 
choice mechanisms in humans.

Although our study provides systematic and stochastic data on IA violations, 
there are a few incompletely addressed directions that can be investigated in the 
future. For example, further research may test whether reward magnitude can 
influence IA violations, as it does in humans (Blavatskyy et  al., 2022). Further, 
in the absence of own human data, we can only relate our results to those from 
human experiments that did not necessarily have the exact same design. Some of 
the observed differences between human’s and monkey’s IA violations could be 
due to the unequal sampling of the probability space across species, with human 
studies usually focusing on a specific region of the Marschak-Machina triangle. 
Our analyses revealed a difference in the magnitude of the S values between spe-
cies, together with a minority of incompatible predictions for the Preference 
Change direction (Fig.  7C, D; confusion matrix and correlation plots). These 
differences might reflect the fact that our evaluations depended on the indirect 
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comparison between measured and predicted Colinsk’ S values across species. To 
more directly compare IA violations between humans and monkeys (in which neu-
rophysiological studies are more feasible), future studies might adapt our experi-
mental design to that used in humans. We also observed some differences in effect 
size between positive and negative S values (Fig. 2), which suggest future inves-
tigations of distinct behavioral strategies leading to violations in different direc-
tions. Additionally, future experiments could investigate different classes of eco-
nomic models that might capture more reliably the pattern of IA violations when 
allowing for the stochasticity of choice (Blavatskyy & Pogrebna, 2010; Loomes & 
Pogrebna, 2014). Our tests might support further development of decision theory 
and computer algorithms, for example by using our data for advancing model-
free and model-based reinforcement learning theory into the domain of economic 
choice research (Daw et al., 2011; Miranda et al., 2020). It would be interesting 
to see how subjective values are updated after win or loss trials in IA violated 
gambles (model-free: based only on stimuli; model-based: update the whole prob-
ability and utility model; or a combination of both). Neurophysiology research on 
value updating by reinforcement could benefit from the developed experimental 
designs. Thus, because of its multidisciplinary nature, our current behavioral study 
may provide the basis for further investigations of behavioral and neuronal mecha-
nism of economic decision-making under risk.
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