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Abstract
This mixed-methods study examines how pre-service teachers select instructional videos
on YouTube for physics teaching. The study focuses on the role of surface features that
YouTube provides (e.g., likes, views, thumbnails) and the comments underneath the videos
in the decision-making process using videos on quantum physics topics as an example. The
study consists of two phases: In phase 1, N = 24 (pre-service) physics teachers were ran-
domly assigned to oneof three groups, each covering a different quantum topic (entanglement,
quantum tunneling, or quantum computing, respectively). From eight options provided, they
selected a suitable video for teachingwhile their eyemovements were tracked using a station-
ary eye tracker in a laboratory setting, and think-aloud data was collected. In the subsequent
phase 2, participants were allowed to freely choose one YouTube video on a second topic of
the above-mentioned ones while thinking aloud. The results reveal a significant emphasis on
video thumbnails during selection, with over one-third of the fixation time directed towards
them. Think-aloud data confirms the importance of thumbnails in decision-making, e.g.,
as evidenced by a categorization of the study participants’ arguments and thoughts voiced.
A detailed analysis identifies that participants did not rely on (content-related) comments
despite they have been found to be significantly correlated with the videos’ explaining qual-
ity. Instead, decisions were influenced by surface features and pragmatic factors such as
channel familiarity. Retrospective reflections through a questionnaire including rating scale
items support these observations. Building on the existing empirical evidence, a decision
tree is proposed to help teachers identify high-quality videos considering duration, likes,
comments, and interactions. The decision tree can serve as a hypothesis for future research
and needs to be evaluated in terms of how it can help systematize the process of selecting
high-quality YouTube videos for science teaching.
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Introduction

Prior research has highlighted the benefits of YouTube for learning (e.g., see Jackman, 2019;
Rosenthal, 2018) including increased engagement, better comprehension, and the flexibility
to control the learning experience (Jebe et al., 2019; Kay, 2012; Stockwell et al., 2015).
Consequently, educators and teachers have recognized the educational value of YouTube,
employing it for instructional purposes (Jung & Lee, 2015; Manca & Ranieri, 2016). One
of such purposes lies in the integration of YouTube explanatory videos into formal learning
environments.

In the last years, there has been extensive science education research on explaining the
quality of YouTube explanatory videos: Kulgemeyer (2020) developed a comprehensive
framework for effective explanatory videos, based on guidelines published earlier in the
literature (e.g., see Brame, 2016; Findeisen et al., 2019). Further studies have investigated
the relationship between surface features, such as likes and views, and the explaining quality
(i.e., the instructional quality) of YouTube explanatory videos (Kulgemeyer & Peters, 2016;
Bitzenbauer et al., 2023): These studies have revealed that the surface features provided by
YouTube may not serve as reliable indicators of the explaining quality of a specific video,
while a statistically significant correlation was found between the number of content-related
comments and the explaining quality. Based on the above findings, Bitzenbauer et al. (2023)
emphasize that it is crucial to support teachers “in selecting videos with high explanation
quality from the plethora of (online) resources” (p. 2) through evidence-based selection
criteria.

However, to date, there is a dearth of studies investigating the video selection practices
of physics pre-service teachers on YouTube, particularly concerning their decision-making
factors. It remains unclear whether teachers rely on YouTube’s provided metrics, such as
likes, views, or the age of the video, or if they consider the comments section influential.
This article addresses this research gap by presenting the findings of a mixed-methods study
that explores the decision-making processes of (pre-service) physics teachers when selecting
instructional videos on YouTube to be included in learning environments (see “Methods”).
The study employs a combination of eye-tracking, think-aloud interviews, and a retrospective
questionnaire survey to gain comprehensive insights into the thought processes and strategies
employed by pre-service physics teachers during the video selection process.

Research Background

Explanatory videos, also referred to as instructional videos, play a vital role in science edu-
cation research, for example, serving as concise introductions and explanations of specific
topics of interest (Wolf & Kratzer, 2015). Explanatory videos typically do not exceed 10min
in length and have garnered increased attention in both formal and informal learning envi-
ronments, especially through platforms such as YouTube (e.g., see Beautemps and Bresges,
2021; Pattier, 2021).

Quality Criteria of Instructional YouTubeVideos

Recent scholarly investigations have focused on understanding the factors contributing to the
success and popularity of explanatory YouTube videos, particularly in the field of science
(Beautemps & Bresges, 2021; Welbourne & Grant, 2016). Notably, the video structure has
emerged as a crucial determinant in this regard (Beautemps & Bresges, 2021).
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However, the primary objective of explanatory videos is to support student learning,
making the quality of explanations of utmost importance (Kulgemeyer & Wittwer, 2023;
Pekdag & Le Marechal, 2010). Researchers have explored various frameworks and guide-
lines to enhance the effectiveness of explanatory videos. For example, Kulgemeyer (2020)
proposed a comprehensive framework for creating effective explanatory videos that aligns
with guidelines established earlier by Brame (2016) and Findeisen et al. (2019). Further-
more, this framework incorporates insights from multimedia learning research and draws
upon studies related to instructional explanations conducted by Geelan (2012) and Wittwer
and Renkl (2008). The framework encompasses seven factors comprising 14 features that
collectively influence the effectiveness of explanatory videos. These factors include video
structure, language-level adaptation, minimal digressions, consideration of prior knowledge,
misconceptions, and student interest (Kulgemeyer, 2020).

Kulgemeyer and Wittwer (2023) empirically tested the effectiveness of the framework by
comparing student achievement when exposed to videos developed in accordance with the
framework against those that did not strictly adhere to the guidelines.The results demonstrated
that students exposed to videos closely aligned with the framework exhibited significantly
higher levels of declarative knowledge in post-tests (d = 0.42), although no statistically
significant difference was observed in post-test scores related to conceptual knowledge.

The correlation between video metrics provided by YouTube, such as the number of views
or likes, and the videos’ explaining quality has yielded mixed results: Kulgemeyer and Peters
(2016) conducted an exploratory study focusing on instructional YouTube videos onmechan-
ics topics and found that the number of content-related comments posted by users below a
specific video was the only variable that correlated significantly with the explaining quality.
Conversely, the number of views, likes, and dislikes did not exhibit significant correlations.
Similar findings have been brought forth by Kocyigit and Akaltun (2019) who evaluated 53
online videos using the the Global Quality Scale and found that the YouTube metrics did not
significantly differ across quality groups. Bitzenbauer et al. (2023) conducted an additional
exploratory study that specifically examined explanatory YouTube videos on quantum top-
ics, namely quantum entanglement and quantum tunneling. In contrast to earlier findings,
the authors observed a small but significant correlation between the number of likes and the
quality of explanations in their sample of quantum topic videos (r = 0.37, p < 0.01).

Selection Processes of YouTube Explanatory Videos

The increasing abundance of low-quality educational content on YouTube has become a
matter of concern for researchers (e.g., see Bohlin et al., 2017; Neumann and Herodotou,
2020; Tan, 2013) highlighting the crucial role that teachers play in selecting explanatory
videos of high quality (Chtouki et al., 2012; Jones and Cuthrell, 2011). This issue is further
exacerbated by the reliance on popularity-based rankings in search systems: For instance,
Chelaru et al. (2012) observed that the top ten videos in the YouTube search results received
a disproportionately higher number of views, likes, and comments. Additionally, the study
by Chavira et al. (2021) revealed that out of the ten most-viewed videos analyzed in their
study, only four were deemed satisfactory in terms of quality.

Despite existing research on YouTube video selection, to the best of our knowledge, no
studies have specifically examined the process by which teachers select videos from the list
provided by YouTube based on search queries. However, several studies have shed light on
user behavior, indicating that individuals often sequentially view the returned videos until
they find one that aligns with their needs (e.g., see Fyfield et al., 2021; Tan and Pearce, 2011).
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The abundance of choices available on YouTube may contribute to choice overload, making
it challenging to identify high-quality content (Toffler, 1984). Choice overload describes the
phenomenon of increased difficulty in decision-making when faced with a large number
of choices (Schwartz, 2016), potentially resulting in decreased motivation to engage with
individual options (Iyengar & Lepper, 2000).

Against this backdrop, it becomes evenmore apparent that it is essential to support teachers
in the process of selecting explanatory videos for classroom practice. Two main measures
have been at the center of the debate so far:

1. Ranked lists of educational channels have been published to “help Internet users to narrow
down their search space by recommending channels” (Tadbier and Shoufan, 2021, p.
3079). However, “there is no reason to assume that the extensive offer of ranked lists
would not lead to choice overload” (Tadbier and Shoufan,2021, p. 3079).

2. To tackle these challenges, scholars have suggested the utilization of decision-assistance
tools likemeta-search engines,which employ aggregation techniques (Dwork et al., 2001;
Haveliwala, 2002; Meng et al., 2002) as described by Tadbier and Shoufan (2021).

Research Rationale

While we agree that pre-made lists or similar resources might not optimally support (science)
teachers in the process of selecting YouTube explanatory videos for classroom practice, we
believe that the existing empirical evidence on the explaining quality of YouTube explanatory
videos might indeed be useful to facilitate the systematization of teachers’ decision-making
process. As sketched in “Quality Criteria Of Instructional YouTube Videos,” several studies
have brought forth hints for instructional quality of online explanatory videos and might,
hence, provide evidence in this regard:

• Bitzenbauer et al. (2023) found a statistically significant correlation (r = 0.46, p <

0.001) between explaining quality and the number of content-related comments in
YouTube videos on quantum topics. Similarly, Kulgemeyer and Peters (2016) reported a
significant correlation (r = 0.38, p < 0.01) between explaining quality and the number
of relevant comments for videos on Newton’s third law and Kepler’s laws, respectively.

• Bitzenbauer et al. (2023) discovered a significant correlation (r = 0.37, p < 0.01)
between the number of likes and video explaining quality.

• It is important to exercise caution when considering additional metrics provided by
YouTube, such as the number of views, as previous research has not found stable corre-
lations with explaining quality.

Of course, reviewing comments under each video in search of high-quality explanatory
videos is practically unfeasible and time-consuming. Moreover, based on the available evi-
dence, it is challenging to determine a quantitative threshold indicating an adequate number
of content-related comments or likes. Nonetheless, considering the current state of research,
it appears feasible to explore ideal (i.e., efficient) decision-making processes by systemat-
ically analyzing the order in which the different criteria can be employed by teachers: As
a starting point for future research aimed at supporting teachers in their decision-making
processes when selecting YouTube explanatory videos for science teaching, we propose the
decision tree presented in Fig. 1 as a representation summarizing the hints of instructional
quality of explanatory videos according to the current state of research described above. It is
noteworthy that the proposed order is not to be considered strict.
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Fig. 1 Decision tree to support (pre-service) teachers selection process when searching explanatory videos
suitable for physics teaching as hypothesized based on the current state of the literature

This decision tree suggests teachers to first ask quick initial questions to themselves during
their search process such as whether a given video has an appropriate duration for classroom
use or whether it has already received user likes. If both of these surface-level criteria are
positive, it recommends teachers to explore the comments section. The presence of not only
superficial but also content- or video-related comments indicates cognitive stimulation of
viewers, as “videos that accumulate plenty of those relevant comments are more successful
in catching viewers’ attention as these videos might use either a more stimulating explanation
or the explanation delivered is considered as a starting point for further learning progress”
(Kulgemeyer & Peters, 2016, p. 12). Moreover, if there are even interactions among users,
including responses to content-related comments, this may provide additional evidence of a
high-quality video. Finally, teachers are then encouraged to assess the instructional quality
of the video by viewing it themselves.

The suggested decision tree serves as a hypothesis for future studies examining teachers’
selection processes of instructional videos for science teaching as stated above. The main
objectives of this study are twofold: First, we aim to explore how pre-service teachers uti-
lize YouTube metrics when selecting instructional videos for physics teaching. Secondly, we
intend to compare their selection and decision-making processes with the procedure recom-
mended by the existing literature, as represented through the decision tree in this article.
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Hence, with our research, we aim to approach the following research question: How—if
at all—do pre-service teachers use the features and comments sections provided by YouTube
when selecting YouTube explanatory videos for teaching purposes?

We decided to address this question in the context of quantum physics YouTube videos
because (a) as mentioned above, there have been related studies published previously we can
build upon with our findings and (b) quantum physics deals with difficult-to-grasp topics and
different visualizations or explanations are common to describe the same phenomena due to
their abstract nature. Thus, a highly varying degree of explaining quality is to be expected
when exploring explanatory videos for sub-topics of quantum physics like quantum tunneling
or quantum entanglement.

Methods

Study Design

We investigated our research question by conducting a mixed-methods study comprised
of eye-tracking, think-aloud interviews, and a concluding questionnaire. The selection of
precisely these methods as well as their interrelation will be explained more thoroughly
in the following subsections “Eye-Tracking”–“Questionnaire.” The mixed-methods study
consisted of three phases (P1 to P3; for an overview, see Fig. 2):

P1: In the first phase, the participants were presented with a pre-constructed image chart
showing eight different YouTube video suggestions for a specific topic via the original
surface features provided by YouTube (e.g., thumbnail, length, title, views, upload
date, channel name, number of subscribers). As additional information, we added
the corresponding number of likes the videos have already received (cf. Fig. 4). The
participants were then asked to select one of the offered explanatory videos that they
deemed suitable for use with learners without prior knowledge in physics teaching on
this topic. The videos displayed in the chart, however, could not be opened or watched,
and instead, the selection had to be based solely on the provided features. In addition
to tracking the eye movements during the selection process (cf. “Eye-Tracking”), the
participants were prompted to voice their thoughts at all times in the sense of a think-
aloud interview (cf. “Think Aloud”).

P2: In the second phase, the image chart was removed, and the participants were now
allowed to freely explore a previously opened YouTube search tab concerned with a
second specific quantum topic.Again, the taskwas to select one of the videos suggested
by YouTube for a hypothetical physics classroom lesson covering the specific topic
with learners without prior knowledge. In contrast to the first phase, the participants’
eye movement was no longer tracked, but they were now also allowed to open and
watch the videos as well as scroll through the comment section. This way, the selection
process could place amore pronounced focus on content-related reasons to substantiate
the rather superficially guided process in phase 1. Similar to phase 1, all thought
processes had to be conveyed verbally at all times.

P3: After the initial combination of eye-tracking and think aloud, the study concluded with
a questionnaire given to students in retrospective which asked the study participants
to reflect on the importance of the different surface features provided by YouTube in
their selection processes (cf. “Questionnaire”).
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Fig. 2 Study design visualized using a flowchart. The different topics covered in the first two phases are
color-coded and, as indicated, were switched among the groups A to C between both phases

To ensure that the results of our study are not directly dependent on (and hence, restricted
to) a specific (quantum) topic covered throughout the phases, we randomly assigned each
study participant to one of three different groups A, B, or C prior to starting the data collec-
tion. Each participant took part in the study individually and was then—depending on the
group assignment—given the task of selecting explanatory YouTube videos on two differ-
ent quantum topics (namely, either quantum tunneling, quantum entanglement, or quantum
computing) in study phases 1 and 2 as described above. Kruskal-Wallis tests comparing each
of the different eye-tracking metrics investigated in this study (cf. “Data Analysis”) across
the three study groups revealed no statistically significant differences among the groups (for
all details on the test statistics, see the supplementary file). This indicates that our results are
not directly linked to a specific topic, but it is sensible to analyze the data collected in this
study across the groups—we took advantage of this observation in our study, as we analyzed
the data from all 24 participants simultaneously, as if they had been collected under exactly
the same conditions. An overview of our study design is presented in Fig. 2.

Data Collection

Eye-Tracking

Eye-tracking data was collected in study phase 1 using a stationary head-free eye-tracking
system from Tobii (Tobii Pro Fusion) alongside their respective software (Tobii Pro Lab).
The eye tracker operates at a sampling frequency of 60 Hz and a nominal spatial accuracy of
< 0.3◦ visual angle. The stimuli were presented on a 24-inch computer screen (1920× 1080
pixel resolution and 60 Hz frame rate). Prior to the study, a nine-point calibration process was
utilized to ensure accurate eye-tracking, and the participants were introduced to the basics
of eye-tracking. The instructor verified the agreement between the measured gaze positions
and the actual points on the screen. If the calibration results were not deemed satisfactory,
the calibration was repeated. In instances where the eye tracker failed to detect sufficient
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calibration data, participants were repositioned in front of the eye tracker. Additionally,
potential factors that could have interfered with pupil detection were examined, e.g., lighting
conditions, occlusion, or calibration drift. On average, the distance between each participant
and the tracker was 60cm.

Think Aloud

Since previous research has identified the need to complement eye-tracking data with
additional verbal data, we amended the eye-tracking results by incorporating think-aloud
interviews into our study design (Chien et al., 2015; Smith et al., 2010). During think-aloud
interviews, “participants think out aloud while performing a given task, or recall thoughts
immediately following completion of that task” (Eccles and Arsal, 2017, p. 514). The par-
ticipants’ verbalizations were recorded as well as transcribed and subsequently subjected to
further analysis (cf. “Data Analysis”). The goal of this method lies in uncovering cognitive
processes that are not as accessible with the other methods used (Rios et al., 2019). Thus,
even though it might interfere with the study objective due to the verbalizations resulting in
an overall higher cognitive demand, think-aloud studies are often used as an introspective
annex (McKay, 2009; Sasaki, 2013). We leveraged this method by asking the participants
to articulate their thought processes at any point in time in both, phases 1 (image chart) and
2 (free exploration). To use thinking aloud effectively, the participants were provided with
an instruction on thinking aloud, which was formulated following Mackensen-Friedrichs
(2004) to ensure a standardized procedure (Sandmann, 2014). Some of the cues given to the
participants were (1) speak your thoughts aloud; (2) there should be no pauses in speaking, so
verbalize your thoughts without pauses; (3) do not organize your thoughts before speaking,
imagine you are alone in the room; and (4) thinking aloud may be a bit unfamiliar. Therefore,
you will be supported and repeatedly prompted to express your thoughts.

The additional verbal data obtained from those interviews provides further insights into
the cognitive processes, motivations, and decision-making that underlie the observed eye
movements, offering amore complete picture of participants’ experiences and interpretations
(cf. Brückner et al., 2020). Furthermore, eye-tracking data alone can identify moments of
attention shifts or fixations on specific elements, but it may not explain the reasons for these
shifts. Since our study addresses selection processes based on visual stimuli, supplemental
verbal data can clarify whether a shift in gaze was triggered by interest, confusion, or any
other factors, shedding further light on the nature of the participants’ attentional patterns.

Questionnaire

To further enhance cross-validity, we concluded our study with a final questionnaire in phase
3. Here, participants were presented with a list containing all (surface) features provided by
YouTube and were asked to rate whether they considered the different features important
to their decision-making processes on a four-point rating scale (strongly disagree, disagree,
agree, strongly agree). The addressed features were number of views, likes, comments, and
subscriptions as well as thumbnail, channel, video title, video length, video description,
upload date, order determined by YouTube’s search algorithm, and specific comments. On
the one hand, these ratings allow to establish a ranking among all surface features in terms
of their importance. On the other hand, the retrospective view obtained from the concluding
questionnaire contrasts the introspective view from phases 1 and 2, enabling a triangulation
with the findings from both the eye-tracking and the think-aloud interviews.
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Sample

A total of N = 24 German pre-service physics teachers (9 female, 15 male) participated
in this research. The participants were selected such that they (a) were at least in their
second academic year and (b) did not rely on strong glasses or contact lenses (diopter > 1).
Participation in our study was voluntary, not financially recompensed, and informed consent
was obtained from all participants.

Data Analysis

The eye-tracking data were evaluated in terms of three metrics that reflect attention allocation
and cognitive demand: First, we analyzed the total fixation duration, which can be described
as “the total duration of all fixations on a specific stimulus” (van der Laan et al., 2015, p.
1). High values of this metric indicate a more pronounced focus on certain areas (Hahn &
Klein, 2022); thus, it is the commonly reported measure of visual attention (Shruti Goyal &
Miyapuram, 2015). Second,we investigated themetric fixation counts that often accompanies
the total fixation duration as a measure of attention allocation (cf. Just and Carpenter, 1976;
Wang et al., 2014). Lastly, we analyzed themean fixation duration, which is often interpreted
as a measure of cognitive processing demand (Negi & Mitra, 2020). Consequently, higher
values of mean fixation duration indicate a “higher cognitive effort to process information”
(Hahn and Klein, 2022, p. 10). The areas of interest (AOIs) required for quantitative analysis
were matched with the surface features provided by YouTube (cf. “Eye-Tracking”) as is
indicated in Fig. 3. However, for the data analysis, the individual AOIs for each of the
proposed videos shown in the image chart in phase 1 were not considered: Instead, so-called
aggregated tags were created that combine the eye-tracking metrics for several related AOIs
(e.g., all Like-AOIs). For example, the aggregated tag “Likes”was created,which summarizes
all Like-AOIs for the individual video options, so that finally, for example, statements can

Fig. 3 The AOIs were defined covering all the surface features given for the eight video options shown to the
participants. The eye-tracking metrics regarding the related AOIs were summarized using aggregated tags
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be made about how often and how long the number of likes was viewed (across the different
video options given).

For the subsequent think-aloud interviews, we conducted a qualitative content analysis.
To this end, we (a) associated the participants’ verbal expressions with the corresponding
surface features provided by YouTube and (b) categorized their decisions for or against
each video. The categories for these decisions were developed based on both inductive and
deductive procedures (Forman & Damschroder, 2001). An overview of all categories and
their descriptions is provided in the appendix (cf. Table 5). The category system was applied
by two independent raters, and dissenting judgements were resolved through discussion.
The interview data were analyzed threefold: First, we calculated the relative speaking time
allocated to each (surface) feature and visually displayed the resulting share of each feature
in a bar chart. Second, we visualized the temporal trajectory of each interview through
the various categories and plotted them alongside a common axis, resulting in a temporal
topography graphic for each of the two phases. Lastly, we counted the most frequently used
arguments among the participants’ reasonings and how often they lead to a decision for
or against a video. This insight was used to provide an overview of the (surface) features
provided by YouTube for each video that are most influential during the decision-making
process of pre-service physics teachers.

The responses of the concluding questionnairewere summarized using a diverging stacked
bar chart constructed from the participants’ responses by aligning the bars from a stacked
bar chart relative to the scale’s center (Robbins & Heilberger, 2011). In addition, each of
the response options was color-coded and equated with a number (strongly disagree =̂ − 2,
disagree =̂ − 1, agree =̂ 1, agree completely =̂ 2) so that a mean agreement value for each
surface feature could be calculated, resulting in a ranking among all surface features provided
by YouTube (cf. Veith et al., 2022). It is important to note that rating scale data is ordinal in
nature and as such the average results are merely being used as a quick means to represent
the true data.

Results

In the following, we present the results of our study, separated bymethodology. First, we pro-
vide an overview of the assessed eye-tracking metrics (cf. “Eye-Tracking Results”), and sec-
ond, we enrich those findings with the results of the think-aloud data (cf. “Think-Aloud Inter-
view Results”) as well as the subsequent questionnaire study (cf. “Questionnaire Results”).

Eye-Tracking Results

The eye-tracking data were collected in study phase 1 where participants were presented with
a carefully constructed chart containing eight search results from YouTube (for details, see
“Methods”). These options were specifically chosen to exhibit a range of surface features.
The participants’ task was to determine which of the eight explanatory videos would be
suitable for inclusion in a learning environment related to the topic being investigated. Figure4
presents an illustrative heat map generated from the eye-tracking data obtained from one of
the participants in the study. The heat map provides visual information regarding the areas
that received the highest attention during the task.

Table 1 provides the descriptive statistics for themetric total fixation duration for each area
of interest. With a mean percentage of 35.39% of the total fixation duration, the thumbnail
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Fig. 4 Exemplary heat map created from the eye-tracking data from one of the study participants in phase 1
of our study. Qualitatively, participants’ spots of attention are represented through red color

was by far the most compelling AOI and the only one with a share above 10%. While the
AOIs’ title (9.58%) and channel (6.17%)were also able to captivate the participants’ attention
to some extent, the remaining AOIs played a seemingly negligible role during the selection
process. This discrepancy is visualized via boxplots in Fig. 5.

Descriptive statistics for the metric mean fixation duration are provided in Table 2. The
data in this regard paint a different picture by taking similar values for each AOI. The mean
fixation durations average between 176 (subs) and 240 ms (date) and, thus, lie in the typical
range of 100–600 ms reported by Hahn and Klein (2022). The boxplots illustrating these
data substantiate this relationship—the middle 75% of data can be located between 200 and
300 ms across almost all AOIs (cf. Fig. 6).

Lastly, we investigated the metric fixation counts for each AOI. With there being striking
differences in the total fixation durations of each AOI but similar values for mean fixation
duration, it becomes apparent that the number of fixations must vary in a manner similar
to the total fixation duration. The data provided in Table 3 paint a coherent picture in this

Table 1 Descriptive statistics for the total fixation duration (in percent) for each area of interest

Subs Views Thumbnail Date Length Channel Likes Title

Max 6.48 5.48 57.03 4.85 3.66 14.53 5.24 19.10

Min 0.19 0.57 12.38 0.00 0.00 1.47 0.00 2.39

Q1 1.28 1.73 29.84 0.29 0.46 4.73 0.32 6.69

Q2 1.89 2.20 37.39 0.56 0.71 5.90 0.95 9.45

Q3 3.61 3.72 41.73 0.94 1.50 7.84 1.79 12.39

Mean 2.55 2.47 35.39 0.78 1.08 6.17 1.56 9.58

In addition to the minimum, maximum, and mean values, we report the lower (Q1), middle (Q2), and upper
(Q3) quartiles
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Fig. 5 Boxplots for the total fixation duration for each area of interest. The whiskers indicate 1.5× IQR, where
IQR is the interquartile range

Table 2 Descriptive statistics for the mean fixation duration (in seconds) for each area of interest

Subs Views Thumbnail Date Length Channel Likes Title

Max 0.31 0.41 0.31 0.31 0.44 0.35 0.37 0.32

Min 0.16 0.14 0.16 0.08 0.09 0.13 0.13 0.13

Q1 0.21 0.20 0.21 0.18 0.20 0.24 0.17 0.23

Q2 0.23 0.23 0.25 0.22 0.23 0.26 0.21 0.25

Q3 0.27 0.26 0.26 0.26 0.31 0.28 0.27 0.27

Mean 0.17 0.19 0.21 0.24 0.18 0.23 0.21 0.23

In addition to the minimum, maximum, and mean values, we report the lower (Q1), middle (Q2), and upper
(Q3) quartiles

Fig. 6 Boxplots for the mean fixation duration for each area of interest. The whiskers indicate 1.5 × IQR,
where IQR is the interquartile range
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Table 3 Descriptive statistics for the fixation count (in %) for each area of interest

Subs Views Thumbnail Date Length Channel Likes Title

Max 6.50 5.34 69.30 5.20 2.93 14.93 5.60 22.63

Min 0.37 0.94 18.34 0.00 0.00 2.60 0.00 5.14

Q1 1.83 2.14 36.39 0.46 0.59 5.25 0.64 8.69

Q2 2.29 3.04 47.29 0.93 1.04 6.55 1.00 11.29

Q3 4.67 4.21 50.84 1.25 1.59 8.41 2.83 14.96

Mean 3.04 3.11 45.59 1.06 1.12 7.12 1.82 11.60

In addition to the minimum, maximum, and mean values, we report the lower (Q1), middle (Q2), and upper
(Q3) quartiles

regard. Again, with a mean percentage of 45.59% of the total number of fixations, there
is a predominant focus on the AOI thumbnail, with title (11.60%) and channel (7.12%)
being second and third, respectively. Consequently, the boxplots for the metrics total fixation
duration and fixation count are somewhat congruent (cf. Fig. 7).

Think-Aloud Interview Results

To analyze the selection process more thoroughly, the results from the eye-tracking study are
now complemented with data from a think-aloud study, as described in “Methods.” Figure8
offers an initial comprehensive overviewof the content aspects addressed in the argumentation
provided by the study participants: It shows the relative proportion (of total speaking time)
of each surface feature in participants’ utterances in both study phases. In phase 1, the most
pronounced focus was placed on the thumbnail with 30.9%, followed by channel and title
with 23.0% and 14.2%, respectively. Regarding the free exploration in phase 2, however, the
data convey a more differentiated impression: Here, the surface feature channel emerges on
the top with 22.0%, with the thumbnail (20.0%) and length (17.4%) taking second and third
places. In addition, the surface features likes, subs, date, order, description, and comments
are almost negligible with an allocated speaking time of below 5% throughout both phases.

A more comprehensive insight into the structure of the participants’ selection process is
offered by the bar charts in Figs. 9 and 10.

Fig. 7 Boxplots for the fixation counts for each area of interest. The whiskers indicate 1.5× IQR, where IQR
is the interquartile range

123



426 Research in Science Education (2024) 54:413–438

Fig. 8 Bar chart visualizing the relative proportion (of total speaking time) of each surface feature in partici-
pants’ utterances in both phases. Phase 1 indicates the allocated speaking time regarding the pre-constructed
image chart, while phase 2 indicates the allocated speaking time during free exploration (cf. “Methods”)

Here, each individual interview is presented as a bar, and the sections dedicated to the
different surface features are color-coded respectively. Hence, these visualizations allow for
a deeper insight into the temporal topography of each interview. Analyzing this topography,
it becomes apparent that blue (thumbnail) and violet (channel) cover the most area during
the first phase, in accordance with the findings presented in Fig. 8. In the second phase,
where participants were allowed to click on and even watch videos, this dynamic changes:
On the one hand, the violet sections increase, indicating a greater focus on the surface feature

Fig. 9 Topography of the think-aloud interviews in the first phase, one for each study participant P1 to P24.
The red strokes indicate a decision for or against a video. The upper row indicates the color coding for each
surface feature. White sections represent small breaks where the participants did not address a specific surface
feature
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Fig. 10 Topography of the think-aloud interviews in the second phase, one for each study participant P1 to
P24. The red strokes indicate a decision for or against a video. The upper row indicates the color coding for
each surface feature. Hatched sections represent parts of the interview where the participants watched a video

channel. On the other hand, the participants had access to more surface features such as
comments or the video description. Decisions for or against a video are indicated by red
strokes. For example, a red stroke after a blue section displays a decision against a video
because of the thumbnail. A summary of all decisions and the surface features they were
based on is presented in Table 4.

With a total of 26 and 23 decisions, the surface features thumbnail and video length are by
far themost influential ones. In congruence to the bar chart presented in Fig. 8, the channel, the
video title, and the number of views can also be regarded as guides for the selection process,
while more specific features such as likes, subs, or comments seem almost entirely irrelevant
for decision-making. Lastly, it is noticeable that most decisions could not be attributed to
specific surface features. In particular, 30 out of the 51 positive decisions do not seem to be
related to surface features provided by YouTube. We will elaborate on this finding in more
detail in “Discussion.”

To obtain a more in-depth view on the decisions used by participants that could be related
to a surface feature, their arguments during the interviews were categorized (cf. “Methods”).
Since the thumbnail feature leads to the most decisions in both phases, we present a bar chart
for the most frequently used arguments in Fig. 11.

With the most frequently used arguments being T3 (the thumbnail indicates an inter-
esting video) and T4 (the thumbnail indicates a boring or nonprofessional video), it
becomes apparent that arguments addressing affective aspects dominate over content-related
reasonings. An overview of the overall top five most frequently used arguments is provided
in Fig. 12. We discuss these findings in “Discussion.”
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Table 4 Overview of the decisions for or against a video based on the respective (surface) features, sorted by
study phases

Surface feature Decision for (+) and
against (−) a video in
phase 1

Decision for (+) and
against (−) a video in
phase 2

Total decisions for
both phases combined

+ − + −
Thumbnail 3 12 2 9 26 (5+, 21−)

Length 3 12 2 6 23 (5+, 18−)

Channel 3 4 0 2 9 (3+, 6−)

Title 1 4 1 3 9 (2+, 7−)

Views 1 1 1 3 6 (2+, 4−)

Content 0 1 2 0 3 (2+, 1−)

Likes 1 1 0 0 2 (1+, 1−)

Subs 0 1 0 0 1 (0+, 1−)

Description 0 0 1 0 1(1+, 0−)

Order 0 0 0 0 0

Date 0 0 0 0 0

Comments 0 0 0 0 0

Not related to a specific
surface feature

13 1 17 0 31 (30+, 1−)

Questionnaire Results

In the final part of our study we, in retrospection, asked the participants to evaluate the extent
to which they agree with the respective features having been relevant for their selection

Fig. 11 Bar charts visualizing the relative share of each category (T1 to T5) addressing the thumbnail that
was used as an argument for or against a video. The respective category system is provided in the appendix
(cf. Table 5)
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Fig. 12 Top five of themost frequently used arguments for or against a video during the think-aloud interviews.
The respective category system is provided in the appendix (cf. Table 5)

process. The responses are visualized using a diverging stacked bar chart in Fig. 13. In
congruence to our previous findings, the thumbnail takes a sole first place with a rating
of 1.80 (where 2 corresponds to “agree completely” and −2 to “strongly disagree”). With
21 out of 24 participants agreeing completely with the thumbnail being important for their
selection process, the thumbnail even exceeds the video length in terms of relevance for

Fig. 13 Diverging stacked bar chart visualizing the participants’ agreement that the respective surface feature
is important for decision-making. The respective average ratings for each (surface) feature (cf. “Methods”)
are provided in labels on each bar where 2 corresponds to “agree completely” and −2 to “strongly disagree.”
The abbreviation “nr. Comments” stands for the number of comments under a video
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decision-making in the participants’ retrospective views. In contrast, the number of comments
(average rating of −1.88) and comments themselves (average rating of −1.52) solidify last
places and do not seem to contribute meaningfully to the decision-making process.

Discussion

The Process of Selecting Instructional Videos for Physics Teaching

In phase 1 of our study, pre-service physics teachers were given the task of selecting one
explanatory video on quantum physics from a set of eight options. Participants were provided
with excerpts from the YouTube search results and had access to various metrics such as
views, likes, and channel information. The analysis of participants’ eyemovements revealed a
significant emphasis on video thumbnails, withmore than one-third of their total fixation time
and counts directed towards this area of interest (AOI). Surprisingly, therewere no statistically
significant differences inmean fixation duration between different AOIs, despite this measure
“is often considered an indicator of cognitive processing demand” (Hahn and Klein, 2022, p.
10). This finding, hence, contrasts with the results of Hsieh and Chen (2011), who suggested
that viewing content with different information types requires varying cognitive resources.

To gain further insight into the participants’ selection processes, we examined their think-
aloud data. This analysis, consistent with the eye-tracking data, revealed that during both
phase 1 (selection of one out of eight options based on surface features) and phase 2 (free
exploration), participants predominantly voiced their considerations in relation to the AOI
thumbnail. An in-depth categorization of argumentation structures and decision-making
uncovered four key observations:

1. The video duration played a significant role in participants’ choices, aligningwith didactic
perspectives as they were selecting videos for instructional purposes.

2. The video content had a minor influence on participants’ decisions during the free explo-
ration phase. Instead, choices were primarily guided by thumbnail, duration, channel, and
title features, indicating a reliance on surface features and pragmatic decision-making
among pre-service physics teachers. This tendency to select videos they already had a
connection with or were familiar with, such as those from known channels, is in accor-
dance with findings from cognitive psychology (Chen, 2016).

3. A notable portion of the decisionsmade during the study could not be attributed to surface
features, comments, or video content based on either eye movements or verbalizations.
Hence, in these cases, the study participants either struggled to explicitly articulate their
decisions due to multiple considerations or did not just articulate them at a deeper level.
Similar cases have been observed in physics education research on teachers’ profes-
sional competences, where prior research has found that experienced teachers’ actions
in the classroom are guided by informed decisions and teaching routines that cannot be
easily verbalized (e.g., see Borko and Livingston, 1989; Livingston and Borko, 1989;
Stender, 2014). To clarify whether similar principles contribute to an explanation of the
observations made in our study requires further investigation.

4. Although the participants had the opportunity to view comments associated with each
YouTube video during the free exploration phase 2, surprisingly, none of the participants
explicitly based their decisions on comments. This observation contrasts with findings
fromprevious research reporting that students relied on comments as an indicator of video
quality (e.g., see Fyfield et al., 2021; Tan and Pearce, 2011) and, instead, indicates that the
selection process tends to be less systematic. However, previous studies have consistently
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shown a strong and statistically significant correlation between the explanatory quality
of YouTube videos and the number of content-related comments (Kulgemeyer & Peters,
2016; Bitzenbauer et al., 2023). It is therefore noteworthy that these comments did not
play a significant role in the decision-making process of our participants.

The eye-tracking and think-aloud data were complemented by retrospective questionnaire
responses: When asked about the features that influenced their video selection for instruc-
tional purposes, the majority of respondents indicated thumbnail, duration, channel, or title,
while video descriptions and the quantity or quality of comments played a minor role, even
in retrospective evaluation.

The finding that participants primarily explored the top results of the YouTube search
list aligns with previous studies (e.g., see Fyfield et al., 2021; Tan and Pearce, 2011): Over
half of the participants reported approaching video selection in a sequential manner based
on the order of videos in the search list (cf. Fig. 13). This pragmatic approach leads to
quick decisions (made in a time frame of less than 10min in the free exploration phase 2 of
this study) that are mainly based on surface features (e.g., thumbnails) or familiarity (e.g.,
channel). The analysis of individual argumentation categories (see Figs. 11 and 12) supports
this assumption.

In conclusion, our findings suggest that the decision-making process of (pre-service)
physics teachers when searching for suitable YouTube explanatory videos (on quantum top-
ics in this study) for instructional purposes is primarily driven by pragmatism, efficiency, and
reliance on familiar features. The availability of empirical evidence regarding the explanatory
quality of online videos seems to be overlooked by (pre-service) physics teachers, represent-
ing a missed opportunity to streamline the selection process. Therefore, in “Conclusion,” we
will synthesize existing empirical evidence and propose a preliminary decision tree that may
assist teachers in efficiently identifying high-quality explanatory videos on YouTube.

Contrasting the Selection Processes with the Proposed Decision Tree

The observations made in this study indicate that the selection processes of (pre-service)
physics teachers when searching explanatory videos suitable for physics teaching are pre-
dominantly unsystematic, relying on superficial or familiar aspects, and characterized by
pragmatic choices. These tendencies give rise to two interconnected issues when it comes to
real instructional preparation, where videos with high explaining quality are sought:

1. Teachers may require significant time to find suitable videos due to the unsystematic
approach.

2. There is a probability that teachers may select videos of lower quality.

It is obvious that in the study reported in this article, the decision-making process of
the participants in most cases diverged from the proposed decision tree. In light of this, it
becomes necessary to support teachers in systematizing their selection process to overcome
the identified problems in practice. The decision tree proposed in “Research Rationale”might
be a valuable tool in this regard as it reflects the state of the literature. While we are aware
that future studies are required and might lead to a refined version of the decision tree, the
significance of the decision tree in its current form lies in its capacity to systematize the selec-
tion process without imposing quantitative guidelines or thresholds. This acknowledges the
absence of empirical evidence supporting suchmeasures and recognizes that decisions should
be made by teachers on a case-by-case basis, taking into account the specific topic. Future
studies should investigate whether the use of the decision tree indeed facilitates efficient and
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successful identification of high-quality explanatory videos on various topics. Additionally,
it will be crucial to determine whether decision steps need to be supplemented or specified.

Limitations

The present study has several limitations that should be considered when interpreting the
results. First, the focus on explanatory videos related to three specific quantum topics may
restrict the generalizability of the findings. Although we designed the study with three sep-
arate groups, each tasked with selecting videos for instructional situations on two different
quantum topics, this control measure may not account for potential variations that could
arise if explanatory videos on further (physics) topics, e.g., classical mechanics topics, were
included. Further research is needed to validate the reported results in a broader range of
topics. Second, understanding the cognitive processes of pre-service physics teachers during
video selection is a complex empirical endeavor, and the chosen data collection methods—
even though they might complement each other—come with inherent limitations. While the
analysis of eye-tracking data is based on the eye-mind assumption (Just & Carpenter, 1980),
previous research has emphasized the importance of complementing eye movement analysis
with additional verbal data to gain a comprehensive understanding (Brückner et al., 2020;
Chien et al., 2015; Chiou et al., 2022; Mason et al., 2013; Smith et al., 2010; Wu & Liu,
2021). To address this concern within our mixed-methods approach, we employed intro-
spective thinking-aloud in our study. Additionally, the retrospective questionnaire used for
internal validation allows participants to reflect on their experiences; however, it may also
trigger ad hoc generated associations and thoughts regarding the different YouTube surface
features (for similar arguments, see Winkler et al., 2021; Winkler et al. 2023). Third, it is
important to consider that while this study focuses on the selection processes employed by
(pre-service) physics teachers in finding YouTube explanatory videos on quantum physics
suitable for teaching, the selection situations created within the study design differ from
real classroom planning scenarios. Particularly, in our study, participants had unlimited time
for decision-making, whereas real instructional planning is significantly influenced by time
constraints. However, the analysis of think-aloud data reveals that decision-making occurred
within a time frame of less than 10min in phase 2 of the study (free exploration), which
aligns with a reasonable time frame in natural classroom planning situations. Lastly, the
time-consuming nature of the study led to a relatively small sample size. However, the pri-
mary aim of this study was to gain in-depth insights into the video selection process rather
than to produce generalizable findings on a surface level. Future research with larger sample
sizes could provide a broader perspective on the topic.

Conclusion

This mixed-methods study explored how pre-service teachers select instructional videos
on YouTube for physics teaching, focusing on the role of surface features (likes, views,
thumbnails) and comments. The results indicate that the decision-making processes of
(pre-service) physics teachers when searching for suitable YouTube explanatory videos are
primarily driven by pragmatism, efficiency, and reliance on familiar features.

Based on the current state of research into the explaining quality of online explanatory
videos, we proposed a decision tree which reflects how an efficient and successful selection
process might look. Although the decision-making process of the study participants often
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differed from the proposed decision tree in this study, it serves as a hypothesis for future
research aimed at supporting teachers in systematizing their selection process: Further studies
should explore whether the decision tree facilitates efficient and successful identification of
high-quality explanatory videos on various topics and how it might be adapted and refined,
e.g., with regard to different subject areas and teaching contexts. Also, future studies might
examine how the decision tree works as a tool for preparing teaching, e.g., in related courses
in science teacher education. Lastly, it seems particularly crucial to consider the evolving
nature of online platforms in future research: For example, research could examine how the
decision tree (or an evolved version thereof) can be adapted to accommodate changes in
platform features and the emergence of new video metrics. Collaborative research involving
educators, researchers, and platform developers may further enhance the decision tree’s
practicality and usability for (pre-service) teachers, facilitating their video selection process
and ultimately benefiting student learning experiences in physics and beyond.

Appendix

Table 5 Category system used for the think aloud study

Surface feature Category

Thumbnail 1. The thumbnail indicates a thematically well-suited video

2. The thumbnail indicates that the video might be off-topic

3. The thumbnail indicates that the video might not be exhaustive, e.g., it is part of a
longer series

4. The thumbnail seems interesting

5. The thumbnail seems unappealing or non-professional

6. The thumbnail indicates that the topic is explained well

7. The thumbnail indicates that the topic is not explained well

8. Neutral examination of the thumbnail

Title 1. The title indicates a thematically well-suited video

2. The title indicates that the video might be off-topic

3. The thumbnail indicates that the video might not be exhaustive, e.g., it is part of a
longer series

4. The title seems interesting

5. The title seems unappealing or non-professional

6. The title indicates that the video might delve too deeply into the topic

7. Neutral examination of the title

Subscriptions 1. The respective channel has many subscriptions

2. The respective channel has few subscriptions

3. The respective channel has more subscriptions than other channels

4. The respective channel has fewer subscriptions than other channels

Channel 1. The channel is known

(a) The channel’s name is known
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Table 5 continued

Surface feature Category

(b) The channel is known for high-quality videos

(c) The channel is known for scientifically inaccurate videos

(d) The channel is known for low-quality videos

2. The channel is unknown

3. Neutral examination of the channel

4. The channel seems fitting

5. The channel seems unfitting

6. The channel is verified (blue checkmark)

Likes 1. The video has many likes

2. The video has a few likes

3. The video has more likes than other videos

4. The video has fewer likes than other videos

Views 1. The video has many views

2. The video has few views

3. The video has more views than other videos

4. The video has fewer views than other videos

5. Neutral examination of views

Length 1. The video length seems too long

2. The video length seems accurate

3. The video length seems rather short

4. The video length seems too short

5. Netrual examination of video length

Upload 1. The video is too old

2. The video is new

3. Neutral examination of upload date

Order 1. The videos suggested first are fitting

2. The videos suggested first are unfitting

Description 1. Neutral examination of video description

2. The video description is appealing

Content 1. The video content could be fitting

2. The video content seems rather unfitting

3. Neutral examination of video content

4. The video content is contingent

Comments 1. Checking the feedback emerging from comments

2. The comments are rather positive
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