Skip to main content
Log in

Green access to flavonols by one-pot serial aldol condensation/Algar–Flynn–Oyamada reaction catalyzed using the new bio-based catalyst of alkaline amylopectin

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Herein, alkaline amylopectin (AAp) was prepared under chemo-mechanically dry conditions, characterized by base capacity, FT-IR, FESEM, TEM, and TGA analyses, and held as a new bio-organic base catalyst in the one-pot synthesis of flavonols. With a base capacity of 7.3 mmolHO/g, AAp catalyzed initial aldol condensation and further Algar–Flynn–Oyamada reaction in cooperation with hydrogen peroxide to give a high yield of flavonol antioxidants. So, the first aldol condensation or the latter oxidative cyclization/hydroxylation of the in situ-formed 2´-hydroxy-chalcones proceeded successfully in a pot to form flavonol products without aurone side product. The structure of the supra-molecular base catalyst AAp was found to be well preserved after the five times reusing. The rewards of this protocol are available reactants, no aurone side product, short reaction time, high yield, and catalyst reusability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Scheme 3
Fig. 4
Fig. 5
Scheme 4

Similar content being viewed by others

Availability of data and materials

The data that support outcomes of this study are available on request from the corresponding author.

References

  1. B. Madan, S. Batra, B. Ghosh, Mol. Pharmacol. 58, 3 (2000)

    Google Scholar 

  2. K. Maria, H.-L. Dimitra, G. Maria, Med. Chem. 4, 6 (2008)

    Google Scholar 

  3. B.K. Singh, V. Kumar, S. Malhotra, M.K. Pandey, R. Jain, R. Thimmulappa, S.K. Sharma, A.K. Prasad, S. Biswal, E. Van der Eycken, Arch. Pharm. Chem 345, 1 (2012)

    Google Scholar 

  4. J. Vaya, P.A. Belinky, M. Aviram, Free Radical Biol. Med. 23, 2 (1997)

    Google Scholar 

  5. A. Wilhelm, S.L. Bonnet, L. Twigge, L. Rarova, T. Stenclova, H.G. Visser, M. Schutte-Smith, J. Mol. Struct. 1251, 1 (2022)

    Google Scholar 

  6. A. Raval, N. Shah, J. Org. Chem. 23, 5 (1958)

    Google Scholar 

  7. S.S. Choudhury, S. Mahapatra, A.K. Sahu, P. Hembram, S. Jena, H.S. Biswal, A.C.S. Sustain, Chem. Eng. 10, 43 (2022)

    Google Scholar 

  8. A.K. Verma, B.N. Kishor, O. Prakash, Mini Rev. Org. Chem. 19, 6 (2022)

    Google Scholar 

  9. A. Rammohan, J.S. Reddy, G. Sravya, C.N. Rao, G.V. Zyryanov, Environ. Chem. Lett. 18, 2 (2020)

    Google Scholar 

  10. J. Zhu, B. Xu, J. Yu, Y. Ren, J. Wang, P. Xie, C.U. Pittman, A. Zhou, Org. Biomol. Chem. 16, 33 (2018)

    Google Scholar 

  11. S.K. Jash, G. Brahmachari, Org. Biomol. Chem. 1, 1 (2013)

    Google Scholar 

  12. W. Alam, H. Khan, M.A. Shah, O. Cauli, L. Saso, Molecules 25, 18 (2020)

    Google Scholar 

  13. R.G. Britton, E. Horner-Glister, O.A. Pomenya, E.E. Smith, R. Denton, P.R. Jenkins, W.P. Steward, K. Brown, A. Gescher, S. Sale, Eur. J. Med. Chem. 54, 1 (2012)

    Google Scholar 

  14. S. Cai, Y. Kong, D. Xiao, Y. Chen, Q. Wang, Org. Biomol. Chem. 16, 11 (2018)

    Google Scholar 

  15. S. Prafulla, P. Lata, S. Nusrat, R. Priya, Syst. Rev. Pharm. 12, 12 (2021)

    Google Scholar 

  16. Z. Yazdiniapour, A. Yegdaneh, S. Akbari, Adv. Biomed. Res. 10, 1 (2021)

    Google Scholar 

  17. J.A. Seijas, M.P. Vázquez-Tato, R. Carballido-Reboredo, J. Org. Chem. 70, 7 (2005)

    Google Scholar 

  18. S. Bhagwat, D.B. Haytowitz and J.M. Holden, USDA database for the flavonoid content of selected foods, Release 3.1, (Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, ARS, USDA, 2014)

  19. S. Vimalraj, S. Saravanan, G. Hariprabu, R. Yuvashree, S.K.A. Kanna, K. Sujoy and D. Anjali, Life Sci. 256, (2020)

  20. P. Rajendran, T. Rengarajan, N. Nandakumar, R. Palaniswami, Y. Nishigaki, I. Nishigaki, Eur. J. Med. Chem. 86, 1 (2014)

    Google Scholar 

  21. M.a.T. Mercader-Ros, C. Lucas-Abellan, J.A. Gabaldón, M.a.I. Fortea, A. Martinez-Cacha and E. Nunez-Delicado, Journal of agricultural and food chemistry 58, 8 (2010)

  22. D. Kashyap, A. Sharma, H.S. Tuli, K. Sak, S. Punia, T.K. Mukherjee, J. Funct. Foods 30, 1 (2017)

    Google Scholar 

  23. L. Duan, W. Ding, X. Liu, X. Cheng, J. Cai, E. Hua, H. Jiang, Microb. Cell Fact. 16, 1 (2017)

    CAS  Google Scholar 

  24. J.M. Calderon-Montano, E. Burgos-Morón, C. Pérez-Guerrero, M. López-Lázaro, Mini Rev. Med. Chem. 11, 4 (2011)

    Google Scholar 

  25. J. Zhang, W. Xiong, Y. Wen, X. Fu, X. Lu, G. Zhang, C. Wang, Org. Biomol. Chem. 20, 5 (2022)

    Google Scholar 

  26. S. Paul, A.K. Bhattacharya, Org. Biomol. Chem. 16, 3 (2018)

    Google Scholar 

  27. A. St-Gelais, J. Alsarraf, J. Legault, C. Gauthier, A. Pichette, Org. Lett. 20, 23 (2018)

    Google Scholar 

  28. J.J. Li, in Name Reactions(Springer, 2003), pp. 13–13

  29. J. Algar and J.P. Flynn, in Proc. R. Ir. Acad. B(JSTOR, 1934), pp. 1–8

  30. T. Oyamada, J. Chem. Soc. Jpn 55, 1 (1934)

    Google Scholar 

  31. T. Oyamada, Bull. Chem. Soc. Jpn. 10, 5 (1935)

    Google Scholar 

  32. B. Cummins, D.M.X. Donnelly, J.F. Eades, H. Fletcher, F.O. Cinnéide, E.M. Philbin, J. Swirski, T.S. Wheeler, R.K. Wilson, Tetrahedron 19, 4 (1963)

    Google Scholar 

  33. W. Xiong, X. Wang, X. Shen, C. Hu, X. Wang, F. Wang, G. Zhang, C. Wang, J. Org. Chem. 85, 20 (2020)

    Google Scholar 

  34. D. Donnelly, J. Eades, E. Philbin and T. Wheeler, (Soc Chemical Industry 14 BELGRAVE SQUARE, LONDON SW1X 8PS, ENGLAND, 1961), pp. 1453–1453

  35. T. Geissman, D.K. Fukushima, J. Am. Chem. Soc. 70, 5 (1948)

    Google Scholar 

  36. S. Bhattacharyya, K. Hatua, RSC Adv. 4, 36 (2014)

    Google Scholar 

  37. C. Espíndola, Mini Rev. Org. Chem. 17, 6 (2020)

    Google Scholar 

  38. T. Roy, S.T. Boateng, S. Banang-Mbeumi, P.K. Singh, P. Basnet, R.-C.N. Chamcheu, F. Ladu, I. Chauvin, V.S. Spiegelman, R.A. Hill, Bioorg. Chem. 107, 1 (2021)

    Google Scholar 

  39. A. Kumar, S. Kumar, J.K. Makrandi, Green Process. Synth. 2, 4 (2013)

    Google Scholar 

  40. U.C. Rajesh, S. Manohar, D.S. Rawat, Adv. Synth. Catal. 355, 16 (2013)

    Google Scholar 

  41. S. Kumar, R. Ambatwar, V. Gupta, G.L. Khatik, Res. Chem. Intermed. 49, 3 (2023)

    Google Scholar 

  42. X. Shen, Q. Zhou, W. Xiong, W. Pu, W. Zhang, G. Zhang, C. Wang, Tetrahedron 73, 32 (2017)

    Google Scholar 

  43. R.W. Welford, I.J. Clifton, J.J. Turnbull, S.C. Wilson, C.J. Schofield, Org. Biomol. Chem. 3, 17 (2005)

    Google Scholar 

  44. M.M. Cox, Lehninger principles of biochemistry (2013)

  45. R. Mukerjea, J.F. Robyt, Carbohydr. Res. 345, 3 (2010)

    Google Scholar 

  46. D. Le Corre, J. Bras, A. Dufresne, Biomacromol 11, 5 (2010)

    Google Scholar 

  47. S. Naguleswaran, T. Vasanthan, R. Hoover, D. Bressler, Food Hydrocoll. 35, 1 (2014)

    Google Scholar 

  48. K. Alvani, X. Qi, R.F. Tester, C.E. Snape, Food Chem. 125, 3 (2011)

    Google Scholar 

  49. S.-Z. Zhang, Z.-S. Cui, M. Zhang, Z.-H. Zhang, Curr. Opin. Green Sustain. Chem. 38, 1 (2022)

    Google Scholar 

  50. L.-N. Dong, S.-Z. Zhang, W.-L. Zhang, Y. Dong, L.-P. Mo, Z.-H. Zhang, Res. Chem. Intermed. 48, 3 (2022)

    Google Scholar 

  51. F.G. Torres, G.E. De-la-Torre, Int. J. Biol. Macromol. 194, 1 (2022)

    Google Scholar 

  52. M.C. Sweedman, M.J. Tizzotti, C. Schäfer, R.G. Gilbert, Carbohydr. Polym. 92, 1 (2013)

    Google Scholar 

  53. N. Masina, Y.E. Choonara, P. Kumar, L.C. du Toit, M. Govender, S. Indermun, V. Pillay, Carbohydr. Polym. 157, 1 (2017)

    Google Scholar 

  54. Y. Zhou, H. Essawy, A. Liu, C. Yang, D. Hou, X. Zhou, G. Du, J. Zhang, J. Renew. Mater. 11, 2 (2023)

    Google Scholar 

  55. F. Tamaddon, M. KazemiVarnamkhasti, Carbohydr. Res. 437, 1 (2017)

    Google Scholar 

  56. F. Tamaddon and M. Taghi Kazemi Varnamkhasti, Curr. Catal. 6, 1 (2017)

  57. F. Tamaddon, H. Rashidi, Res. Chem. Intermed. 49, 8 (2023)

    Google Scholar 

  58. S. Kiran, P. Rohini, P. Bhagyasree, Journal of Pharmacognosy and Phytochemistry 6, 5 (2017)

    Google Scholar 

  59. K. Yamasaki, R. Hishiki, E. Kato, J. Kawabata, A.C.S. Med, Chem. Lett. 2, 1 (2011)

    Google Scholar 

  60. S. Bhagwat, D.B. Haytowitz, J.M. Holden, US Department of Agriculture: Beltsville (MD, USA, 2014)

    Google Scholar 

  61. R.A. Sheldon, M. Wallau, I. Arends, U. Schuchardt, Acc. Chem. Res. 31, 8 (1998)

    Google Scholar 

  62. F. Tamaddon, F. Pouramini, Synlett 25, 08 (2014)

    Google Scholar 

  63. F. Tamaddon, E. Ahmadi-AhmadAbadi, H. Kargar, Appl. Organomet. Chem. 35, 11 (2021)

    Google Scholar 

  64. M. Babu, K. Pitchumani, P. Ramesh, Helv. Chim. Acta 96, 7 (2013)

    Google Scholar 

  65. A. Karmakar, P. Ambure, T. Mallick, S. Das, K. Roy, N.A. Begum, Med. Chem. Res. 28, 1 (2019)

    Google Scholar 

  66. A.M. Sobottka, W. Werner, G. Blaschke, W. Kiefer, U. Nowe, G. Dannhardt, E.E. Schapoval, E.P. Schenkel, G.K. Scriba, Arch. Pharm. 333, 7 (2000)

    Google Scholar 

  67. E. Venkateswararao, M.-J. Son, N. Sharma, M. Manickam, P. Boggu, Y.H. Kim, S.-H. Woo, S.-H. Jung, A.C.S. Med, Chem. Lett. 6, 7 (2015)

    Google Scholar 

  68. P. Kamble, S. Wadher, Synthesis 11, 3 (2018)

    Google Scholar 

  69. M.-L. Ma, M. Li, J.-J. Gou, T.-Y. Ruan, H.-S. Jin, L.-H. Zhang, L.-C. Wu, X.-Y. Li, Y.-H. Hu, K. Wen, Biorg. Med. Chem. 22, 21 (2014)

    CAS  Google Scholar 

  70. M. Parveen, A. Aslam, S. Siddiqui, M. Tabish, M. Alam, J. Mol. Struct. 1251, 1 (2022)

    Google Scholar 

Download references

Acknowledgements

The authors appreciate the Yazd University Research Council.

Funding

With a fractional support by the Yazd University, this work is fully related to the PhD dissertation of Hossein Rashidi under supervision of Prof. Fatemeh Tamaddon at Organic Division of Chemistry Department of Yazd University.

Author information

Authors and Affiliations

Authors

Contributions

FT (corresponding author) did conceptualization, supervision, validation, project administration, software, formal analysis, and visualization. HR done methodology and investigation.

Corresponding author

Correspondence to Fatemeh Tamaddon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

All authors declare that they have no known conflict of interest, competing financial interest, or personal relationship that could have appeared to influence the work reported in this paper.

Ethical approval

No human and/ or animal trials have been examined in this project.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 855 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamaddon, F., Rashidi, H. Green access to flavonols by one-pot serial aldol condensation/Algar–Flynn–Oyamada reaction catalyzed using the new bio-based catalyst of alkaline amylopectin. Res Chem Intermed 49, 5221–5236 (2023). https://doi.org/10.1007/s11164-023-05138-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05138-9

Keywords

Navigation