Skip to main content
Log in

Sulfamic acid functionalized PVC: a remarkably efficient heterogeneous reusable catalyst for the acid-catalyzed reactions

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Sulfamic acid functionalized polyvinyl chloride catalysts (PVC-N-SO3H, N = EDA, DTA, TTA, TPA, PHA) were prepared as efficient heterogeneous solid acid catalysts via two-step treatment processes. The prepared catalysts were characterized by X-ray diffraction analysis (XRD), TG thermograms/derivative thermogravimetric (TG/DTG), transmission electron microscope (TEM), elemental mappings and energy-dispersive spectroscopy analyses (STEM-EDS), and FTIR measurements (FTIR) as well as acid–base back-titration. The acetalization of aldehydes (ketones) and alcohols to acetal (ketal) was selected to evaluate the acid catalytic performance of PVC-N-SO3H. The results showed that PVC-EDA-SO3H exhibit excellent activity and reusability due to its highly exposed sulfonic acid sites, high surface acid density (2.28 mmol g−1) for the conversion of aldehydes (ketones) to acetal (ketal). This new solid acid has obvious advantages in reusability and catalytic activity over traditional homogeneous concentrated sulfuric acid and heterogeneous sulfonated resin catalysts. Furthermore, PVC-EDA-SO3H exhibited an excellent catalytic performance in the synthesis of 12 acetals (ketals) as well as a good compatibility in the hydroxyalkylation of phenol with formaldehyde to bisphenol F (BPF) and the esterification reaction of oleic acid and methanol to biodiesel. More importantly, it could also be recovered easily and used repeatedly at least nine times without an obvious decrease in the activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 5

Similar content being viewed by others

References

  1. K.S. Kanakikodi, S.R. Churipard, A.B. Halgeri, S.P. Maradur, Sci. Rep. 10, 13103 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Z. Qi, Q. Wang, C. Liang, J. Yue, S. Liu, S. Ma, X. Wang, Z. Wang, Z. Li, W. Qi, Ind. Eng. Chem. Res. 59(39), 17046 (2020)

    CAS  Google Scholar 

  3. L. Cai, D. Meng, S. Zhan, X. Yang, T. Liu, H. Pu, X. Tao, RSC Adv. 5(88), 72146 (2015)

    CAS  Google Scholar 

  4. W. Wang, L. Meng, K. Leng, Y. Huang, Polym. Degrad. Stabil. 136, 112 (2017)

    CAS  Google Scholar 

  5. F. Lin, Y.H. Chin, J. Catal. 341, 136 (2016)

    CAS  Google Scholar 

  6. A.S. Amarasekaraa, B. Wiredua, T.L. Gradya, R.G. Obregona, D. Margetić, Catal. Commun. 124, 6 (2019)

    Google Scholar 

  7. S. Karnjanakoma, P. Maneechakra, C. Samartb, G. Guan, Mol. Catal. 479, 110632 (2019)

    Google Scholar 

  8. Y. He, T.C. Hoff, L. Emdadi, Y. Wu, J. Bouraima, D. Liu, Catal. Sci. Technol. 4, 3064 (2014)

    CAS  Google Scholar 

  9. J. Tian, J. Wang, S. Zhao, C. Jiang, X. Zhang, X. Wang, Cellulose 17, 587 (2010)

    CAS  Google Scholar 

  10. X. Qian, J. Lei, S.R. Wickramasinghe, Rsc Adv. 3, 24280 (2013)

    CAS  Google Scholar 

  11. X. Qi, Y. Lian, L. Yan, R.L. Smith, Catal. Commun. 57, 50 (2014)

    CAS  Google Scholar 

  12. C. Huang, J. Wei, P. Qi, R. Wu, Q. Ye, L. Han, Y. Li, Tetrahedron 135, 133340 (2023)

    CAS  Google Scholar 

  13. H. Xu, S. Xiong, Y. Zhao, L. Zhu, S. Wang, Sustain. Energ. Fuels. 35, 9961 (2021)

    CAS  Google Scholar 

  14. X. Tang, S. Niu, J. Ind, Eng. Chem. 69, 187 (2019)

    CAS  Google Scholar 

  15. Z. Fu, H. Wan, Q. Cui, J. Xie, Y. Tang, G. Guan, React. Kinet. Mech. Cat. 104, 313 (2011)

    CAS  Google Scholar 

  16. Y. Liu, W. Liu, L. Wang, M. Su, F. Liu, Ind. Eng. Chem. Res. 57, 5207 (2018)

    CAS  Google Scholar 

  17. A. Allahresani, B. Taheri, M.A. Nasseri, Res. Chem. Intermed. 44, 6979 (2018)

    CAS  Google Scholar 

  18. L. Molinero, J. Esteban, F. Sanchez, F. Garcia-Ochoa, M. Ladero, J. Ind. Eng. Chem. 109, 109 (2022)

    Google Scholar 

  19. G.M. Ziarania, N.L. Ashgari, A. Badiei, J. Mol. Catal. A Chem. 397, 166 (2015)

    Google Scholar 

  20. Z. Hasan, J.-S. Hwang, S.H. Jhung, Catal. Commun. 26, 30 (2012)

    CAS  Google Scholar 

  21. M.N. Timofeeva, V.N. Panchenko, Z. Hasan, N.A. Khan, M.S. Mel’gunov, A.A. Abel, M. Matrosova, K.P. Volchod, S.H. Jhung, Appl. Catal. A Gen. 469, 427 (2014)

    CAS  Google Scholar 

  22. N.A. Khan, D.K. Mishra, I. Ahmed, J.W. Yoon, J.-S. Hwang, S.H. Jhung, Appl. Catal. A Gen. 452, 34 (2013)

    CAS  Google Scholar 

  23. M.N. Timofeeva, Appl. Catal. A Gen. 256, 19 (2003)

    CAS  Google Scholar 

  24. M.G. Goestena, J. Juan-Alcañiz, E.V. Ramos-Fernandez, G. Kbss, E. Stavitski, H. Vbekkum, J. Gascon, F. Kapteijn, J. Catal. 281, 177 (2011)

    Google Scholar 

  25. G. Akiyama, R. Matsuda, H. Sato, M. Takata, S. Kitagawa, Adv. Mater. 23, 3294 (2011)

    CAS  PubMed  Google Scholar 

  26. Z. Hasan, S.H. Jhung, Eur. J. Inorg. Chem. 21, 3420 (2014)

    Google Scholar 

  27. R.I. Kureshy, I. Ahmad, K. Pathak, N.H. Khan, S.H.R. Abdi, R.V. Jasra, Catal Commun. 10, 572 (2009)

    CAS  Google Scholar 

  28. G. Zhang, X. Zhang, J. Lv, H. Liu, J. Qiu, K.L. Yeung, Catal Today. 193, 221 (2012)

    CAS  Google Scholar 

  29. B.M. Reddy, B. Thirupathi, M.K. Patil, J. Mol. Catal. A Chem. 307, 154 (2009)

    CAS  Google Scholar 

  30. A.K. Bhattacharya, K.C. Rana, Tetrahedron Lett. 49, 2598 (2008)

    CAS  Google Scholar 

  31. S.D. Mitragotri, D.M. Pore, U.V. Desai, P.P. Wadgaonkar, Catal. Commun. 9, 1822 (2008)

    CAS  Google Scholar 

  32. M.G.M. D’Oca, R.M. Soares, R.R. de Moura, V.F. de Granjão, Fuel 97, 884 (2012)

    Google Scholar 

  33. W. Gong, B. Wang, Y. Gu, L. Yan, L. Yang, J. Suo, Syn. Commun. 34, 4243 (2011)

    Google Scholar 

  34. J.S. Yadav, P.P. Rao, D. Sreenu, R.S. Rao, V.N. Kumar, K. Nagaiah, A.R. Prasad, Tetrahedron Lett. 46, 7249 (2005)

    CAS  Google Scholar 

  35. M.M. Heravi, L. Ranjbar, F. Derikvand, B. Alimadadi, Mol. Divers. 12, 191 (2008)

    CAS  PubMed  Google Scholar 

  36. K. Kumar, S. Pathak, S. Upadhyayula, Renew. Energ. 167, 282 (2021)

    CAS  Google Scholar 

  37. Z. Nasresfahani, M.Z. Kassaee, E. Eidi, J. Iran. Chem. Soc. 16, 1819 (2019)

    CAS  Google Scholar 

  38. B. Wang, L.M. Yang, J.S. Suo, Fuel 33, 3929 (2003)

    CAS  Google Scholar 

  39. B. Wang, L.M. Yang, J.S. Suo, Tetrahedron Lett. 44, 5037 (2003)

    CAS  Google Scholar 

  40. S. Rostamnia, E. Doustkhah, J. Mol. Catal. A Chem. 411, 317 (2016)

    CAS  Google Scholar 

  41. C. Zhang, Z. Fu, Y.C. Liu, B. Dai, Y. Zou, X. Gong, Y. Wang, X. Deng, H. Wu, Q. Xu, K.R. Steven, D. Yin, Green Chem. 14, 1928 (2012)

    CAS  Google Scholar 

  42. Y. Turhan, M. Doǧan, M. Alkan, Polym. Advan. Technol. 32, 65 (2013)

    Google Scholar 

  43. Y. Turhan, M. Doǧan, M. Alkan, Ind. Eng. Chem. Res. 49, 1503 (2010)

    CAS  Google Scholar 

  44. M. Parveen, S. Azaz, F. Ahmad, A.M. Malla, M. Alam, Catal. Lett. 146, 1687 (2016)

    CAS  Google Scholar 

  45. M. Sheykhan, L. Ma’mani, A. Ebrahimi, A. Heydari, J. Mol. Catal. A Chem. 335, 253 (2011)

    CAS  Google Scholar 

  46. K. Niknam, A. Jamali, M. Tajaddod, A. Deris, Chin. J. Catal. 33, 1312 (2012)

    CAS  Google Scholar 

  47. S. Tarannum, Z.N. Siddiqui, Mon. Chem. 148, 717 (2017)

    CAS  Google Scholar 

  48. Z. Ahmad, F. Al-Sagheer, N.A. Al-Awadi, J. Anal. Appl. Pyrol. 87, 99 (2010)

    CAS  Google Scholar 

  49. D.Q. Vu, W.J. Koros, S.J. Miller, J. Membr. Sci. 211, 311 (2003)

    CAS  Google Scholar 

  50. M. Mohagheghian, M. Sadeghi, M.P. Chenar, M. Naghsh, Korean J. Chem. Eng. 31, 2041 (2014)

    CAS  Google Scholar 

  51. Y. Zou, Y. Li, S. Bourbigot, J. Zhang, Y. Guo, K. Li, X. He, J. Baolati, Polym. Degrad. Stabil. 193, 109741 (2021)

    CAS  Google Scholar 

  52. A. Zhu, A. Cai, J. Zhang, H. Jia, J. Wang, J. Appl. Polym. Sci. 108, 2189 (2018)

    Google Scholar 

  53. O.S. Nayal, M.S. Thakur, R. Rana, R. Upadhyay, S.K. Maurya, Chem. Select. 4, 1371 (2019)

    CAS  Google Scholar 

  54. A.S. Abel, O.K. Grigorova, A.D. Averin, O.A. Maloshitskaya, G.M. Butov, E.N. Savelyev, B.S. Orlinson, I.A. Novakov, I.P. Beletskaya, Russ. Chem. 65, 1820 (2017)

    Google Scholar 

  55. S.I. Vdovenko, I.I. Gerus, V.P. Kukhar, J. Phys. Org. Chem. 20, 190 (2010)

    Google Scholar 

  56. A.D. Vylder, J. Lauwaert, M.K. Sabbe, M. Reyniers, J.D. Clercq, P.V.D. Voort, J.W. Thybaut, Catal. Today. 334, 96 (2019)

    Google Scholar 

  57. M. Kitamura, Y. Kitaoka, H. Fujita, M. Kunishima, Tetrahedron Lett. 93, 153692 (2022)

    CAS  Google Scholar 

  58. E. Walter, P. Schmid, H. Zollinger, Helv. Chim. Acta. 58, 257 (1975)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202201348, KJQN201901307), Major Cultivation Project of Natural Science Foundation of Chongqing University of Arts and Sciences (P2022HH04), the High-level Talents Foundation of Chongqing University of Art and Sciences (R2021SHH03, 2017RCH04), Natural Science Foundation of Chongqing (cstc2019jcyj-msxmX0751), Natural Science Foundation of Chongqing Yongchuan District (2022yc-jckx20008).

Author information

Authors and Affiliations

Authors

Contributions

ZW and RZ made with main contribution to all the experiment work; DJ guided the work of the entire experiment and made main contribution to a complication of this paper; DL, TY, PN and LR assisted to accomplish a part of experiment work; KH, QC and LX participated in the guideless of a part of the work.

Corresponding authors

Correspondence to Dabo Jiang or Longjun Xu.

Ethics declarations

Conflict of interest

All authors are aware of the submission and agree to its publication, and have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2593 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhang, R., Liu, D. et al. Sulfamic acid functionalized PVC: a remarkably efficient heterogeneous reusable catalyst for the acid-catalyzed reactions. Res Chem Intermed 49, 5407–5429 (2023). https://doi.org/10.1007/s11164-023-05121-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05121-4

Keywords

Navigation