Skip to main content
Log in

Triphosgene: an efficient chlorination reagent for synthesis of 5-chloro-2-pentanone from 3-acetyl-1-propanol

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

5-Chloro-2-pentanone (5C2P) and its derivatives are widely utilized in the pharmaceutical and agrochemical industry. A new catalytic approach was proposed to convert 3-acetyl-1-propanol to 5C2P using bis(trichloromethyl)carbonate (triphosgene, BTC) as the efficient chlorine source. Various qualitative and quantitative nuclear magnetic resonance techniques (1H, 13C NMR), especially 1D selective gradient total correlation spectroscopy (Sel-TOCSY) and 2D heteronuclear single quantum correlation (1H-13C HSQC) were used in the process. The reaction conditions, such as temperature, time, mole ratio, solvent as well as initiator were optimized. Experiment results showed that the yield of 5C2P reached a maximum of 97.93% in 1,2-dichloroethane at 80 °C after 2 h under the initiation of N,N-dimethylacetamide, and the optimal molar ratio of 3-acetyl-1-propanol to BTC was 1:0.4. The reaction mechanism was proposed and confirmed accordingly. Interestingly, an intermediate product of 1-(dimethylamino)ethyl carbonochloridate was observed, and its chemical structure was characterized by both Sel-TOCSY and 1H-13C HSQC. This study enriched the catalytic reaction ways for the preparation of 5C2P.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials. The datasets used and analyzed in the current study are available from the corresponding authors on reasonable request.

References

  1. Y. Ding, T. Guo, Z. Li, B. Zhang, F.E. Kuhn, C. Liu, J. Zhang, D. Xu, M. Lei, T. Zhang, C. Li, Angew. Chem. Int. Ed. Engl. 61, 134 (2022)

    Google Scholar 

  2. S. Narwal, S. Kumar, P.K. Verm, Res. Chem. Intermed. 43, 2765 (2017)

    Article  CAS  Google Scholar 

  3. D. Corradini, A. Di Matteo, P. Emery, K. Mankia, Semin Arthritis Rheum. 51, 266 (2021)

    Article  CAS  Google Scholar 

  4. Y. Huang, W. Pan, M. Guo, S. Yao, J. Chromatogr A. 1154, 373 (2007)

    Article  CAS  Google Scholar 

  5. Y. Ni, J. Liao, Z. Qian, C. Wu, X. Zhang, J. Zhang, Y. Xie, S. Jiang, Bioorg. Med. Chem. 53, 116523 (2022)

    Article  CAS  Google Scholar 

  6. T. Dongala, N.K. Katari, S.K. Ettaboina, A. Krishnan, M.M. Tambuwala, K. Dua, Front Mol. Biosci 7, 613393 (2020)

    Article  CAS  Google Scholar 

  7. M. Huang, M. Li, F. Xiao, P. Pang, J. Liang, T. Tang, S. Liu, B. Chen, J. Shu, Y. You, Y. Li, M. Tang, J. Zhou, G. Jiang, J. Xiang, W. Hong, S. He, Z. Wang, J. Feng, C. Lin, Y. Ye, Z. Wu, Y. Li, B. Zhong, R. Sun, Z. Hong, J. Liu, H. Chen, X. Wang, Z. Li, D. Pei, L. Tian, J. Xia, S. Jiang, N. Zhong, H. Shan, Natl. Sci. Rev. 7, 1428 (2020)

    Article  CAS  Google Scholar 

  8. N.T. Zelai, J. Adv. Pharm. Technol. Res. 12, 57 (2021)

    Article  CAS  Google Scholar 

  9. K. Tominaga, K. Higuchi, N. Hamasaki, M. Hamaguchi, T. Takashima, T. Tanigawa, T. Watanabe, Y. Fujiwara, Y. Tezuka, T. Nagaoka, S. Kadota, E. Ishii, K. Kobayashi, T. Arakawa, J. Antimicrob. Chemother. 50, 547 (2002)

    Article  CAS  Google Scholar 

  10. R. Lopez-Ruiz, R. Romero-Gonzalez, J.L. Martinez Vidal, M. Fernandez-Perez, A. Garrido Frenich, Sci. Total. Environ. 607–608, 204 (2017)

    Article  Google Scholar 

  11. Metabolic pathways of agrochemicals. (1998)

  12. M. Teodorescu, Z. Wagner, I. Wichterle, Chem. Eng. Technol. 23, 367 (2000)

    Article  CAS  Google Scholar 

  13. Y.N. Polivin, R.A. Karakhanov, T.S. Sheveleva, B.I. Ugrak, V.I. Kelarev, Bull. Rus. Acad. Sci-Division. Chem. Sci. 46, 1716 (1992)

    Article  Google Scholar 

  14. J.A. Murphy, A.G.J. Commeureuc, T.N. Snaddon, T.M. McMguire, T.A. Khan, K. Hisler, M.L. Dewis, R. Carling, Org. Lett. 7, 1427 (2005)

    Article  CAS  Google Scholar 

  15. M. Tokunaga, Y. Wakatsuki, Angew. Chem. Int. Ed. Engl. 37, 2867 (1998)

    Article  CAS  Google Scholar 

  16. J.-Q. Liu, F. Dong, W.-T. Zhang, X.-S. Wang, Res. Chem. Intermed. 43, 6787 (2017)

    Article  CAS  Google Scholar 

  17. C.E. Ayala, A. Villalpando, A.L. Nguyen, G.T. McCandless, R. Kartika, Org. Lett. 14, 3676 (2012)

    Article  CAS  Google Scholar 

  18. M.A. Saputra, L. Ngo, R. Kartika, J. Org. Chem. 80, 8815 (2015)

    Article  CAS  Google Scholar 

  19. P. Narendar, B. Gangadasu, C. Ramesh, B.C. Raju, V.J. Rao, Synthetic. Commun. 34, 1097–1103 (2004)

    Article  CAS  Google Scholar 

  20. A.H. Cleveland, F.R. Fronczek, R. Kartika, J. Org. Chem. 83, 3367 (2018)

    Article  CAS  Google Scholar 

  21. M.O. Ganiu, A.H. Cleveland, J.L. Paul, R. Kartika, Org. Lett. 21, 5611 (2019)

    Article  CAS  Google Scholar 

  22. G. Rotas, G. Varvounis, Tetrahedron 76, 131527 (2020)

    Article  CAS  Google Scholar 

  23. M.O. Ganiu, B. Nepal, J.P. Van Houten, R. Kartika, Tetrahedron 76, 131533 (2020)

    Article  Google Scholar 

  24. A. Ghorbani-Choghamarani, G. Azadi, Curr. Org. Chem. 20, 2881 (2016)

    Article  CAS  Google Scholar 

  25. A. Villalpando, C.E. Ayala, C.B. Watson, R. Kartika, J. Org. Chem. 78, 3989 (2013)

    Article  CAS  Google Scholar 

  26. M. Xu, L. Hao, Y. Liu, W. Li, L. Xing, B. Li, J. Phys. Chem. C. 115, 6085 (2011)

    Article  CAS  Google Scholar 

  27. Y. Wang, A.P. Singh, W.J. Hurst, J.A. Glinski, H. Koo, N. Vorsa, J. Agric. Food Chem. 64, 2190 (2016)

    Article  CAS  Google Scholar 

  28. A. D. Thomas, Josemin, C.V. Asokan, (2004) Tetrahedron. 60, 5069

  29. P. Liu, C.M. Pedersen, J. Zhang, R. Liu, Z. Zhang, X. Hou, Y. Wang, Green Energy Environ. 6, 261 (2021)

    Article  Google Scholar 

  30. H. Ma, C.M. Pedersen, Q. Zhao, S. Jia, B. Yuan, X. Hou, Y. Wang, Magn. Reson. Lett. 2, 69 (2022)

    Article  CAS  Google Scholar 

  31. S. Gil, J.F. Espinosa, T. Parella, Magn. Reson. Chem. 49, 301 (2011).

    Article  CAS  Google Scholar 

  32. K. Shi, C.M. Pedersen, H. Chang, J. Shi, Y. Wang, Y. Qiao, Magn. Reson. Lett. 1, 81 (2021).

    Article  CAS  Google Scholar 

  33. Q. Zhao, H. Ma, C.M. Pedersen, M. Dou, Y. Qiao, X. Hou, Y. Qi, Y. Wang, ACS Sustainable Chem. Eng. 9, 2456 (2021).

    Article  CAS  Google Scholar 

  34. Q. Zhao, C.M. Pedersen, J. Wang, R. Liu, Y. Zhang, X. Yan, Z. Zhang, X. Hou, Y. Wang, Green Energy Environ. 9, 2456 (2022)

    Google Scholar 

Download references

Acknowledgements

The authors thank for National Natural Science Foundation of China (22075308) and Natural Science Foundation of Shanxi Province (202103021224439) for financial support.

Funding

This work was supported by National Natural Science Foundation of China (22075308) and Natural Science Foundation of Shanxi Province (202103021224439).

Author information

Authors and Affiliations

Authors

Contributions

QX was in charge of experiments, data analysis and wrote the main manuscript text. JZ was in charge of the experimental design. YZ and XH were in charge of critical review and revision. YW received funding support for this project and had oversight and leadership responsibility for the planning and execution of research activities. All authors who contributed to this article are listed. All authors reviewed the manuscript and agreed to submit this manuscript to “Research on Chemical Intermediates.”

Corresponding author

Correspondence to Yingxiong Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Ethical approval

The authors declare that the research process did not involve any human or animal experiments. This article was published with written informed consent from all the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 310 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Q., Zhao, J., Zhu, Y. et al. Triphosgene: an efficient chlorination reagent for synthesis of 5-chloro-2-pentanone from 3-acetyl-1-propanol. Res Chem Intermed 49, 241–252 (2023). https://doi.org/10.1007/s11164-022-04886-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-022-04886-4

Keywords

Navigation