Skip to main content
Log in

Oxidation of vanillyl alcohol to vanillin over nanostructured cerium–iron mixed oxide catalyst with molecular oxygen

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A series of cerium–iron mixed oxides (Ce0.9Fe0.1O2, Ce0.8Fe0.2O2, and Ce0.7Fe0.3O2), pure CeO2, and Fe2O3 catalysts were prepared by a facile coprecipitation method. Synthesized catalysts were characterized by various physicochemical techniques and evaluated for oxidation of vanillyl alcohol to vanillin with molecular oxygen as the oxidant. XRD results suggested the formation of solid solutions in Fe-doped ceria mixed oxides. BET analysis revealed an increase in the surface area and Raman results showed a highest amount of oxygen vacancies in the Fe2O3-doped ceria samples. TEM and XRD results confirmed the average particle size of ceria–iron mixed oxides is in the order of 5–7 nm. XPS analysis revealed the existence of Ce in +3, +4 and Fe in +2, +3 oxidation states on the surface of the mixed oxides. H2-TPR studies confirmed a decrease in the reduction temperature of ceria after incorporation of Fe2O3. Among all the catalysts investigated, the Ce0.8Fe0.2O2 showed better activity for vanillyl alcohol oxidation with 91% conversion and 99% selectivity to vanillin. It may be due to strong interaction between CeO2 and Fe2O3 in the mixed oxides which leads to an increased BET surface area and oxygen vacancies and a decrease in the reduction temperature. The reaction parameters such as temperature, time, oxygen pressure, and the amount of catalyst were also optimized. With the optimized best reaction conditions, a complete conversion of vanillyl alcohol with 98% selectivity to vanillin is also achieved. Nature of solvent showed a remarkable effect on the vanillyl alcohol conversion without affecting the selectivity to vanillin.

Graphical abstract

Among cerium- and iron-based mixed oxides, the Ce0.8Fe0.2O2 combination catalyst exhibited better activity for vanillyl alcohol oxidation with complete conversion and 98% selectivity to vanillin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S.R. Rao, G.A. Ravishankar, J. Sci. Food Agric. 80, 289 (2000)

    Article  CAS  Google Scholar 

  2. A.K. Sinha, U.K. Sharma, N. Sharma, Int. J. Food Sci. Nutr. 59, 299 (2008)

    Article  PubMed  CAS  Google Scholar 

  3. J. Hu, Y. Hu, J. Mao, J. Yao, Z. Chen, H. Li, Green Chem. 14, 2894 (2012)

    Article  CAS  Google Scholar 

  4. W. Deng, H. Zhang, X. Wu, R. Li, Q. Zhang, Y. Wang, Green Chem. 17, 5009 (2015)

    Article  CAS  Google Scholar 

  5. J.H. Lora, W.G. Glasser, J. Polym. Environ. 10, 39 (2002)

    Article  CAS  Google Scholar 

  6. B. Hans-René, M. Francesco, Org. Proc. Res. Dev. 3, 330 (1999)

    Article  Google Scholar 

  7. R. Behling, S. Valange, G. Chatel, Green Chem. 18, 1839 (2016)

    Article  CAS  Google Scholar 

  8. R.A. Sheldon, J.K. Kochi, Adv. Catal. 25, 272 (1976)

    CAS  Google Scholar 

  9. S. Saha, S.B.A. Hamid, T.H. Ali, Appl. Surf. Sci. 394, 205 (2017)

    Article  CAS  Google Scholar 

  10. J.J. Bozell, B.R. Hames, J. Org. Chem. 60, 2398 (1995)

    Article  CAS  Google Scholar 

  11. N.C. Jana, S. Sethi, R. Saha, B. Bagh, Green Chem. 24, 2542 (2022)

    Article  CAS  Google Scholar 

  12. A.L. Tarasov, L.M. Kustov, V.I. Isaeva, A.N. Kalenchuk, I.V. Mishin, G.I. Kapustin, V.I. Bogdan, Kinet. Catal. 52, 273 (2011)

    Article  CAS  Google Scholar 

  13. A.L. Tarasov, L.M. Kustov, A.A. Bogolyubov, A.S. Kiselyov, V.V. Semeno, Appl. Catal. A. General 366, 227 (2009)

    Article  CAS  Google Scholar 

  14. A.C. Garade, N.S. Biradar, S.M. Joshi, V.S. Kshirsagar, R.K. Jha, C.V. Rode, Appl. Clay Sci. 53, 157 (2011)

    Article  CAS  Google Scholar 

  15. A. Jha, C.V. Rode, New J. Chem. 37, 2669 (2013)

    Article  CAS  Google Scholar 

  16. A. Jha, K.R. Patil, C.V. Rode, ChemPlusChem 78, 1384 (2013)

    Article  PubMed  CAS  Google Scholar 

  17. Z. Yuan, S. Chen, B. Liu, J. Mater. Sci. 52, 164 (2017)

    Article  CAS  Google Scholar 

  18. S. Saha, S.B.A. Hamid, RSC Adv. 6, 96314 (2016)

    Article  CAS  Google Scholar 

  19. S. Saha, S.B.A. Hamid, RSC Adv. 7, 9914 (2017)

    Article  CAS  Google Scholar 

  20. S. Ramana, B.G. Rao, P. Venkataswamy, A. Rangaswamy, B.M. Reddy, J. Mol. Catal. A 415, 113 (2016)

    Article  CAS  Google Scholar 

  21. P.R.G. Nallappa Reddy, B.G. Rao, T.V. Rao, B.M. Reddy, Catal. Lett. 149, 533 (2019)

    Article  Google Scholar 

  22. B.M. Reddy, L. Katta, G. Thrimurthulu, Chem. Mater. 22, 467 (2010)

    Article  CAS  Google Scholar 

  23. S.K. Megarajana, S. Rayalu, Y. Teraoka, N. Labhsetwar, J. Mol. Catal. A 385, 112 (2014)

    Article  Google Scholar 

  24. J. Luo, M. Meng, J. Yao, X. Li, Y. Zha, X. Wang, T. Zhang, Appl. Catal. B. Environment 87, 92 (2009)

    Article  CAS  Google Scholar 

  25. L. Katta, P. Sudarsanam, G. Thrimurthulu, B.M. Reddy, Appl. Catal. B. Environment 101, 101 (2010)

    Article  CAS  Google Scholar 

  26. P.R.G.N. Reddy, B.G. Rao, T.V. Rao, B.M. Reddy, Appl. Petrochem. Res. 10, 67 (2020)

    Article  CAS  Google Scholar 

  27. B.G. Rao, P. Sudarsanam, A. Rangaswamy, B.M. Reddy, Catal. Lett. 145, 1436 (2015)

    Article  Google Scholar 

  28. S. Mandala, C. Santra, K.K. Bando, O.O. James, S. Maityc, D. Mehtad, B. Chowdhury, J. Mol. Catal. A 378, 47 (2013)

    Article  Google Scholar 

  29. P. Venkataswamy, K.N. Rao, D. Jampaiah, B.M. Reddy, Appl. Catal. B. Environment 162, 122 (2015)

    Article  CAS  Google Scholar 

  30. S. Palli, Y. Kamma, N. Silligandla, B.M. Reddy, V.R. Tumula, Res. Chem. Intermed. 48, 471 (2022)

    Article  CAS  Google Scholar 

  31. T. Liangguang, Y. Doki, B. Nick, T. David, C. Ken, Catal. Commun. 11, 1215 (2010)

    Article  Google Scholar 

  32. P. Venkataswamy, D. Jampaiah, K.N. Rao, B.M. Reddy, Appl. Catal. A. General 488, 1 (2014)

    Article  CAS  Google Scholar 

  33. P. Sudarsanam, B. Mallesham, D.N. Durgasri, B.M. Reddy, RSC Adv. 4, 11322 (2014)

    Article  CAS  Google Scholar 

  34. N. Zhang, J. Chen, Z. Fang, E.P. Tsang, Chem. Eng. J. 369, 588 (2019)

    Article  CAS  Google Scholar 

  35. W.Y. Hernández, O.H. Laguna, M.A. Centeno, J.A. Odriozola, J. Solid State Chem. 184, 3014 (2011)

    Article  Google Scholar 

  36. G. Zhou, P.R. Shah, R.J. Gorte, Catal. Lett. 120, 191 (2008)

    Article  CAS  Google Scholar 

  37. B.G. Rao, P. Sudarsanam, P.R.G. Nallappareddy, M.Y. Reddy, T.V. Rao, B.M. Reddy, Res. Chem. Intermed. 44, 6151 (2018)

    Article  CAS  Google Scholar 

  38. O.H. Laguna, F.R. Sarria, M.A. Centeno, J.A. Odriozola, J. Catal. 276, 360 (2010)

    Article  CAS  Google Scholar 

  39. S. Mahmoodi, M.R. Ehsani, S.M. Ghoreishi, J. Ind. Eng. Chem. 16, 923 (2010)

    Article  CAS  Google Scholar 

  40. W.Y. Hernandez, M.A. Centeno, F.R. Sarria, J.A. Odriozola, J. Phys. Chem. C 113, 5629 (2009)

    Article  CAS  Google Scholar 

  41. P. Sudarsanam, B. Hillary, D.K. Deepa, M.H. Amin, B. Mallesham, B.M. Reddy, S.K. Bhargava, Catal. Sci. Technol. 5, 3496 (2015)

    CAS  Google Scholar 

  42. J.C. Fuggle, M. Campagna, Z. Zolnierek, R. Lasser, A. Platau, Phys. Rev. Lett. 45, 1597 (1980)

    Article  CAS  Google Scholar 

  43. C. Bozo, N. Guilhaume, J. Herrmann, J. Catal. 203, 393 (2001)

    Article  CAS  Google Scholar 

  44. J. Fan, X.D. Wu, X.D. Wu, Q. Liang, R. Ran, D. Weng, Appl. Catal. B. Environment 81, 38 (2008)

    Article  CAS  Google Scholar 

  45. C. Lee, Y. Jeon, S. Hata, J. Park, R. Akiyoshi, H. Saito, Y. Teraoka, Y.G. Shul, H. Einaga, Appl. Catal. B. Environment 191, 157 (2016)

    Article  CAS  Google Scholar 

  46. S. Damyanova, C.A. Perez, M. Schmal, J.M.C. Bueno, Appl. Catal. A. General 234, 271 (2002)

    Article  CAS  Google Scholar 

  47. Z. Zhang, D. Han, S. Wei, Y. Zhang, J. Catal. 276, 16 (2010)

    Article  CAS  Google Scholar 

  48. K. Li, H. Wang, Y. Wei, D. Yan, Chem. Eng. J. 156, 512 (2010)

    Article  CAS  Google Scholar 

  49. B. Murugan, A.V. Ramaswamy, D. Srinivas, C.S. Gopinath, V. Ramaswamy, Chem. Mater. 17, 3983 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors P.S and S.N thank University Grant Commission (UGC), New Delhi, and K.Y thanks Council of Scientific and Industrial Research (CSIR), New Delhi, for research fellowships. The authors thank Director, CSIR-IICT, for permission to communicate this work (IICT/Pubs./2022/074), and Dr. Venugopal for TPR and Dr. Manorama for XPS data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tumula Venkateshwar Rao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palli, S., Yogendra, K., Silligandla, N. et al. Oxidation of vanillyl alcohol to vanillin over nanostructured cerium–iron mixed oxide catalyst with molecular oxygen. Res Chem Intermed 48, 4579–4599 (2022). https://doi.org/10.1007/s11164-022-04827-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-022-04827-1

Keywords

Navigation