Skip to main content
Log in

Natural rubber composites filled with zinc ferrite nanoparticles: focus on structural, morphological, curing, thermal and mechanical properties

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Metal oxide nanofillers are a special type of additives in rubber composites that impart special qualities such as thermal resistance, tensile strength, electrical conductivity and heat capacity to rubbers. The heat conductivity of metal oxide through the rubber matrix reduces the vulcanization time of the rubber nanocomposites. Hence, the present work focused on the enhancement of these properties in natural rubber (NR) using zinc ferrite (ZnFe2O4) nanoparticles were prepared by a simple two-roll mill mixing technique. Structure, morphology, crystalline nature, cure characteristics, swelling, thermal and mechanical properties of the NR composites containing ZnFe2O4 were analysed in detail. FTIR and UV analysis proved the interaction of zinc ferrite with the macromolecular chain of NR. The XRD patterns of composite films revealed a decrease in amorphousness of NR with well-dispersed crystalline peaks of nanoparticles in the polymer. SEM images evidenced the morphological changes caused by dispersing zinc ferrite in the NR matrix. TEM analysis showed the uniform attachment of nanoparticles in the polymer. Glass transition temperature obtained from DSC was improved with the addition of zinc ferrite. The results from TGA showed that the presence of ZnFe2O4 in the polymer matrix greatly increases the thermal stability of NR. The metal oxide nanofiller significantly reduced the cure and scorch time of the NR composites. The mechanical properties of rubber nanocomposites showed that the addition of ZnFe2O4 improved their modulus, tensile strength, hardness, abrasion resistance and heat build-up, whereas the elongation at break and resilience decreases. The permeation and diffusion of nanocomposites were observed to be diminished with the size of penetrating solvents and also with the loading of filler. Overall, zinc ferrite nanoparticles could be used as a potential filler for improving the processability, mechanical strength, thermal stability and solvent resistance of natural rubber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F.H.J. Al-Shemmari, A.A. Rabah, E.A.J. Al-Mulla, N.O.M.A. Alrahman, Res. Chem. Intermed. 39, 4293 (2013)

    Article  CAS  Google Scholar 

  2. F. Ghaemi, G. Rajabzadeh, Res. Chem. Intermed 44, 1905 (2018)

    Article  CAS  Google Scholar 

  3. D.E. Kherroub, M. Belbachir, S. Lamouri, Res. Chem. Intermed 41, 5217 (2015)

    Article  CAS  Google Scholar 

  4. A. Nihmath, M.T. Ramesan, Res. Chem. Intermed 46, 5049 (2020)

    Article  CAS  Google Scholar 

  5. X. Liu, L. Dang, X. Nai, Y. Dong, W. Li, Res. Chem. Intermed 44, 5697 (2018)

    Article  CAS  Google Scholar 

  6. D.E. Kherroub, T. Boulaouche, Res. Chem. Intermed 46, 5199 (2020)

    Article  CAS  Google Scholar 

  7. H. Ismail, S.Z. Salleh, Z. Ahmad, J. Appl. Polym. Sci. 127, 3047 (2013)

    Article  CAS  Google Scholar 

  8. V.C. Jasna, K. Priyanka, G. Mathew, M.T. Ramesan, Polym. Compos. 39, 1880 (2018)

    Article  Google Scholar 

  9. H. Ismail, S. Suryadiansyah, J. Reinf. Plast. Compos. 23, 639 (2004)

    Article  CAS  Google Scholar 

  10. P. Berki, K. László, N.T. Tung, J.K. Kocsis, J. Reinf. Plast. Compos. 36, 808 (2017)

    Article  CAS  Google Scholar 

  11. M.A. Tarawneh, S.H. Ahmad, R. Rasid, S.Y. Yahya, K.T. Lau, I. Kong, S.Y. Noum, J. Reinf. Plast. Compos. 30, 216 (2011)

    Article  CAS  Google Scholar 

  12. A. Nihamth, M.T. Ramesan, Polym. Compos. 39, 2093 (2018)

    Article  Google Scholar 

  13. Q. Liu, Y. Zhang, H. Xu, Appl. Clay. Sci. 42, 232 (2008)

    Article  CAS  Google Scholar 

  14. V.C. Jasna, T. Anilkumar, M.T. Ramesan, J. Appl. Polym. Sci. 135, 46538 (2018)

    Article  Google Scholar 

  15. H.N. Pazhooh, R. Bagheri, A. Adloo, Polymer 108, 135 (2017)

    Article  CAS  Google Scholar 

  16. S. Ghorai, D. Mondal, S. Dhanania, S. Chattopadhyay, M. Roy, D. De, J. Elastom. Plast. 51, 193 (2019)

    Article  CAS  Google Scholar 

  17. P. Sarkar, A.K. Bhowmick, J. Appl. Polym. Sci. 135, 45701 (2018)

    Article  Google Scholar 

  18. S. Moolsin, N. Saksayamkul, A. Na Wichien, J. Elastom. Plast. 49, 422 (2017)

    Article  CAS  Google Scholar 

  19. Z. Peng, L.X. Kong, S.D. Li, Y. Chen, M.F. Huang, Compos. Sci. Technol. 67, 15 (2007)

    Google Scholar 

  20. N. Bitinis, E. Fortunati, R. Verdejo, I. Armentano, L. Torre, J.M. Kenny, M.A. Lopez-Manchado, Appl. Clay. Sci. 93, 78 (2014)

    Article  Google Scholar 

  21. V.S. Abhisha, A. Augustine, J. Joseph, S.P. Thomas, R. Stephan, J. Elastom. Plast. 52, 432 (2020)

    Article  CAS  Google Scholar 

  22. M.T. Ramesan, T. Anjitha, K. Parvathi, T. Anilkumar, G. Mathew, Adv. Polym. Technol. 37, 3639 (2018)

    Article  CAS  Google Scholar 

  23. M.M. Rahman, S.B. Khan, M. Faisal, A.M. Asiri, K.A. Alamry, Sens. Actuat. B Chem. 171, 932 (2012)

    Article  Google Scholar 

  24. T. Anjitha, T. Anilkumar, G. Mathew, M.T. Ramesan, Polym. Compos 40, 2802 (2019)

    Article  CAS  Google Scholar 

  25. N. Tangboriboon, S. Chaisakrenon, A. Banchong, R. Kunanuruksapong, A. Sirivat, J. Elastom. Plast. 44, 21 (2012)

    Article  CAS  Google Scholar 

  26. P.P. Swamy, S. Basavaraja, A. Lagashetty, N.S. Rao, R. Nijagunappa, A. Venkataraman, Bull. Mater. Sci 34, 1325 (2011)

    Article  Google Scholar 

  27. A. Aytimur, S. Koçyiğit, I. Uslu, S. Durmuşoğlu, A. Akdemir, J. Compos. Mater. 48, 2317 (2014)

    Article  CAS  Google Scholar 

  28. F. Cataldo, Prog. Rubber. Plast. Recycl. Technol. 22, 147 (2006)

    Article  CAS  Google Scholar 

  29. K. Suhailath, M.T. Ramesan, Polym. Compos 41, 2344 (2020)

    Article  CAS  Google Scholar 

  30. M.T. Ramesan, V.C. Jasna, J. Francis, A.V.P. Raheem, M. Subburaj, Chemist 88, 1 (2015)

    Google Scholar 

  31. A. Nihmath, M.T. Ramesan, Polym. Test. 91, 106837 (2020)

    Article  CAS  Google Scholar 

  32. A. Nihmath, M.T. Ramesan, J. Appl. Polym. Sci. 138, 50189 (2021)

    Article  CAS  Google Scholar 

  33. Y.R. Uhm, J. Kim, K.J. Son, C.S. Kim, Res. Chem. Intermed. 40, 2145 (2014)

    Article  CAS  Google Scholar 

  34. A. Nihmath, M.T. Ramesan, Polym. Test. 89, 106728 (2020)

    Article  CAS  Google Scholar 

  35. A. Nihmath, M.T. Ramesan, Prog. Rubber Plast. Recycl. Technol. 37, 131 (2021)

    Article  Google Scholar 

Download references

Funding

The authors greatly acknowledge the financial assistance from KSCSTE, Government of Kerala, India (Order No.566/2017/KSCSTE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Ramesan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parvathi, K., Ramesan, M.T. Natural rubber composites filled with zinc ferrite nanoparticles: focus on structural, morphological, curing, thermal and mechanical properties. Res Chem Intermed 48, 129–144 (2022). https://doi.org/10.1007/s11164-021-04586-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-021-04586-5

Keywords

Navigation