Skip to main content
Log in

Controlling the up-conversion photoluminescence property of carbon quantum dots (CQDs) by modifying its surface functional groups for enhanced photocatalytic performance of CQDs/BiVO4 under a broad-spectrum irradiation

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The different surface functional groups of carbon quantum dots (CQDs) affect their optical property, especially the up-conversion photoluminescence (UCPL) property. In this study, the CQDs/BiVO4 composite photocatalyst was synthesized by a simple hydrothermal process. The prepared photocatalysts were comprehensively characterized. The photocatalytic activity of CQDs/BiVO4 was tested by degrading rhodamine B (RhB). The photocatalytic removal rate of RhB with BiVO4 was largely enhanced by incorporation of CQDs. The enhanced photocatalytic performance was mainly attributed to the broadened response spectra generated by the UCPL of CQDs. Furthermore, loading CQDs had improved the separation efficiency of photogenerated carriers, resulting in the photocatalytic performance increasement of CQDs/BiVO4. The content of surface graphitic nitrogen and oxygen-containing groups on CQDs could adjust its UCPL wavelength and intensity, and ultimately adjust photocatalytic ability of composite photocatalysts. More surface graphitic nitrogen and oxygen-containing groups on CQDs could benefit the photocatalytic ability of CQDs/BiVO4. Free radical scavenging experiments determined that the holes (h+) and hydroxyl radicals (·OH) played a crucial role in the photodegradation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Z.B. Wu, X.Z. Yuan, J. Zhang, H. Wang, Chem. Cat. Chem. 9, 41 (2016)

    Google Scholar 

  2. A. Anise, B. Alireza, M.Z. Ghodsi, H.Y. Aziz, J.M.B. Mario, L. Rafael, Mol Catal. 488, 110902 (2020)

    Article  Google Scholar 

  3. S.G. Maryam, H.Y. Aziz, A. Masoud, R. Afsar, Crit. Rev. Environ. Sci. Technol. 48, 806 (2018)

    Article  Google Scholar 

  4. H. Wang, Y.G. Liang, L. Liu, J.S. Hu, J. Hazard. Mater. 344, 369 (2017)

    Article  Google Scholar 

  5. J.R. Ran, T.Y. Ma, G.P. Gao, X.W. Du, S.Z. Qiao, Energy Environ. Sci. 8, 3708 (2015)

    Article  CAS  Google Scholar 

  6. H.Y. Aziz, A.K. Soheila, F. Solmaz, R. Afsar, J. Colloid Interf. Sci. 580, 503 (2020)

    Article  Google Scholar 

  7. A. Anise, H.Y. Aziz, A. Masoud, R.P. Shima, Catal. Rev. 61, 598 (2019)

    Google Scholar 

  8. H.X. Zhang, G.G. Wang, G.L. Dai, X.W. Xu, Res. Chem. Intermed. 45, 2369 (2019)

    Article  CAS  Google Scholar 

  9. A.K. Soheila, H.Y. Aziz, J. Clean. Prod. 276, 124319 (2020)

    Article  Google Scholar 

  10. M.R. Eskandarian, H. Choi, M. Fazli, M.H. Rasoulifard, Chem. Eng. J. 300, 414 (2016)

    Article  CAS  Google Scholar 

  11. E.S. Elmolla, M. Chaudhuri, Desalination 252, 46 (2010)

    Article  CAS  Google Scholar 

  12. S. Eda, M. Fujishima, H. Tada, Appl. Catal. B. 125, 288 (2012)

    Article  CAS  Google Scholar 

  13. F. Osmando, K.G. Lopes, A.E. Carvalho, W.A.J. Nogueira, R. Caue, Appl. Catal. B. 188, 87 (2016)

    Article  Google Scholar 

  14. P. Mahsa, H.Y. Aziz, R.P. Shima, J Ind Eng Chem. 62, 18 (2018)

    Google Scholar 

  15. T.Y. Liu, X.Q. Zhang, F. Zhao, Y.H. Wang, Appl. Catal. B. 251, 220 (2019)

    Article  CAS  Google Scholar 

  16. H. Guo, C.G. Niu, D.W. Huang, N. Tang, C. Liang, L. Zhang, X.J. Wen, Y. Yang, W.J. Wang, G.M. Zeng, Chem. Eng. J. 360, 349 (2019)

    Article  CAS  Google Scholar 

  17. H. Wang, X. Z. Yuan, H. Wang, X. H. Chen, Z. B. Wu, L. B. Jiang, W. P. Xiong, G. M. Zeng, Appl. Catal., B. 193, 36 (2016)

  18. M. Han, S. Zhu, Y. Song, T. Feng, S. Tao, J. Liu, B. Yang, Nano Today 19, 201 (2018)

    Article  CAS  Google Scholar 

  19. H. Ding, J.S. Wei, Z.Y. Zhou, Q.Y. Gao, H.M. Xiong, Small 14, 1800612 (2018)

    Article  Google Scholar 

  20. H. Ding, J.S. Wei, Z.Y. Zhou, Q.Y. Gao, H.M. Xiong, Langmuir 33, 12635 (2017)

    Article  CAS  Google Scholar 

  21. K. Holá, M. Sudolská, S. Kalytchuk, D. Nachtigallová, A.L. Rogach, M. Otyepka, R. Zboril, ACS Nano 11, 12402 (2017)

    Article  Google Scholar 

  22. T. Liu, G.Q. Tan, C.C. Zhao, C. Xu, Y.N. Su, Y. Wang, H.J. Ren, A. Xia, D. Shao, S.M. Yan, Appl. Catal. B 213, 87 (2017)

    Article  CAS  Google Scholar 

  23. H. Anwer, J.W. Park, Appl. Catal. B 243, 438 (2019)

    Article  CAS  Google Scholar 

  24. S.Q. Huang, Q. Zhang, P.Y. Liu, S.J. Ma, B. Xie, K. Yang, Y.P. Zhao, Appl. Catal. B 263, 118336 (2019)

    Article  Google Scholar 

  25. J. Ke, X.Y. Li, Q.D. Zhao, B.J. Liu, S.M. Liu, S.B. Wang, J Colloid InterfSci. 496, 425 (2017)

    Article  CAS  Google Scholar 

  26. F.F. Duo, Y.W. Wang, C.M. Fan, X.C. Zhang, Y.F. Wang, J. Alloys Comps. 685, 34 (2016)

    Article  CAS  Google Scholar 

  27. S.J. Zhu, Q.N. Meng, L. Wang, J.H. Zhang, Y.B. Song, H. Jin, K. Zhang, H.C. Sun, H.Y. Wang, B. Yang, Angew. Chem. 125, 4045 (2013)

    Article  Google Scholar 

  28. J.L. Zhang, Y. Lu, L. Ge, C.C. Han, Y.J. Li, Y.Q. Gao, S.S. Li, H. Xu, Appl. Catal. B 204, 385 (2017)

    Article  CAS  Google Scholar 

  29. Y.F. Huang, X. Zhou, R. Zhou, H. Zhang, K.B. Kang, M. Zhao, Y. Peng, Q. Wang, H.L. Zhang, W.Y. Qiu, Chem. Eur. J. 20, 1 (2014)

    Article  Google Scholar 

  30. S.J. Zhuo, M.W. Shao, S.T. Lee, ACS Nano 6, 1059 (2012)

    Article  CAS  Google Scholar 

  31. H. Ding, S.B. Yu, J.S. Wei, H.M. Xiong, ACS Nano 10, 484 (2016)

    Article  CAS  Google Scholar 

  32. Z.R. Tang, Q.Q. Yu, Y.J. Xu, RSC Adv. 4, 58448 (2014)

    Article  CAS  Google Scholar 

  33. Z.H. Sheng, L. Shao, J.J. Chen, W.J. Bao, F.B. Wang, X.H. Xia, ACS Nano 5, 4350 (2011)

    Article  CAS  Google Scholar 

  34. X.Q. Wu, J. Zhao, S.J. Guo, L.P. Wang, W.L. Shi, H. Huang, Y. Liu, Z.H. Kang, J. Name 00, 1 (2013)

    Google Scholar 

  35. G.J. Liu, J.Y. Shi, F.X. Zhang, Z. Chen, J.F. Han, C.M. Ding, S.S. Chen, Z.L. Wang, H.X. Han, C. Li, Angew. Chem. Int. Ed. 53, 1 (2014)

    Article  CAS  Google Scholar 

  36. J.L. Song, X. Wang, C.C. Wong, Electrochim. Acta 173, 834 (2015)

    Article  CAS  Google Scholar 

  37. Y. Huang, Y.L. Liang, Y.F. Rao, D.D. Zhu, J.J. Cao, Z.X. Shen, W.K. Ho, S.C. Lee, Environ. Sci. Technol. 51, 2924 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21906013), Natural Science Foundation of Liaoning Province of China (2020-MZLH-38) and 2018 Innovative Talent Program of Universities in Liaoning Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guanlong Wang or Xiufang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Ma, C., Wang, G. et al. Controlling the up-conversion photoluminescence property of carbon quantum dots (CQDs) by modifying its surface functional groups for enhanced photocatalytic performance of CQDs/BiVO4 under a broad-spectrum irradiation. Res Chem Intermed 47, 3469–3485 (2021). https://doi.org/10.1007/s11164-021-04459-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-021-04459-x

Keywords

Navigation