Skip to main content
Log in

Dehydration of glycerol with silica–phosphate-supported copper catalyst

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Silica–phosphate-supported copper catalyst was prepared by neutralization of sodium silicate with orthophosphoric acid followed by the addition of copper nitrate. The precipitated catalyst was dried and calcined at 550 °C for 4 h. The calcined powder was activated in hydrogen atmosphere at 400 °C for 4 h based on temperature-programmed reduction result. XRD analysis of the calcined catalyst showed the presence of CuO nanoparticles along with new phases CuHPO4·H2O and P4O7. But after reduction, metallic copper nanoparticles along with Cu4O3, Cu2O and χ-P2O5 phases were formed. The higher loading of copper (40 wt%) showed more Lewis acid sites than BrØnsted acid sites determined by pyridine–FTIR analysis. The high Lewis acid sites increased the acetol selectivity for 100% glycerol conversion at 220 °C for 3 h of reaction in atmospheric pressure. The yield of maximum distilled product (80%) was achieved for the highest copper loading catalyst. The high yield of the liquid product was due to the low tendency of copper atom towards the breakage of the C–C bond during dehydration reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Scheme 2
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. I.S.A. Manaf, N.H. Embong, S.N.M. Khazaai, M.H.A. Rahim, M.M. Yusoff, K.T. Lee, G.P. Maniam, Energy Convers. Manag. 185, 508 (2019)

    CAS  Google Scholar 

  2. H.M. Mahmudul, F.Y. Hagos, R. Mamat, A.A. Adam, W.F.W. Ishak, R. Alenezi, Renew. Sustain. Energy Rev. 72, 497 (2017)

    CAS  Google Scholar 

  3. M.R. Avhad, J.M. Marchetti, Renew. Sustain. Energy Rev. 50, 696 (2015)

    CAS  Google Scholar 

  4. H. Mitta, N. Devunuri, J. Sunkari, S. Mutyala, P. Balla, V. Perupogu, Catal. Today (2020). https://doi.org/10.1016/j.cattod.2020.02.032

    Article  Google Scholar 

  5. S. Bagheri, N.M. Julkapli, W.A. Yehye, Renew. Sustain. Energy Rev. 41, 113 (2015)

    CAS  Google Scholar 

  6. É.V. de Oliveira, H. Brasil, G.P. Valença, E. Jordão, Catal. Commun. 136, 105925 (2020)

    Google Scholar 

  7. S. Magar, S. Kamble, G.T. Mohanraj, S.K. Jana, C. Rode, Energy Fuels 31, 12272 (2017)

    CAS  Google Scholar 

  8. M.H. Mohamad, R. Awang, W.M.Z.W. Yunus, Am. J. Appl. Sci. 8, 1135 (2011)

    CAS  Google Scholar 

  9. S. Sato, M. Akiyama, R. Takahashi, T. Hara, K. Inui et al., Appl. Catal. A Gen. 347, 186 (2008)

    CAS  Google Scholar 

  10. R.S. Disselkamp, B.D. Harris, T.R. Hart, Catal. Commun. 9, 2250 (2008)

    CAS  Google Scholar 

  11. Y.T. Kim, K.D. Jung, E.D. Park, Bull. Korean Chem. Soc. 31, 3283 (2010)

    CAS  Google Scholar 

  12. W. Suprun, M. Lutecki, R. Gläser, H. Papp, J. Mol. Catal. Chem. 91, 342 (2011)

    Google Scholar 

  13. P. Lauriol-Garbey, G. Postole, S. Loridant, A. Auroux, V. Belliere-Baca, P. Rey, J.M.M. Millet, Appl. Catal. B Environ. 106, 94 (2011)

    CAS  Google Scholar 

  14. C. García-Sancho, J.A. Cecilia, J.M. Mérida-Robles, J. Santamaría González, R. Moreno-Tost, A. Infantes-Molina, P. Maireles-Torres, Appl. Catal. B Environ. 221, 158 (2018)

    Google Scholar 

  15. A.K. Kinage, P.P. Upare, P. Kasinathan, Y.K. Hwang, J.-S. Chang, Catal. Commun. 11, 620 (2010)

    CAS  Google Scholar 

  16. K.N. Papageridis, G. Siakavelas, N.D. Charisiou, D.G. Avraam, L. Tzounis, K. Kousi, M.A. Goula, Fuel Process. Technol. 152, 156 (2016)

    CAS  Google Scholar 

  17. S. Basu, A.K. Sen, M. Mukherjee, J. Chem. Sci. 131, 82 (2019)

    Google Scholar 

  18. J.A. Cecilia, C. García-Sancho, J.M. Mérida-Robles, J. Santamaría-González, A. Infantes-Molina, R. Moreno-Tost, P. Maireles-Torres, J. Sol Gel Sci. Technol. 83, 342 (2017)

    CAS  Google Scholar 

  19. S. Sato, D. Sakai, F. Sato, Y. Yamada, Chem. Lett. 41, 965 (2012)

    CAS  Google Scholar 

  20. J. Shan, H. Liu, K. Lu, S. Zhu, J. Li, J. Wang, W. Fan, J. Catal. 383, 13 (2019)

    Google Scholar 

  21. Z. Yuan, J. Wang, L. Wang, W. Xie, P. Chen, Z. Hou, X. Zheng, Bioresour. Technol. 101, 7088 (2010)

    CAS  Google Scholar 

  22. V. Shree, A.K. Sen, J. Sol Gel Sci. Technol. 85, 269 (2018)

    CAS  Google Scholar 

  23. S.L. Hao, W.C. Peng, N. Zhao, F.K. Xiao, W. Wei, Y.-H. Sun, J. Chem. Technol. Biotechnol. 85, 1499 (2010)

    CAS  Google Scholar 

  24. K.T.V. Rao, S. Souzanchi, Z. Yuan, C.C. Xu, New J. Chem. 43, 12483 (2019)

    CAS  Google Scholar 

  25. M. Testa, V. La Parola, F. Mesrar, F. Ouanji, M. Kacimi, M. Ziyad, L. Liotta, Catalysts 9, 148 (2019)

    Google Scholar 

  26. C. Günther, H. Görls, D. Stachel, Acta Cryst. E 65, i85 (2009)

    Google Scholar 

  27. P. Khemthong, P. Daorattanachai, N. Laosiripojana, K. Faungnawakij, Catal. Commun. 29, 96 (2012)

    CAS  Google Scholar 

  28. H. Mitta, P.K. Seelam, S. Ojala, R.L. Keiski, P. Balla, Appl. Catal. Gen. 550, 308 (2018)

    CAS  Google Scholar 

  29. G. Fierro, M. Lo Jacono, M. Inversi, P. Porta, F. Cioci, R. Lavecchia, Appl. Catal. Gen. 137, 327 (1996)

    CAS  Google Scholar 

  30. J.A. Rodriguez, J. Hrbek, J. Vac. Sci. Technol. Vac. Surf. Films 12, 2140 (1994)

    CAS  Google Scholar 

  31. D.V. Ragone, Thermodynamics of Materials (Willey, New York, 1994)

    Google Scholar 

  32. D.H. Kim, J.E. Cha, Catal. Lett. 86, 1 (2003)

    Google Scholar 

  33. S. Fan, J. Xue, T. Yu, D. Fan, T. Hao, M. Shen, W. Li, Catal. Sci. Technol. 3, 2357 (2013)

    CAS  Google Scholar 

  34. F. Gao, E.D. Walter, N.M. Washton, J. Szanyi, C.H.F. Peden, Appl. Catal. B Environ. 162, 501 (2015)

    CAS  Google Scholar 

  35. T.P. Braga, N. Essayem, S. Prakash, A. Valentini, J. Braz. Chem. Soc. 12, 2361 (2016)

    Google Scholar 

  36. Z. Wu, R. Ran, Y. Ma, X. Wu, Z. Si, D. Weng, Res. Chem. Intermed. 45, 1309 (2019)

    CAS  Google Scholar 

  37. S. Feng, B. Zhao, Y. Liang, L. Liu, J. Dong, Ind. Eng. Chem. Res. 58, 2661 (2019)

    CAS  Google Scholar 

  38. A. Veses, B. Puértolas, M.S. Callén, T. García, Microporous Mesoporous Mater. 209, 189 (2015)

    CAS  Google Scholar 

  39. G.S. Foo, D. Wei, D.S. Sholl, C. Sievers, ACS Catal. 4, 3180 (2014)

    CAS  Google Scholar 

  40. V. Krishna, G. Naresh, V.V. Kumar, R. Sarkari, A.H. Padmasri, A. Venugopal, Appl. Catal. B Environ. 193, 58 (2016)

    CAS  Google Scholar 

  41. C. Chizallet, P. Raybaud, ChemPhysChem 11, 105 (2010)

    CAS  PubMed  Google Scholar 

  42. L. Zhou, Y. Xu, X. Yang, T. Lu, L. Han, Energy Convers. Manag. 196, 277 (2019)

    CAS  Google Scholar 

  43. J. Gong, H. Yue, Y. Zhao, S. Zhao, L. Zhao, J. Lv, S. Wang, X. Ma, J. Am. Chem. Soc. 134, 13922 (2012)

    CAS  PubMed  Google Scholar 

  44. D. Stošić, S. Bennici, S. Sirotin, P. Stelmachowski, J.L. Couturier, J.L. Dubois, A. Travert, A. Auroux, Catal. Today 226, 167 (2014)

    Google Scholar 

  45. R.B. Mane, C.V. Rode, Org. Process Res. Dev. 16, 1043 (2012)

    CAS  Google Scholar 

  46. T.P. Braga, N. Essayem, A. Valentini, Quím. Nova 6, 691 (2016)

    Google Scholar 

  47. M.A. Dasari, P.P. Kiatsimkul, W.R. Sutterlin, G.J. Suppes, Appl. Catal. Gen. 281, 225 (2005)

    CAS  Google Scholar 

  48. D. Sun, Y. Yamada, S. Sato, Appl. Catal. Gen. 475, 63 (2014)

    CAS  Google Scholar 

  49. I.C. Freitas, R.L. Manfro, M.M.V.M. Souza, Appl. Catal. B Environ. 220, 31 (2018)

    CAS  Google Scholar 

  50. B.C. Miranda, R.J. Chimentão, J. Szanyi, A.H. Braga, J.B.O. Santos, F. Gispert-Guirado, J. Llorca, F. Medina, Appl. Catal. B Environ. 166–167, 166 (2015)

    Google Scholar 

  51. D.C. Carvalho, L.G. Pinheiro, A. Campos, E.R.C. Millet, F.F. de Sousa, J.M. Filho, G.D. Saraiva, E.C.S. da Filho, M.G. Fonseca, A.C. Oliveira, Appl. Catal. Gen. 471, 39 (2014)

    CAS  Google Scholar 

  52. T. Jiang, D. Kong, K. Xu, F. Cao, Appl. Petrochem. Res. 5, 221 (2015)

    CAS  Google Scholar 

  53. T.M. Neves, J.O. Fernandes, L.M. Lião, E. Deise da Silva, C. Augusto da Rosa, V.B. Mortola, Microporous Mesoporous Mater. 275, 244 (2019)

    CAS  Google Scholar 

  54. C.J. Yue, M.M. Gan, L.P. Gu, Y.-F. Zhuang, J. Taiwan Inst. Chem. Eng. 45, 1443 (2014)

    CAS  Google Scholar 

  55. D.K. Pandey, P. Biswas, New J. Chem. 43, 10073 (2019)

    CAS  Google Scholar 

  56. L. Jiang, T. You, P. Yin, Y. Shang, D. Zhang, L. Guo, S. Yang, Nanoscale 5, 2784 (2013)

    CAS  PubMed  Google Scholar 

  57. Y. Li, C. Zhang, Y. Liu, S. Tang, G. Chen, R. Zhang, X. Tang, Fuel 189, 23 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the state of the art testing facility at Central Instrumentation Facility of Birla Institute of Technology Mesra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Sen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basu, S., Sen, A.K. Dehydration of glycerol with silica–phosphate-supported copper catalyst. Res Chem Intermed 46, 3545–3568 (2020). https://doi.org/10.1007/s11164-020-04161-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-020-04161-4

Keywords

Navigation