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Abstract The reductive release of iron from ferritin by UV light or ionizing

radiation has been investigated in separate experiments. When ferritin is exposed to

light, the mineral core is the main photoreceptor for the Fe(III) reduction. In

radiolytic studies, we determined that, in the absence of oxygen, the hydrated

electron (eaq
- ) is the reducing agent triggering redox reactions associated with iron

mobilization from ferritin. In an aerobic system, the superoxide radical anion (O2
•-)

is also involved in the iron release process. We found that, in photochemical and

radiolytical studies, Fe(II) mobilization from ferritin required an iron chelator.

Without a chelator, ferritin is an electron-storage molecule for a long period, on the

order of at least several hours. The reductant or chelator entry into the ferritin core is

not necessary for iron release. The ferrozine is a convenient chelating agent to

monitor Fe(II) mobilization, due to a high extinction coefficient of Fe ferrozineð Þ4�3
and a high rate constant of complexation process (2.65 9 104 dm3 mol-1 s-1).

Keywords Ferritin � Ferric mineral core � Laser flash photolysis �
Pulse radiolysis

Introduction

Ferritin, the iron-storage protein found in many living organisms, including bacteria,

insects, plants, invertebrates, and vertebrates, is unique in the sense that it performs
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the dual functions of (i) detoxifying iron, by oxidizing the Fe(II) ions in solution,

and (ii) concentrating iron, by storing the oxidized Fe(II) ions in its inner protein

cavity in the form of a ferrihydrite (Fe2O3�nH2O) phosphate mineral core [1, 2]. It is

the only known protein that can bind metal ions in solution and convert them into a

solid-phase mineral [3]. The ferritin molecule consists of two main components: the

protein shell and a mineral core of hydrated ferric oxide.

Iron-free ferritin molecules (apoferritin) are hollow spheres with an outer diameter

of 12 nm, an inner diameter of 8 nm, and a molecular weight of approximately half a

million. They are composed of 24 protein subunits. The apoferritin subunit consists

of a bundle of four long a-helices. The three-dimensional structure of the subunit is

well known [4, 5]. Within the subunit, the helices interact to form a hydrophobic core

3.5 nm long. The central cavity can contain up to 4,500 Fe(III) atoms, which are

stored as a ferric oxyhydroxide-phosphate mineral [6–8].

Natural ferritins are composed of various proportions of two subunit types named

H and L [9–11]. Horse spleen ferritin contains mainly L-chains, and only 10–15%

H-chains [9]. H-chains contain a metal-binding site within the bundle; this site has

been associated with the observed ferroxidase activity [4, 12–15]. L-chains appear

to confer greater physical stability on assembled ferritin molecules than H-chains,

and are superior in ferrihydrite nucleation [15, 16].

In the apoferritin, there are two types of channels through which small molecules

or ions could gain access to the central cavity of the molecule. These channels are

located along the threefold and fourfold axes of symmetry and have very different

characters. The six fourfold channels are very hydrophobic, whereas the eight

threefold channels are lined with polar groups and are, therefore, hydrophilic. Iron is

probably transported through the threefold channels [2, 16–18], whereas the

fourfold channel is assumed to transport other small molecules, such as molecular

oxygen or reducing agents [2, 16, 17].

Pores through the apoferritin in the crystalline state are only a few Å wide.

Nevertheless, dynamic structural fluctuations may allow some of the small

reductants to enter the protein shell fast enough to interact directly with the core

and remove its surface iron [2].

The mobilization of iron from ferritin at appreciable rates requires the use of a

suitable reductant to chemically reduce the core. Besides a chemical reducing agent,

light or ionizing radiation may be used to trigger the mobilization of iron ions from

ferritin. In the present paper, light- and ionizing radiation-induced redox reactions

involving horse spleen ferritin are investigated.

Experimental

Materials

Horse spleen ferritin and other chemicals were purchased from Sigma-Aldrich.

A stock solution (0.1 mg/mL) of horse spleen ferritin was prepared in 0.15 M

NaCl. The optical absorbance of the stock solution at 280 nm was 1. The total
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iron content in ferritin was determined by chemical reduction of the mineral core

by Na2S2O4. The concentration of the protein was in the range 0.16–0.53 mg/mL.

The optical path of the quartz cell was 0.1 or 0.02 cm. The calculations to

determine the total amount of iron per molecule of ferritin were done according to

[17].

A stock solution (12.5 mM) of ferrozine—the organic chelator, {3-(2-pyridyl)-

5,6-bis(4-phenyl-sulfonic acid)-1,2,4 triazine}—was prepared in Millipore deion-

ized water. Saturation with N2, N2O, and O2 was obtained by purging the

solutions for 20 min with high-purity gases immediately prior to illumination or

irradiation.

Measurements

We used a Cary 5E UV-Vis-NIR Varian spectrophotometer to observe the kinetics of

chelation of the ferrous ions and all absorption spectra, and a 1-cm quartz cell. The

photoreduction of Fe(III) in the ferritin mineral core was carried out using light

pulses generated by an excimer laser COMPex 201 (Lambda Physik). In some

experiments, Nd-YAG (NL-100, EKSMA, 355 nm—energy per pulse 30 mJ, 532

nm—energy per pulse 78 mJ, pulse duration 500 ps) was used as the light source. The

2 mL of horse spleen ferritin was illuminated by a laser light (308, 355, or 532 nm) in

both the absence and the presence of 1 mL of ferrozine solution. The steady-state

illumination was performed with a 150-W Xe lamp (Bausch and Lomb). The light

was filtered through a 10-cm quartz cuvette containing water and an interference

filter (313 nm).

The pulse radiolysis measurements were carried out using a linear electron

accelerator ELU-6, which delivered either 4-ls pulses (500 Gy) or 1-ls pulses (120

Gy).

Kinetic measurements for complexation reactions within milliseconds were

performed using the SX 17 MV stopped-flow spectrofluorimeter (Applied Photo-

physics) with a 1-cm cell. Transient absorption spectra were recorded using a

computer-controlled flash photolysis system. The laser used for excitation was a

Lambda-Physik COMPex 201 XeCl excimer laser (308 nm, pulse duration about 22

ns, max. energy per pulse 400 mJ). The 75-W xenon pulsed lamp (PTI-PowerArc-

lamp housing and lamp power supply LPS220) was the source of the probe flash.

The excitation/analysis light geometry was a right-angle. The 200 mL of sample

solution was loaded into the sample reservoir, and as we collected the data, this

solution circulated continuously through a 1-cm optical path in the quartz cell. The

wavelength of the probe light flash was varied using an Acton Research

monochromator SpectraPro-275. The analyzing light was monitored by a Ham-

amatsu R3896 photomultiplier, and its output was recorded by a Tektronix 680C

oscilloscope. The energy of the laser light beam was attenuated by glass plates or

was increased by a cylinder quartz lens. The energy of the laser beam at the sample

cell position was measured with a Coherent (FieldMaster—LM-P10i) energy meter.

Furthermore, the lasers and the linear electron accelerator were used with a

repetition ratio of 1 Hz.
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Results and discussion

Many reducing agents and chelators can be used to trigger iron release, as presented

in several studies [15, 17, 18]. In the present study, light or ionizing radiation and

ferrozine were chosen as the reducing agent and the chelator, respectively. The

ferrous ion, Fe(II), becomes highly absorbing to visible light when it forms a

complex with the organic chelator, ferrozine. This very stable complex,

Fe ferrozineð Þ4�3 , is dark purple and can be spectrophotometrically detected at the

wavelength of 562 nm, even at a very low concentration, due to the high extinction

coefficient of 27,900 dm3 mol-1 [17].

In photochemical studies, we illuminated the sample of ferritin (0.1 mg/mL) with

laser light, wavelength 308 nm, in anaerobic conditions. We illuminated the cells

filled with 2 mL of the ferritin solution using different numbers of laser pulses. We

then transferred the cells into the spectrophotometer chamber and, after 3 min, 1 mL

of ferrozine solution was added. The recorded absorption spectrum was, in each

case, typical for Fe(II)–ferrozine complex (Fig. 1). To study the kinetics of the

complexation reaction, we recorded the build up of absorbance of Fe(II)–ferrozine

complex at 562 nm. One of the representative kinetic traces obtained in the

photochemical experiment is shown as curve 1 in Fig. 1. It is pertinent to note that

the ferrous ions formation was not detected after the addition of ferrozine into the

sample of ferritin without illumination.

Fig. 1 The kinetics of Fe(II) release from ferritin (0.09 mg/mL) following: (1) photoreduction and
(2) radiolysis (10 pulses, pulse duration 4 ls, dose 500 Gy per pulse), monitored by the complexation of
Fe(II) with ferrozine (11.4 mM). Insert: the absorption spectrum of Fe(II)–ferrozine complex obtained by
the chemical reduction of 0.53 mg/mL ferritin by Na2S2O4 in the presence of ferrozine (8.3 mM). Optical
path, 0.02 cm
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The mineral core photoreduction process was monitored by the kinetics of Fe(II)

release from ferritin using a spectrophotometer. Samples of ferritin (2 mL of

0.1 mg/mL solution) were illuminated with different numbers of pulses (1, 5, 10, 20,

and 30). Three minutes after mineral core photoreduction, the chelator agent

ferrozine (1 mL of 12.5 mM solution) was added to each sample, and then

immediately afterwards, the kinetics of the complexation process was followed. In

this series of experiments, we used laser pulses of energy 70 mJ/cm2, which were

sufficient to observe the photoreduction process. The amount of photoreduced Fe(II)

increased with the number of pulses up to 20, as shown in Fig. 2. Beyond the 20

pulses used for illumination, we did not observe any further increase in absorption

after the chelating agent was added (3 min after photoillumination). Within the

experimental error, the kinetics of the complexation process are the same, despite

the different initial concentrations of Fe(II)–ferrozine complex: 5.30, 6.52, 7.81,

8.88, or 8.96 lM. Furthermore, under our experimental conditions, the kinetic

pattern does not depend upon the presence of the oxygen. In further experiments, we

used five pulses of laser light to photoreduce the mineral core, as we noted that this

number of pulses generated a sufficient amount of Fe(II)–ferrozine complex for

absorbance studies.

Moreover, we investigated whether the time elapsed after illumination can

influence the chelating process. Many samples were photoilluminated (5 pulses of

energy, 70 mJ/cm2 each) and the chelator—ferrozine—was added to each sample

after 1, 2, 4, 6, 9, 12, or 15 min. Then, we followed the complexation process for the

above mentioned times after illumination under the same conditions. In each case,

we recorded the kinetic curve in the time window of 15 min (Fig. 3). We observed

Fig. 2 The kinetics of the complexation process of iron ions released from ferritin (0.067 mg/mL)
by ferrozine (4.2 mM) recorded after irradiation consisting of: (1) one pulse, (2) 5 pulses, (3) 10 pulses,
(4) 20 pulses, (5) 30 pulses. The complexation agent was added 3 min after illumination, and at that
moment, we started recording the kinetics (time = 0)
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that the initial absorbance in each experiment was exactly the same; moreover, the

kinetic patterns were the same. This means that the time elapsed after illumination

does not influence the chelating process and that reduced ferritin without chelator is

the Fe(II)-storage molecule in a long time scale. Figures 1, 2, and 3 show that the

initial absorbance of Fe(II)–ferrozine complex is formed extremely quickly (time

scale on the order of a few seconds). This can be explained if we assume that the

fraction of Fe(II) is easily accessible to the chelator. Although the core contains

most of the Fe(II), some specific iron also resides in the channels, and probably at

the surface of the ferritin protein accessible to chelators and reductants. It seems that

part of the Fe(II) is located in the entrance to the channels and at the surface of the

protein. We postulate that this fraction is easily complexed. Several events may be

responsible for the slow complexation, namely, nonclassical diffusion of Fe(II)

through the channels, trapping of Fe(II) inside the protein shell, and retardation of

the complexation involved by the heterogeneity of the system. We believe that the

diffusion of Fe(II) from the protein interior onto the surface is responsible for the

kinetics pattern of the Fe(II)–ferrozine complex build-up. In order to confirm this

hypothesis we studied the influence of the concentration of ferrozine on the kinetics

of Fe(II) release from ferritin. As presented in Fig. 4, the kinetics depend upon the

chelator concentration at the beginning of the process and only slightly depends

upon it after 14 min. We may explain this if we assume that there is a distribution of

specific sites in which Fe(II) is trapped. While there are sites where Fe(II) is more

easily accessible for the complexation agent, there are others where Fe(II) is more

strongly captured. It seems reasonable to conclude that, at a given concentration of

Fig. 3 The kinetics of ferrous ions release from ferritin (0.087 mg/mL) following photoirradiation (10
pulses, 70 mJ/cm2) monitored by the complexation of Fe(II) with ferrozine (16.3 mM). The points (filled
triangles) represent the initial absorbance of Fe(II)–ferrozine complex at various lengths of time elapsed
after photoirradiation. In each case, 2 mL of ferritin (0.1 mg/mL) was photoirradiated and 0.3 mL of the
chelator (ferrozine, 125 mM) was added after the time shown in the plot
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the complexation agent, a small fraction of Fe(II) can survive on the surface for quite

a long time; in other words, the energy of the protein–Fe(II) interaction changes over

time, therefore, the energy of the trap varies as well. We postulate that the observed

higher rate of complexation at a higher concentration of ferrozine is a result of the

competition between the reorganization of the Fe(II) binding trap on the protein

surface (surface sites) and an increase of the frequency of the surface encounter by

ferrozine. In the long time scale, we observe a similar degree of complexation at

different ferrozine concentrations. In our opinion, this is determined by the slow

diffusion of Fe(II) from the iron core into the surface or bulk solution. We believe

that, just after photoreduction, a certain equilibrium exists between the Fe(II)

concentration inside and outside of the protein shell. The equilibrium is disturbed by

the presence of the chelator, ferrozine. Hence, the kinetics of Fe(II) release from

ferritin is limited by the redistribution of Fe(II) within channels and among surface

sites. A chelator helps Fe(II) to exit the molecule. Small Fe(II) chelators which

mobilize Fe(II) from ferritin over a period of hours or days may also enter the

molecule and leave bearing iron as the Fe(II)–chelate complex. Penetration of the

ferritin protein coat by small reductants and chelators has been a controversial

subject [19]. We suppose, however, that ferrozine is probably too large to fit the

threefold channels, but influences the removal of Fe(II) by an efficient chelation

process on both the surface and outside the protein shell.

It is possible that the detailed mechanism of complexation can be modified by the

transfer of protons [20]. Watt et al. [20] proposed that the reduction of Fe(III) in

horse spleen ferritin is accompanied by an uptake of two protons per electron from

the surrounding medium. In the present work, we were not able to study the proton

transfer. We will, however, study this at different pH levels in the future.

Fig. 4 The plot of the absorbance of Fe (ferrozine)4�
3 complex, obtained from the amount of Fe(II)

released from ferritin (0.067 mg/mL) following photoreduction versus time at various chelator
concentrations: (1) 0.8 mM; (2) 1.6 mM; (3) 2.5 mM; (4) 3.3 mM; (5) 4.2 mM
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In our view, in the mechanism of formation of Fe(II)–ferrozine complex, the

process of reaching the surface of the protein by Fe(II) is crucial. Figure 1 illustrates

that, in two independent experiments in which we reduced Fe(III) by two different

methods (photochemical vs. radiolytical), the kinetic patterns are very similar. It is

obvious that the reduction reaction itself is not important for the kinetics. In this

case, the kinetics are determined by the release of Fe(II) from the interior of the

protein. In the photochemical and radiolytical studies, we dealt with a low

percentage of Fe(II) reduction. In our experiments, the iron load of ferritin is 1,730

Fe(III) per ferritin molecule (see the Experimental section). Figure 2 shows that the

maximum concentration of photoreleased Fe(II) from ferritin (0.067 mg/mL) is

about 1.08 lM, corresponding to 5.9% of the total iron. Thus, 100 Fe(II) ions can be

photoreleased per ferritin molecule.

The previous [21] and present studies indicate that photoreduction can be a useful

way of removing Fe(II) from ferritin. To further understand some the mechanisms

of the photoreduction of Fe(III), we conducted several flash photolysis experiments

with different intensities of laser light. Illumination of the ferritin solution using

both low- and high-intensity UV light leads to the bleaching of the absorbance of

ferritin. Photoreduction induces the release of a Fe(II) from ferritin only in the

presence of a Fe(II) chelator: ferrozine or phenanthroline. Laser photolysis with

low-intensity pulses (below 70 mJ/cm2 for 308 nm) showed that the photoreduction

of Fe(III) in the mineral core occurs (the spectrum below 350 nm—open circles—

Fig. 5) without formation of transient species absorbing light above 350 nm on the

microsecond time scale (Fig. 5). Illumination of the ferritin solution with several

laser pulses leads to a permanent bleaching of its absorbance. The change in

Fig. 5 The absorption spectrum recorded 35 ls upon the laser pulse irradiation (25 ns pulse duration,
energy 70 mJ/cm2) of the N2 saturated solution containing ferritin (0.1 mg/mL). Insert: (1) absorption
spectrum of ferritin (0.0076 mg/mL) before and (2) after laser pulse illumination (50 pulses of 308 nm, 50
mJ per pulse)
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absorbance of ferritin solution is shown in the insert of Fig. 5. When ferritin is

exposed to low-intensity light from an Xe lamp (*1014 photon/s, interference filter

313 nm), photoreduction of its endogenous iron takes place. Low laser light

intensity illumination (about 50 mJ/cm2) also leads to Fe(II) release. Laulhère et al.

[21] reported that the mineral core is the target for the light (when ferritin is

illuminated); our findings agree with these studies at low light intensities. It is well

known that certain Fe(III) complexes undergo photoreduction during daylight

illumination, which results in the production of Fe(II) and the associated free-radical

species [22, 23]. Additional proof that the iron core is the main site of the

photoreduction was obtain by Nd-YAG laser-pulse excitation at 532 nm. Upon

illumination of the ferritin solution at 532 nm, the light is only absorbed by mineral

core, and not by protein, but we were still able to observe the Fe(II) release. This

means that the protein shell does not participate efficiently in the photoreduction of

ferritin. By the illumination of ferritin solution with low-intensity light, the electron

loss center becomes localized exclusively at the mineral core.

When the laser light intensity reached the value of about 400 mJ/cm2, we

observed the formation of short-lived species with a spectral maximum at 720 nm,

which is characteristic of a hydrated electron [24]. Figure 6 shows the absorption

spectrum recorded 195 ns after the laser pulse irradiation (25 ns pulse duration, 420

mJ/cm2 energy) of the N2-saturated solution containing only ferritin (0.1 mg/mL).

The decay of the solvated electron absorbance with the rate constant k = 9.5 9 106

s-1 is illustrated in the insert of Fig. 6. To verify that our transient absorption was,

indeed, due to a hydrated electron, we performed an additional experiment in the

Fig. 6 The absorption spectrum recorded 120 ns upon the laser pulse irradiation (25 ns pulse duration,
420 mJ/cm2 energy) of the N2-saturated solution containing ferritin (0.1 mg/mL). Insert: the decay of
the absorbance of the solvated electron produced by pulse irradiation (308 nm, 420 mJ/cm2) of the
N2-saturated solution of ferritin (0.1 mg/mL)

Iron release from ferritin 557

123



presence of an electron scavenger—N2O. We found that N2O-saturated ferritin

solution exposed to high-intensity light does not produce a hydrated electron,

because of the scavenging of the hydrated electron (produced by photoionization of

the protein shell or the mineral core) by N2O. This experiment confirms that the

spectrum shown in Fig. 6 is, indeed, due to the hydrated electron. In the

photochemical studies using highly intense laser pulses (420 mJ/cm2), we observed

the formation of eaq
- , but our results do not indicate whether the electron is localized

inside the ferritin or is solvated in the bulk water. From flash photolysis studies, we

can prove that eaq
- is involved in the reduction process. To investigate the

importance of the protein shell in the photoionization of ferritin, we performed flash

photolysis of apoferritin solution. We established that the photoexcitation of

apoferritin with high light intensities (400 mJ/cm2) leads to hydrated electron

formation. The yield of the eaq
- in this case is much lower than that obtained during

the laser flash photolysis of ferritin. This observation provides evidence that the

protein shell participates in eaq
- generation. The lower yield of photoionization of

apoferritin with respect to ferritin clearly shows that the mineral core is also

involved in eaq
- formation.

Fe(III) within ferritin can be reduced by a solvated electron (which was

confirmed in the preliminary pulse radiolysis experiment). Other possibilities

include direct photoreduction of the mineral core, as shown by Laulhère et al. [21,

25, 26] or photoinduced electron transfer from the triplet state of photoexcited

tryptophan to the core. The present results do not allow us to determine the detailed

mechanism of photoreduction.

The photochemical reduction of Fe(III) inside the ferritin consists of several

processes depending on the light intensity. Ferritin exposed to low-intensity light

undergoes direct photoreduction in the mineral core. There are two possibilities in

the photoreduction of Fe(III) in the illumination of ferritin with high light intensity

(above 400 mJ/cm2). The first results in the generation of a hydrated electron which

triggers iron release from ferritin. The mineral core as well as the protein shell

participate directly in the photoreduction of Fe(III). This is a minor pathway for the

Fe(II) formation process. On the other hand, the second possibility is a major

pathway, and is simply the photoreduction of the mineral core.

In radiolytic studies, we found that solvated eaq
- and the superoxide anion radical

generated by electron beam irradiation can release iron from ferritin (see Fig. 7). As

shown in Fig. 7, O2
•- is more efficient in inducing the release of iron from the

ferritin than eaq
- . In electron pulse radiolysis of dilute aqueous solution of ferritin, the

energy is almost exclusively absorbed by water molecules. The deposition of energy

results in the production of the reactive species, namely, the hydrated electron, the

hydroxyl radical, and the hydrogen atom. These radicals may be transformed into

single reducing or oxidizing radicals, via the use of suitable scavengers. In the

present study of the release of Fe(II) from ferritin, we have chosen t-butanol as the

scavenger of •OH radicals, which are converted into unreactive hydroxyalkyl

radical •CH2(CH3)2COH. The hydrated electron is a powerful reductant. A feature

of the eaq
- is that it may react by tunneling over long distances. The electron can also

react in its presolvated (‘‘dry’’) state. Due to the strong optical absorption in the

visible range of the spectrum, we were able to study reduction reactions with ferritin
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using pulse radiolysis combined with kinetic spectrometry. The hydrated electron is

effective in reducing many Fe(III) complexes, including aquo-metal ion (rate

constant 6 9 1010 dm3 mol-1 s-1 [24]). In our pulse radiolysis studies, we have

found that ferritin is not very reactive towards eaq
- . The importance of O2

•- as an

effective reducing agent for iron releasing from ferritin is well established [27].

Previous work [28] has shown that O2
•- generated from 137Cs gamma radiation

resulted in efficient iron release from ferritin. Our findings are consistent with this

study.

In contradiction to Reif et al. [28], we found that ferrozine added to the ferritin

solution immediately after a short burst of O2
•- generated by pulse radiolysis did

yield detectable amounts of Fe(II)–ferrozine complex. Our results suggest that the

presence of the chelator at the time of reduction is not necessary to generate Fe(II)

detectable with ferrozine. The rate of eaq
- scavenging by ferritin does not depend

strongly on ferritin concentration (see Fig. 8) because of the electrostatic repulsion

between the charge of solvated electron and the high negative charge on the protein

surface. This observation brings up the question of the mechanism of electron

transfer from the water phase into the ferritin interior. It is possible that the electron

produced by the ionizing radiation penetrates into/on the ferritin either as a dry

electron or in the tunneling process.

The most important observation in our work is that Fe(II) can be trapped within

ferritin for a significant period of time—at least several hours. Therefore, all

reduction processes of the Fe(III) within the ferritin interior can occur without a

chelator. It is important to note that we conducted our radiolytical studies under

Fig. 7 The kinetics of ferrous ions release from ferritin (0.067 mg/mL) following radiolysis monitored
by the complexation of Fe(II) with ferrozine (4.2 mM). (1) Oxygen-saturated solution, (2) aerated
solution, (3) nitrogen-saturated solution. In each case, 2 mL of ferritin (1 mg/mL) was irradiated with 10
pulses of a 1-ls electron beam (dose 125 Gy per pulse) and 1 mL of the ferrozine (12.5 mM) was added 3
min after radiolysis
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conditions which eliminated the oxidative damage of ferritin by the presence of tert-

butanol (an •OH scavenger) in N2-saturated solution. The irradiation of the ferritin

solution in the absence of t-butanol promoted the damage of the protein. Although

this process is important from the biological point of view (as pointed out by Reif

et al. [28]—ferritin may serve as a pathological source of iron upon exposure to

ionizing radiation), we were unable to study it due to the strong absorbance of the

decomposition products of ferritin. The reactions which take place during the

radiolysis of ferritin are accompanied by damage of the protein shell by •OH

radicals. This damage is prevented by the presence of the •OH radical scavengers,

e.g., t-butanol. We have shown that subsequent removal of the Fe(II) by redox

reaction depends upon the chelating agent—ferrozine or phenanthroline. Most of

our experiments were conducted with ferrozine due to the high extinction coefficient

of Fe(II)–ferrozine complex. We found that the complexation process occurs quite

rapidly. The complexation of Fe(II) (19.6 lM) with ferrozine (4.17, 6.25, 8.33, 12.5

mM) was studied at 298 K using sequential mixing stopped-flow techniques. The

rate of the reaction increased linearly with ferrozine concentration, giving the value

2.65 9 104 dm3 mol-1 s-1 for the rate constant of the complexation process

(Fig. 9). This complexation rate constant (the value for the pseudo-first-order

constant equals 111 s-1 for a ferrozine concentration of 4.15 mM) is evidently

higher with respect to the analogous process observed in the photochemical

reduction as studied by the laser flash photolysis technique. In this experiment, we

pulsed the sample containing both ferritin (0.067 mg/mL) and a chelator, ferrozine

(4.2 mM). In the longer time scale, we observed a buildup of the Fe(II)–ferrozine

complex absorption band. The kinetics of complexation of the photoreleased Fe(II)

Fig. 8 Decay traces of the transients formed in N2-saturated aqueous solutions of ferritin (1) 2 mg/mL,
(2) 0.1 mg/mL, and (3) in neat water upon the pulse radiolysis. All kinetic patterns were recorded at 700
nm in the presence of 0.1 M t-butanol (pulse duration 17 ns, dose 60 Gy per pulse)
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by ferrozine, observed in the flash photolysis experiment, is shown in the insert of

Fig. 9. The pseudo-first-order rate constant calculated from the kinetic curve is

k = 1.58 s-1.

A similar process in pulse radiolysis studies cannot be observed because of the

fast, efficient scavenging of eaq
- by a chelating agent, ferrozine. Our results also

suggest that redox agents (methyl viologen or diquat cation radical) can induce iron

mobilization without entering into the ferritin interior. Watt et al. [29] presented a

similar conclusion. The lack of direct interaction of the redox reagent with the

mineral core means that the electron can be transferred by a channel or by a protein

shell. It is difficult to prove experimentally that the electron is transferred via a

channel, although such a transfer is quite possible. In the case of O2
•- and eaq

- , both

reductants are small enough to enter channels and react with Fe(III) in the ferritin

interior. Our pulse radiolytic studies demonstrate definitively that an electron can be

trapped by the protein shell and, subsequently, scavenged by the mineral core. Thus,

the long-distance electron transfer can occur directly through a ferritin protein shell

which is 20–25-Å thick. In addition to reduction mediated by channel- or core-

bound Fe(II), it is possible that long-distance electron transfer occurs by electron

tunneling through the ferritin protein shell, as was suggested by Watt et al. [29]. It is

evident from our pulse radiolysis studies that there is a transient product of the

reaction between radiolytically generated electron and ferritin. To gain a proper

understanding of the mechanism of Fe(II) release from ferritin, this product needs to

be recognized and characterized. We are currently conducting a pulse radiolysis

study using apoferritin to elucidate the role of the protein shell in the early redox

events involved in iron reduction and mobilization.

Fig. 9 The stopped-flow measurement of the kinetics of the process of Fe(II) (9.8 lM) complexation by
ferrozine (4.17 mM). Insert: transient absorption recorded at 562 nm following pulse laser irradiation
(308 nm, 70 mJ/cm2) of the solution containing ferritin (0.067 mg/mL) and ferrozine (4.2 mM)
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Conclusions

In summary, we conclude that the reduction and mobilization of iron from ferritin

mineral core consists of several reactions: (1) reduction by light or ionizing radiation

without using any additional chemical reductants; (2) Fe(II) trapping in the ferritin

interior for a long period, on the order of at least several hours; (3) restricted diffusion

of Fe(II) via threefold channels; (4) complexation of Fe(II) by ferrozine or

phenanthroline. In our radiolytic studies, electron transfer from the external reductant

or reductants through the protein shell into the mineral core occurs. It appears that

solvated electron can reduce Fe(III) which is trapped in the ferritin interior both by

the diffusion or tunneling through the ferritin channels and by the intermediate stage,

i.e., the reduction of the protein and subsequent redox process leading to the

generation of Fe(II). Our present study is devoted to the elucidation of the way in

which electrons are delivered to the Fe(III) core. In photochemical experiments, in

contrast to pulse radiolysis studies, the mineral core is directly the site of redox

reactions. It has been previously determined [30] that, in the absence of chelators, the

reduced core of ferritin is stable to iron loss. Our results confirm this observation.
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