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Abstract Fisheries, climate change, and habitat 
degradation are triggering the depletion of marine 
animal populations worldwide. The ecological 
impacts of the extinction of keystone species such as 
chondrichthyans can be far-reaching along the entire 
food web. Here, we first reviewed the trophic ecol-
ogy of the 81 chondrichthyan species of the Medi-
terranean Sea through a literature search. We then 
compared prey composition among chondrichthyan 
species considering their taxonomic group, body 
size, and habitat. Finally, we represented the Mediter-
ranean meta-web, emphasizing the chondrichthyan 
groups, using a qualitative network approach, and 
tested the vulnerability of the food web to selective 

removals of threatened chondrichthyan species by 
applying different extinction scenarios. We found 
trophic data for 53 species, which highlights the need 
to complement current knowledge gaps for many 
species. Diet dissimilarities between chondrichthyan 
taxa were detected, mainly due to the consumption 
of crustaceans and cephalopods. We found that large 
chondrichthyan species had a major contribution 
to the trophic dissimilarity and the omnivory of the 
food web when compared to small and medium-sized 
species. Conservation efforts within the Mediterra-
nean chondrichthyan community may be particularly 
important for this group, as high levels of omnivory 
could moderate the occurrence of trophic cascades, 
while high trophic similarity can lead to less diverse 
ecosystems. This study provides a first overview of 
the ecological role of chondrichthyans in the Mediter-
ranean and highlights the urgent research needed to 
increase the knowledge about these key species in the 
Mediterranean marine food web.

Keywords Chondrichthyans · Mediterranean Sea · 
Trophic ecology · Food web structure · Extinction 
scenarios · Review

Introduction

From an ecological perspective, sharks and rays 
can be keystone species (i.e., species that despite 
having relatively low biomass have a disproportional 
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effect on the food web; Power et  al. 1996). Marine 
habitats are often characterized by strong top-down 
interactions (Power et  al. 1996; Valls et  al. 2015), 
and chondrichthyans play central roles with effects 
that can propagate through the food web (Baum 
and Worm 2009; Bornatowski et  al. 2014). As a 
consequence, any change in their abundance and 
distribution can have widespread consequences along 
food webs, potentially impacting their prey, coexisting 
predators, and competitors (Dunne 2009). Moreover, 
the ecological effects of reducing population numbers 
or eliminating top predators such as large sharks 
can trigger cascading effects that travel both up and 
down marine food webs (Bornatowski et  al. 2014; 
McCauley et  al. 2015). However, those effects can 
be attenuated in highly diverse systems (Grubbs 
et al. 2016; Rasher et al. 2017), where prey-predator 
interactions are weaker and bottom-up drivers can 
have larger impacts (Desbiens et al. 2021).

After the depletion of key species, the likelihood 
of trophic cascades will depend on the degree of 
omnivory and complexity of the system (Bascompte 
et  al. 2005; Grubbs et  al. 2016). The role of these 
indirect effects is crucial to understanding food web 
energy flow and the structure and functioning of eco-
systems (Bornatowski et  al. 2014). Although food 
webs have shown to be resilient to the removal of 
random nodes (Montoya et al. 2006), the loss of spe-
cies as a consequence of anthropogenic stressors tends 
to be directed towards species that play key roles in 
ecosystems and are unable to adapt to the respective 
pressure (Bascompte et al. 2005), which is the case for 
most chondrichthyans. As they are important preda-
tors (i.e. they are connected to many species), predict-
ing the effects of their removal is complex (Field et al. 
2009). In fact, the strength of predator–prey interac-
tions influences the stability of marine communities 
(Bascompte et al. 2005) and, thus, effective manage-
ment of shark populations should consider how dif-
ferent drivers affect particular species declines (Field 
et  al. 2009). However, determining how individual 
traits and interactions among species contribute to 
community functioning and ecosystem resilience is 
still a challenge (Marbà and Coll 2021).

As predators, chondrichthyans developed a range 
of feeding strategies, which vary from scavenging to 
active predation and from opportunism to high spe-
cialization, and thus, they consume a wide prey spec-
trum, extending from plankton to marine mammals. 

As an important ecological trait, diet affects many 
biological aspects of a species, including its vulner-
ability to extinction (Machado et al. 2022). In general, 
chondrichthyans have a long-lived/K-selected life his-
tory strategy (Stevens et al. 2000; Ferretti et al. 2010; 
Hutchings et al. 2012). This is linked to low popula-
tion recovery rates following human disturbance, and 
therefore a high extinction risk, which, combined 
with the global increase in fishing effort (considered 
the main threat to chondrichthyans), has triggered the 
depletion of populations of these marine predators 
around the world (Aldebert 1997; Worm et al. 2013; 
Walker et  al. 2021). Particularly in the Mediterra-
nean Sea, where fleet is multi-species and uses a large 
variety of fishing gears, chondrichthyan species are 
highly vulnerable (Cavanagh and Gibson 2007), with 
reported impacts from small demersal to large pelagic 
species (Ferretti et al. 2008; Cartes et al. 2013; Nuez 
et  al. 2021; Ruiz-García et  al. 2023). Indeed, the 
Mediterranean Sea has been identified as one of the 
main hotspots where the biodiversity of sharks and 
rays is particularly threatened (Field et  al. 2009; 
Dulvy et al. 2014). Furthermore, the impacts of fish-
ing are, in most cases, combined with the synergistic 
effects of climate change and habitat loss (Dulvy et al. 
2014, 2021). Cumulative impacts range from spatial 
distribution shifts due to ocean warming and habitat 
degradation (Fowler et al. 2005), to direct impacts on 
the physiology, behavior, and survival due to other 
anthropogenic stressors (such as ocean acidification 
and pollution; Walker et al. 2021). These can lead to 
population declines both in terms of abundance and 
viability (Wheeler et al. 2020; Jorgensen et al. 2022). 
According to the most recent International Union for 
Conservation of Nature (IUCN) assessment for the 
Mediterranean, half of the chondrichthyan species 
there are threatened, and a quarter of the species have 
not been assessed or have been classified as “Data 
Deficient (DD)”, highlighting a risky combination 
of high threat, low safety and high uncertainty in the 
threat status of sharks and rays (Dulvy et al. 2021).

The decline of chondrichthyan populations has 
left a handful of ecological systems worldwide 
where their ecological role is still functional, 
particularly in the case of large species that usually 
act as top predators. This limitation, coupled with 
the challenges associated with targeting, handling, or 
conducting experiments on these species, highlights 
the need of theoretical approaches to understand their 



423Rev Fish Biol Fisheries (2024) 34:421–438 

1 3
Vol.: (0123456789)

ecological roles. The main objective of this study was 
to investigate the ecological role of chondrichthyans 
inhabiting the Mediterranean Sea, focusing on 
their trophic (prey-predator) interactions and the 
consequences of their extinction at the food web level. 
This overarching goal was divided into three specific 
objectives: (1) to review the current knowledge and 
gaps in the trophic ecology of chondrichthyans 
in the Mediterranean Sea, (2) to represent the 
chondrichthyan species within the Mediterranean 
Sea food web, and (3) to quantify the vulnerability 
of the Mediterranean food web to selective removals 
of different sharks and rays’ groups by applying a 
qualitative network approach. This study contributes 
knowledge to the urgent need for an ecosystem-
based management approach to halt and prevent 
Mediterranean chondrichthyan populations from local 
extinctions, with large direct and indirect ecosystem 
implications.

Material and methods

We first reviewed all available published data on the 
feeding ecology and conservation status of Mediter-
ranean chondrichthyans, followed by an examination 
of the multivariate structure of their diets (Fig.  1). 
We then used a meta-web approach to investigate the 
topology of the food web in the basin, with an empha-
sis on chondrichthyan groups (i.e., different functional 
groups according to body size, habitat type, and con-
servation status). Finally, we tested different extinction 
scenarios to examine the ecosystem consequences of 
removing threatened shark and ray groups.

Bibliographic review of conservation status and 
trophic information

An updated list of chondrichthyan species inhabiting 
the Mediterranean was compiled including frequent, 
rare, and vagrant species reported in previous 
occurrence lists from Dulvy et al. (2016) and Serena 

Fig. 1  Overview of the 
methodology followed in 
the present study to inves-
tigate the ecological role of 
chondrichthyans inhabiting 
the Mediterranean Sea
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et  al. (2020). Each species was then classified 
according to its conservation status and population 
trend, both at the Mediterranean and global level 
based on IUCN assessments (IUCN 2021), adding the 
predicted status by Walls and Dulvy (2020) for Data 
Deficient species. Centrophorus granulosus diets 
were reclassified as Centrophorus uyato according to 
White et al. (2022).

To model the Mediterranean food web, all available 
information on trophic links among marine species 
was compiled through an extensive literature review 
of the diet of the species inhabiting the Mediterranean 
Sea, including all the available data up to the cutoff 
date, December 2021. This review updated previous 
efforts by Stergiou and Karpouzi (2002) and Karachle 
and Stergiou (2017), and the compilation previously 
built to develop a Mediterranean meta-web (Coll et al. 
2019b), which was substantially complemented with 
additional references. For each selected publication, 
we recorded:

1. Species taxonomy;
2. Information related to the life stage: juveniles or 

adults;
3. Spatial information: divisions of the 

Mediterranean Sea were defined following 
Notarbartolo di Sciara and Agardy (2010): 
Alboran Sea, Algero-Provençal basin, Tyrrhenian 
Sea, Adriatic Sea, Strait of Sicily/Tunisian 
Plateau/Gulf of Sirte, Ionian Sea, Aegean Sea 
and Levantine Sea;

4. Temporal information: years, season, and months 
of sampling; and

5. Information related to the diet: prey species, 
diet metrics (contribution by weight, %W; 
contribution by number, %N; contribution by 
volume, %V; frequency of occurrence, %F; Index 
of Relative Importance, %IRI; mean contribution 
to the Stable Isotope Analysis, SIA hereinafter) 
and type of analysis (e.g., stomach content 
analysis or SIA).

Species identified in the literature and coded 
as prey or predators in the database were also 
classified in terms of life history and distribution 
using information from FishBase (Froese and Pauly 
2021) and SeaLifeBase (Palomares and Pauly 2021). 
Once the database was completed, the distribution 
of chondrichthyan trophic studies was examined by 

predator species and families, conservation status, 
area and years of the study, population life stage, and 
methodology used.

Trophic ecology of Mediterranean chondrichthyans

An overview of principal prey groups of the chon-
drichthyan species was developed using a quantitative 
approach. To standardize all the reports, we gathered 
all the trophic indexes: when the %W of prey was 
not available (the main metric to characterize diet), 
the %V was used, followed by the mean contribution 
based on stable isotopes mixing models, %IRI, %F, 
and %N. To compare diet composition among species, 
all prey taxa were categorized as ‘Marine mammals’, 
‘Seabirds’, ‘Sea turtles’, ‘Chondrichthyans’, ‘Teleosts’, 
‘Cephalopods’, ‘Mollusks’, ‘Crustaceans’, ‘Poly-
chaeta’, ‘Other invertebrates’ and ‘Seagrasses and 
algae’. Chondrichthyan species were classified accord-
ing to the main habitats in which they occur (pelagic, 
benthopelagic or demersal) and according to body size 
(small, medium or large). A hierarchical clustering 
analysis using the maximum length (ML) reported in 
FishBase (Froese and Pauly 2021) was used to define 
the size classes. The clustering analysis resulted in 6 
groups: we considered as ‘small’ those species with 
ML < 150  cm (cluster 1, n = 34), ‘medium’ between 
150 and 250 cm (cluster 2, n = 20), and the remaining 
clusters were grouped into ‘large’ ≥ 250 cm (n = 27) in 
order to have similar sample sizes. The overview anal-
yses of the diet were conducted in R (R Core Team 
2020) and figures were produced using the ggplot2 
package (Wickham 2016).

Using the composition of chondrichthyan diets, we 
created a prey-predator diet matrix where the columns 
represented predator species and rows represented 
prey groups. Different statistical approaches were used 
to compare the trophic ecology of the chondrichthyan 
species. The diet matrix was fourth-root transformed 
and converted to a resemblance matrix using the 
Bray–Curtis similarity. The multivariate structure of 
chondrichthyans trophic ecology was then examined 
using non-metric Multidimensional Scaling analy-
sis (nMDS). Permutational multivariate analysis of 
variance (PERMANOVA) tests were applied to test 
for differences among taxonomic groups (Selachi-
morpha hereinafter referred to as sharks, Batoidea 
hereinafter referred to as rays, and Holocephali 
hereinafter referred to as chimaeras), sizes (small, 
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medium, or large), and habitats (pelagic, benthope-
lagic, or demersal). The homogeneity of multivari-
ate dispersions was tested for all factors using the 
permutational analysis of multivariate dispersions 
(PERMDISP; Anderson 2006). When the evidence of 
difference was strong (i.e., p value < 0.05), pairwise 
tests were performed, and a similarity percentage pro-
cedure (SIMPER) was used to identify discriminant 
prey groups, indicating the average contribution of 
prey to the dissimilarity between groups. For PER-
MANOVA tests, significance was determined using 
unrestricted permutation of the raw data with 9999 
permutations. PERMANOVA, PERMDISP, SIMPER, 
and nMDS tests were conducted in PRIMER version 
7 software (Clarke and Gorley 2015) and the PER-
MANOVA + add-in (Anderson et al. 2015).

Mediterranean meta-web analysis

A meta-web is defined as a compilation of species 
and their potential feeding interactions within a spe-
cific geographical area and time period, which does 
not represent observed realizations of trophic interac-
tions at a given time step (Kortsch et al. 2021). How-
ever, understanding all trophic interactions in a food 
web is only possible in simplified communities (Sala 
2004). Following a previously established methodol-
ogy (Planque et  al. 2014), we used the information 
obtained from the literature review of chondrichthyan 
species to modify the structure of the available Medi-
terranean meta-web (Coll et  al. 2019b). All species 
identified as predators or prey in our trophic database 
were classified into functional groups representing the 
different trophic levels of the marine ecosystem: from 
primary producers to top predators, based on previ-
ous Mediterranean food-web models (Corrales et  al. 
2015; Piroddi et al. 2015; Coll et al. 2019b). In addi-
tion to the taxonomic group, the body size, and the 
habitat type, chondrichthyan species were classified 
considering their conservation status, dividing them 
between low extinction risk (Least Concern, LC; and 
Near Threatened NT) and high extinction risk (Vul-
nerable, VU; Endangered, EN; and Critically Endan-
gered, CR). These groups were then used to perform 
the extinction simulations. A detailed description of 
the functional groups is given in Online Resource 1.

The meta-web was analyzed using a binary net-
work model that considered only the presence/
absence of prey species in the diet of predators to 

reduce bias caused by the usage of different diet 
indexes (e.g., %N or %IRI). Qualitative models pro-
vide a useful approach to assessing the potential 
importance of species in ecosystems, which requires 
fewer assumptions and has lower data require-
ments for parametrization than quantitative models 
(Dunne et  al. 2008). Although they are conservative 
approaches, results in terms of food web degradation 
can be informative on ecosystem structure and func-
tioning when used in relative terms (Coll et al. 2008, 
2019a; Lotze et  al. 2011). The meta-web was repre-
sented using the cheddar package (v0.1-636; Hudson 
et  al. 2013, 2020) in R (R Core Team 2020), which 
provides a flexible and extendable representation of 
an ecological community and a range of functions for 
analysis and visualization.

Extinction scenarios

To compare the influence of the chondrichthyan 
species on the community by habitat, taxonomic 
group, and size, we tested eight scenarios of the 
functional extinction of chondrichthyan groups 
(Table  1) by using qualitative modelling (Hudson 
et al. 2013).

To quantify changes in community structural com-
plexity, we calculated linkage density (L/N, where L 
is the number of links and N is the number of nodes), 
and connectance (measured as the proportion of all 
possible trophic links that are actually realized, L/N2). 
The depletion of highly connected species has major 
implications on network stability, and connectance is 

Table 1  Description of the different scenarios tested for the 
functional extinction of chondrichthyan groups

Simulations No. 
deleted 
nodes

0 No extinction 0
1 Extinction of threatened demersal spp. 6
2 Extinction of threatened pelagic spp. 2
3 Extinction of threatened benthopelagic spp. 3
4 Extinction of threatened rays 5
5 Extinction of threatened sharks 6
6 Extinction of threatened large spp. 5
7 Extinction of threatened small/medium spp. 6
8 Extinction of all threatened spp. 11
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therefore used as an indicator of robustness and struc-
tural complexity (Gilbert 2009; Sánchez-Carmona 
et  al. 2013; Bornatowski et  al. 2014). Omnivory, 
which is related to the magnitude and likelihood of 
trophic cascades (Bascompte et al. 2005), was meas-
ured as the proportion of species feeding at multiple 
trophic levels. In addition, trophic similarity, which 
measures trophic overlap among functional groups, 
was averaged across each species’ highest trophic 
similarity to another species to determine the mean 
maximum trophic similarity (Dunne et al. 2004).

The calculation of food web properties was 
based on a binary network model that considered 
the presence or absence of prey species in the diet 
of predators. Additionally, the strength of predation 
based on diet data (quantitative) was used to identify 
the least certain links (i.e., trophic links with the 
weakest strength of interaction). In order to assess if 
the changes in the properties were consistent when 
the least certain links were eliminated, we ran the 
simulations (Table  1) with the full dataset, without 
the trophic links with a strength of interaction lower 
than 0.5%, and without the trophic links with a 
strength of interaction lower than 1%.

Results

Bibliographic review of conservation status and 
trophic information

A total of 81 species from 27 different families were 
considered: 34 species of rays, 46 species of sharks, 
and 1 chimaera (Chimaera monstrosa; Table S1). We 
identified 119 studies describing the trophic ecology 
of 53 different species, including 61% of the sharks, 
71% of the rays, and 100% of the chimaeras’ species 
(see Online Resource 2). The most studied Families 
were the rays of the family Rajidae (30% of the 
reports) and the sharks of the family Scyliorhinidae 
(24%). The most studied species were the small-
spotted catshark (Scyliorhinus canicula) (18%), the 
blackmouth catshark Galeus melastomus (15%), and 
the thornback ray (Raja clavata) (13%).

According to the Mediterranean assessment by 
the IUCN, half of the chondrichthyan species are 
threatened, with 25% of them classified as CR, which 
increases to 30% with Walls and Dulvy (2020) pre-
dicted status for DD species. When compared to 

their global status, the percentage of threatened spe-
cies was similar (53% versus 57% in the Mediterra-
nean), but the extinction threat was lower globally, 
with more species classified as VU but fewer spe-
cies considered CR (14% and 30% at the global and 
Mediterranean assessment, respectively). Although 
the number of species classified as threatened in the 
Mediterranean was high, these only accounted for 
37.6% of the reported diets (Fig. 2).

Chondrichthyan trophic information was hetero-
geneously distributed between Mediterranean areas, 
with most studies focusing on the Algero-Provençal 
basin, the Aegean Sea, and the Strait of Sicily/Tuni-
sian Plateau/Gulf of Sirte (Fig.  3). Information was 
scarce regarding the Alboran Sea, with only one pub-
lished study.

Regarding the temporal distribution of trophic 
information, most of the sampling of Mediterranean 
sharks, rays, and chimaeras started between 2000 and 
2010 (48%), with the first study beginning in 1973 
(Fig. 4). Only a few articles included trophic informa-
tion about chondrichthyans before the 1990s (12.5%). 
Different methodologies have been used to describe 
chondrichthyan diets, but the most used method was 
stomach content analysis (SCA), being used in 90.3% 
of the studies, followed by SIA (5.6%) and other 
methods (e.g., visual observation; 4.1%). The studies 
included different life stages: 17.5% of them described 
juveniles’ diets and 22.1% described adults’ diets, 
although most of the studies gathered information 
from adults and juveniles together (57.1%).

Trophic ecology of Mediterranean chondrichthyans

All prey group categories considered were reported in 
the diet of at least one species. On a presence-absence 
basis, fish were the most frequent prey, being present 
in 94% of the species’ diets, followed by cephalopods 
(91%) and crustaceans (80%). In contrast, marine 
mammals, seabirds, and sea turtles were present in 
less than 10% of the diets.

Trophic differences were observed between 
demersal sharks and demersal rays, with crusta-
ceans being more consumed by rays, while cepha-
lopods being more consumed by demersal sharks 
(Fig.  5). Cephalopods also made up an impor-
tant part of pelagic and benthopelagic sharks’ 
diets, except for the white shark (Carcharodon 



427Rev Fish Biol Fisheries (2024) 34:421–438 

1 3
Vol.: (0123456789)

carcharias), whose diet contained mostly fish and 
other vertebrates (e.g., marine mammals). In the 
case of benthopelagic rays, mollusks and crusta-
ceans played particularly important roles in the diet 
of myliobatids [the bull ray (Aetomylaeus bovinus) 
and the common eagle ray (Myliobatis aquila)], 
while the electric ray (Tetronarce nobiliana) and the 
pelagic rays, [the devil fish (Mobula mobular) and 
the pelagic stingray (Pteroplatytrygon violacea)], 
preyed mainly on fish (Fig. 5). The diet of rabbitfish 

(Chimaera monstrosa), the only chimera present in 
the Mediterranean, was dominated by crustaceans.

The results of the multidimensional scaling 
analysis did not show well-defined clusters (Fig. 6). 
However, shark species were more related to a diet 
composed of cephalopods and less of crustaceans 
than rays, except for the starry smooth-hound (Mus-
telus asterias), which mainly feeds on crustaceans, 
and the angular roughshark (Oxynotus centrina), 
in whose diet polychaetes and mollusks were more 

Fig. 2  Percentage of Medi-
terranean species (left) and 
trophic studies (right), by 
taxonomic group and IUCN 
Red List status according to 
the Mediterranean assess-
ment (IUCN 2021) and 
Walls and Dulvy (2020). 
CR, Critically Endangered; 
EN, Endangered; VU, Vul-
nerable; NT, Near Threat-
ened; LC, Least Concern; 
DD, Data Deficient; NA, 
Not Assessed

Fig. 3  Number of studies reporting chondrichthyans diet 
information per area between 1973 and 2021. Divisions of the 
Mediterranean Sea were defined following Notarbartolo di 
Sciara and Agardy (2010): Alboran Sea (ALBO), Algero-Pro-

vençal Basin (ALPR), Tyrrhenian Sea (TYRR), Adriatic Sea 
(ADRI), Strait of Sicily/Tunisian Plateau/Gulf of Sirte (STPS), 
Ionian Sea (IONI), Aegean Sea (AEGA) and Levantine Sea 
(LEVA)
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abundant (Fig.  5). This was in accordance with 
the SIMPER results (Table  S2), which highlighted 
crustaceans and cephalopods as the main groups 
contributing to the dissimilarity between sharks 
and rays. Chimaeras were grouped next to demersal 
rays, which mainly preyed on mollusks and crusta-
ceans [e.g., the common stingray (Dasyatis pastin-
aca)]. Mollusks were the main prey causing dissim-
ilarity between chimaeras from one side and sharks 
and rays from the other (Table S2).

Accordingly, our results revealed strong evidence 
for differences in prey composition among taxonomic 
groups, but there was little or no evidence for 
a relationship between main prey groups and 
chondrichthyan habitat (pelagic, benthopelagic and 
demersal) or size (small, medium and large; Table 2). 
Pairwise comparisons showed strong evidence for 
prey composition differences between sharks and 
rays (p < 0.01). The interaction between factors was 
not significant. PERMDISP results showed that 
the differences obtained with PERMANOVA were 
not due to multivariate dispersion (p > 0.05 for all 
factors).

Mediterranean meta-web and extinction scenarios

A total of 612 studies were included in the Mediter-
ranean meta-web. The meta-web included informa-
tion on 401 different predator species and a total of 
1726 taxa were identified as prey, with the resulting 
topology of 1508 trophic links between 79 nodes 
(Table 3, Fig. 7). A detailed description of the meta-
web including functional groups description, trophic 
links, and references is presented in Online Resource 

1. Chondrichthyan species were classified in 19 nodes 
with 411 links, representing 27% of the total trophic 
links and occupying high trophic levels (Fig. 7).

Results from the extinction simulations showed 
values of connectance, omnivory, and trophic similar-
ity within the range described for marine food webs 
(Fig.  8 and Tables S3, S4, and S5). Major changes 
were detected when all threatened chondrichthyans 
were removed (simulation 8), resulting in a food web 
with higher connectance and trophic similarity, and 
lower density and omnivory than the non-extinction 
scenario. Omnivory levels descended consistently 
with the number of nodes deleted, and omnivory did 
not change when the weakest links were removed 
(Fig. 8).

When comparing the extinction of demersal, 
benthopelagic, and pelagic species (Fig. 8; simula-
tions 1, 2, and 3, respectively), the scenario where 
demersal species were removed was the one losing 
more nodes and therefore changes in density, con-
nectance, omnivory, and trophic similarity were 
greater compared to the extinction simulations of 
benthopelagic and pelagic species. More nodes 
were lost with the extinction of sharks (simulation 
5) than with the extinction of rays (simulation 4), 
and the reduction of trophic links and, therefore, 
of density, was greater when sharks were removed. 
Omnivory decreased more with the loss of threat-
ened shark species versus the loss of threatened ray 
species (simulation 5 vs. simulation 4), and changes 
in connectance and trophic similarity were simi-
lar between the simulations. The removal of large 
chondrichthyans (simulation 6) had a higher effect 
on trophic similarity and connectance than the 

Fig. 4  Number of studies 
reporting chondrichthyans 
diet information per year 
and methodology. SIA, sta-
ble isotopes analysis; SCA, 
stomach content analysis
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removal of medium and small-sized ones (simula-
tion 7), even though more nodes were lost with the 
extinction of the medium and small-sized species.

Discussion

In this study, we reviewed the trophic information 
available for the chondrichthyan species inhabiting 
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the Mediterranean Sea. We then used this informa-
tion to describe the trophic role of these species 
using two complementary methodologies: first, we 
compared their diets by using multivariate analysis 
techniques; and then we examined the role of these 
species within a food web context. We complemented 

a previously available Mediterranean meta-web (Coll 
et al. 2019b) with detailed information on chondrich-
thyan species, and then tested different extinction 
scenarios and explored the consequences of remov-
ing different groups of threatened chondrichthyan 
species. Our results are a key step towards informa-
tion required to make progress on the conservation 
and management of the chondrichthyan species of 
the Mediterranean Sea (Gračan et al. 2017).

Conservation status and trophic information of 
Mediterranean chondrichthyans

Our study shows that limited trophic data are avail-
able for most Mediterranean chondrichthyan species 
and points to the future research priorities for this 
group. Moreover, available information is usually 
obtained by opportunistic fisheries-related captures. 
Since most of the chondrichthyan species are not pri-
marily targeted by fishing fleets in the Mediterranean 
Sea, they are mainly caught as bycatch and, therefore, 
underreported (Coll et  al. 2013; Bradai et  al. 2018). 
As Stevens et  al. (2000) and Bradai et  al. (2018) 
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Table 2  Summary of PERMANOVA tests examining differ-
ences between taxonomic group, habitat, and size (and their 
interactions) in prey composition of 53 chondrichthyan species 
diet

** Term has one or more empty cells
Strong  evidence of difference  (i.e., p value <  0.05) 
is highlighted in bold

Factor df Pseudo-F P (perm)

Taxonomic group 2 3.195 0.012
Habitat 2 1.483 0.194
Size 2 0.765 0.584
Tax. group × Habitat** 2 1.254 0.282
Tax. group × Size** 2 0.510 0.789
Habitat × Size 2 0.443 0.834
Tax. group × Habitat × Size** 0 No test
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Table 3  Functional groups of the meta-web of the Mediter-
ranean Sea. Chondrichthyans are represented in dark blue, tel-
eosts in light blue, other vertebrates in purple, cephalopods in 

orange, other invertebrates in red, producers in green, and oth-
ers in black. (For interpretation of the references to color, the 
reader is referred to the web version of this article.)

HR high extinction risk, LR low extinction risk
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pointed out, the commercial value of species condi-
tions research priorities, and thus scientific knowl-
edge is less extensive for species that are legally pro-
tected, such as the blue skate (Dipturus batis), whose 
fishing is prohibited in the Mediterranean by the Spe-
cially Protected Areas / Biological Diversity (SPA/
BD) protocol and for which diet reports were not 
found. Besides, threatened species tend to be scarce 
and, therefore, less likely to be fished.

This lack of trophic ecology information hinders 
the representation of endangered species in ecosystem 
models, with the consequent underrepresentation of 
their role (Barría et al. 2015). Scientific surveys target-
ing these species could help understand their trophic 
ecology. However, the impacts on their low abun-
dances could be detrimental. More effort is needed in 
areas with a high abundance of chondrichthyans such 
as the central Mediterranean, which reported more 
than twice the elasmobranchs incidental catch than the 
rest areas of the Mediterranean (FAO 2020). Yet, the 
Algero-Provençal basin was the area that contributed 
with more reports, and the most studied species cor-
responded to abundant species in the western Medi-
terranean such as the blackmouth catshark and velvet 
belly lantern shark (Etmopterus spinax; Giménez et al. 
2020), two species of small demersal sharks commonly 
captured by bottom trawl survey campaigns like the 

Mediterranean International Trawling Survey (MED-
ITS; Bertrand et al. 2002; Follesa et al. 2019).

Trophic ecology of Mediterranean chondrichthyans

Trophic ecology studies usually rely on stomach 
content analysis, requiring large sample sizes 
to obtain an accurate representation of prey 
composition, especially in chondrichthyan species, 
which often present empty stomachs (Navarro 
et  al. 2014 and references therein). These samples 
are difficult to obtain, particularly for threatened 
species such as the little sleeper shark (Somniosus 
rostratus), which was only reported in one study 
that analyzed 3 individuals (Barría et  al. 2015). In 
addition, the lack of samples forces many studies 
to analyze both juveniles and adults together, even 
though ontogenetic shifts in the diet have been 
already reported in sharks (Barría et  al. 2018) 
and rays (e.g., skates showing diet shifts from 
crustaceans in smaller individuals to teleost fishes 
in larger ones; Ebert and Bizzarro 2007). For the 
same reasons, few studies take into account seasonal 
variability in chondrichthyans trophic ecology (e.g., 
Romanelli et al. 2006; Filiz 2009). Overall, adequate 
representation of the diet of chondrichthyans 
gets complicated by differences in diet that occur 

Fig. 7  Representation of 
the Mediterranean meta-
web with emphasis on 
chondrichthyan species. 
Functional group numbers 
are presented in Table 3, but 
see Online Resource 1 for a 
detailed description of the 
meta-web
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within species, among individuals of different 
sizes, geographical locations, and during different 
seasons (Carrier et  al. 2006). Besides, soft prey 
like gelatinous plankton are usually underestimated 
because of their rapid degradation (Cardona 
et  al. 2012; Fernández-Corredor et  al. 2023), 
and prey with hard structures (e.g., cephalopod 
beaks) can accumulate and be overrepresented 
in number (Stergiou and Karpouzi 2002). These 
limitations could be partially overcome with other 
methods such as stable isotope analyses or DNA 
metabarcoding from cloacal swabs, which allows an 
estimation of the relative contribution of each prey 
in their predator diet without the need for a lethal 
approach (Barría et al. 2018; van Zinnicq Bergmann 
et al. 2021).

Although stomach content allows higher taxo-
nomic resolution than other methods like SIA, we 
found high percentages of unidentified prey or low 

taxonomic resolution (e.g., teleosts) in some stud-
ies using stomach contents, such as in the case of 
the nursehound (Scyliorhinus stellaris) diet reported 
by Yemisken et al. (2019). Overall, the difference in 
prey taxonomic resolution, together with the different 
number of reports per species and the use of differ-
ent metrics when presenting prey proportions, hinders 
standardization of species trophic ecology.

Since the present study aimed to obtain an 
overview of the ecological role of sharks, rays, and 
chimaeras in the Mediterranean food web, we used 
a low taxonomic resolution of the diet composition, 
which is likely conditioning our results. We found 
evidence for differences in prey composition among 
taxonomic groups: sharks fed mainly on teleost 
fishes and cephalopods, as stated by Cortés (1999); 
and rays fed more on crustaceans and teleost fishes, 
as found by Ebert and Bizzarro (2007). However, 
trophic segregation among sizes and habitats was 
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not statistically significant, which could be due 
to not considering the habitat and size of prey in 
the analyses. For many marine predators, prey is 
conditioned by mouth size (Morlon et al. 2014), thus, 
although the consumption of particular prey groups 
showed no clear differences among sizes, the specific 
composition of the diet did. For example, small 
demersal sharks showed different trophic links than 
large demersal sharks (Online Resource 1). Besides, 
size and habitat do relate to conservation status, with 
larger species being more likely to be threatened than 
smaller ones (Dulvy et al. 2021) and pelagic species 
suffering a higher extinction risk than demersal ones 
(Walls and Dulvy 2021).

Mediterranean meta-web and extinction scenarios

Chondrichthyans’ predatory role can modulate prey 
diversity and size distributions, or even the foraging 
behavior of prey, by regulating ecosystem functions 
such as nutrient recycling and structural habitat 
complexity (Field et  al. 2009). Results from our 
extinction simulations showed that the disappearance 
of chondrichthyan species from the Mediterranean 
marine food web can have impacts at the ecosystem 
level, which are evident at the topology level, as 
has been shown previously for other Mediterranean 
organisms (Sala 2004). Our results also pointed out 
the important role that chondrichthyan species can 
play in Mediterranean marine food webs according to 
the number of trophic links they can be related with 
and according to the potential high trophic levels 
achieved in these ecosystems.

Overall, levels of omnivory found in this study were 
around 80%, which was in accordance with Dunne 
et  al. (2004), who found that marine food webs have 
higher levels of omnivory than terrestrial ones (which 
range between 21 and 76%). The proportion of spe-
cies feeding at multiple trophic levels was consistent 
and omnivory values did not change when the most 
uncertain links were removed. However, according to 
our scenarios, the extinction of threatened chondrich-
thyans may lead to a reduction in omnivory, increas-
ing the likelihood and magnitude of trophic cascades, 
that are buffered in the presence of strong omnivory 
(Bascompte et al. 2005). Higher values of connectance 
were found when removing threatened chondrich-
thyans. Changes in connectance were greater when 
more nodes were removed except for the removal of 

large species (simulation 6) when compared with the 
removal of small and medium ones. These changes can 
be interpreted differently depending on their origin: 
low connectance can reflect ecosystem degradation if 
the changes are due to a loss of trophic links between 
the nodes (Dunne et al. 2002). However, when changes 
in connectance are due to the loss of nodes in the food 
web, as in our extinction scenarios, higher values of 
connectance are related to lower structural complexity 
(Bornatowski et al. 2014). These alterations produced 
by species loss constitute a decrease in robustness, 
which relates to the maintenance of network integ-
rity and also has consequences for stability (Sánchez-
Carmona et al. 2013). Therefore, food web robustness 
could be more affected by the extinction of large-sized 
chondrichthyans compared to small and medium ones. 

On the other hand, large species also showed greater 
contribution to trophic dissimilarity when compared 
to small and medium-sized species. Therefore, our 
results suggest that a special focus on the conservation 
of large species is needed: higher similarity between 
functional groups could enhance competition and lead 
to a less diverse system (Morlon et al. 2014). In fact, 
all Mediterranean large pelagic sharks are considered 
endangered or critically endangered (Table S1; IUCN 
2021), and species composition is changing: larger 
sharks such as the thresher shark (Alopias vulpinus) 
and hammerhead sharks (Sphyrna spp.) which were 
frequently reported by fishers in the past, have been 
replaced by smaller species such the blue shark (Prion-
ace glauca) (Coll et al. 2014). This is in line with the 
historical change in populations of large sharks in the 
Mediterranean Sea (Ferretti et al. 2008).

Our scenarios of the extinction of sharks and rays 
were tested using qualitative modelling, and, since 
neither biomasses nor abundances were considered, 
trophic cascade effects could not be investigated. Our 
analysis of extinction consequences was limited to 
the qualitative topological changes, such as changes 
in connectance and omnivory of the system. Future 
studies using quantitative modelling could extend our 
study to evaluate the quantitative effects of our quali-
tative simulations.

Conclusions

Whether it is due to an increase in scientific knowl-
edge, a genuinely worsened status, or a combination of 
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both, the number of threatened chondrichthyans keeps 
growing (Dulvy et al. 2021). Actual exploitation rates 
are unsustainable over the long term, suggesting that 
the majority of chondrichthyan populations will con-
tinue to decline under current fishing pressure (Worm 
et al. 2013; Dulvy et al. 2021; Juan-Jordá et al. 2022). 
Most populations are ecologically extinct and the 
effects of their decline are difficult to assess or study 
in  situ, that is why theoretical/qualitative approaches 
are relevant. 

Overall, our analyses showed an increase in 
trophic similarity and a reduction in omnivory with 
the extinction of threatened chondrichthyans, high-
lighting the contribution of large species to a more 
resilient and diverse system. Thus, conserving these 
large species is not only a matter of ecological con-
servation of individual species but also a key strategy 
for maintaining the overall health and functionality of 
the ecosystem. Some common measures such as the 
implementation of MPAs are not enough to protect 
large mobile species therefore other dynamic meas-
ures should be explored (Heupel et  al. 2014). Our 
results underline the need for decisive and effective 
measures to improve fisheries management that focus 
on chondrichthyan protection to prevent regional spe-
cies extinctions, which are already happening in the 
Mediterranean Sea (Dulvy et  al. 2021; Nuez et  al. 
2021; Walls and Dulvy 2021); and to preserve eco-
system diversity, complexity, and resilience (Field 
et al. 2009). The present results provide a comprehen-
sive picture of the trophic ecology of Mediterranean 
chondrichthyans and highlight that further research 
is needed to consider all the species and incorporate 
explicitly in the analysis the ontogenetic variations of 
their diets, which could lead to a better understand-
ing and representation of their key role in marine food 
webs. We present a first step towards the analysis of 
food-web complex interactions where Mediterranean 
chondrichthyan species intervene. Future iterations of 
this work can be used to test additional typologies of 
sub-systems within the Mediterranean meta-web and 
additional extinction scenarios, where the fate of their 
prey should also be considered. In addition, this study 
can be the baseline from where quantitative model-
ling applications can be developed to assess the quan-
titative effects of our extinction scenarios.
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