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Abstract One-third of all elasmobranchs (sharks 
and rays) are threatened with extinction. Euryha-
line and estuarine generalist elasmobranchs are a 
group of 29 species that occupy non-marine envi-
ronments during particular life-stages. These species 
are poorly known and disproportionately threatened, 
with 72.4% at risk of extinction or Data Deficient. A 
detailed knowledge of a species’ life history charac-
teristics, movement ecology, habitat use, and popu-
lation structure are required for the implementation 
of appropriate management and conservation meas-
ures. To date, research on euryhaline and estuarine 
species has lagged behind marine species. Here, a 
literature review and gap analysis of the euryhaline 
and estuarine species was conducted to identify gaps 
in 14 key parameters required for management. Of 
the 29 species, only the Bull Shark (Carcharhinus 

leucas) and the Largetooth Sawfish (Pristis pristis) 
had detailed information on a majority of parame-
ters assessed. Nine species lack information on most 
parameters, while the Broadnose Wedgefish (Rhyn-
chobatus springeri) lacks information on all but one 
of the parameters investigated. There is a high level 
of understanding of age- and size-at-maturity, size-
at-birth, and growth for only five species, while nine 
species have estimates of natural mortality. Compre-
hensive reproductive biology data is unavailable for 
six species. Both short- and long-term movement 
ecology is well-understood for only two species, and 
habitat use for six species. Population structure has 
been studied in only eight species. Data on key life 
history parameters, population structure, and habitat 
requirements of the euryhaline and estuarine elasmo-
branchs are urgently required to develop appropriate 
management strategies and to secure populations.

Keywords Elasmobranchs · Euryhaline · Estuarine · 
Conservation · Management

Introduction

Biodiversity loss resulting from anthropogenic activi-
ties is a global concern (Millennium Ecosystem 
Assessment, 2005; Butchart et al. 2010; Jaureguiberry 
et  al. 2022). Ecosystems have changed rapidly over 
the past ~ 70 years, primarily due to overexploitation 
by humans, habitat loss and degradation, invasive 
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species, nutrient pollution, and climate change (Mil-
lennium Ecosystem Assessment 2005; Butchart et al. 
2010; Jaureguiberry et  al. 2022). Subsequently, spe-
cies extinction rates are significantly exceeding nor-
mal background levels (Hoffmann et al. 2010; Hooper 
et  al. 2012). Freshwater, estuarine, and marine spe-
cies have been particularly affected by anthropogenic 
pressures and have undergone significant declines in 
diversity and abundance (e.g., Dudgeon et  al. 2006; 
Selig et al. 2014; Dulvy et al. 2021). Freshwater and 
estuarine ecosystems and the immense species rich-
ness they support are particularly threatened due to 
their proximity to human populations and threaten-
ing processes (Dudgeon et al. 2006). Aside from their 
intrinsic value, healthy ecosystems provide several 
crucial services to humans, such as water, food, dis-
ease prevention, and climate regulation (Millennium 
Ecosystem Assessment 2005; Hooper et al. 2012). As 
recognition for the importance of maintaining bio-
diversity has grown, protection of biodiversity has 
become a priority for conservation scientists, resource 
managers, and policymakers (Selig et al. 2014).

The cartilaginous fishes (class Chondrichthyes) 
are one of the three major extant fish lineages. They 
are comprised of the elasmobranchs (sharks and rays) 
and the holocephalans (chimaeras) and are one of the 
most evolutionary distinct radiations of vertebrates on 
the planet (Compagno 1990; Stein et al. 2018). They 
are also now one of the most threatened groups on 
the planet. According to the International Union for 
the Conservation of Nature Red List of Threatened 
Species (hereafter ‘IUCN Red List’), 32% (397 spe-
cies) are currently threatened with extinction (Criti-
cally Endangered, Endangered, or Vulnerable; IUCN 
2023). Chondrichthyans generally have low rates of 
population increase and reduced capacity to recover 
from anthropogenic threats such as overfishing and 
habitat loss and degradation (Musick 1999; Jabado 
et  al. 2018b). Although variation among species is 
considerable, chondrichthyans typically have slow 
growth, low fecundity, long life spans, relatively 
late age-at-maturity, and have low natural mortality 
(Musick 1999; White and Kyne 2010; Jabado et  al. 
2018b). Overfishing is the sole threat for over two-
thirds of all threatened chondrichthyans, and catch 
statistics are often under-reported or unreported 
(Dulvy et al. 2021; Jorgensen et al. 2022).

While chondrichthyans are primarily marine spe-
cies, non-marine elasmobranchs comprise a relatively 

small number of species. Non-marine species can 
be freshwater obligate, euryhaline generalist, estua-
rine generalist, non-marine transient, or non-marine 
vagrant, and elasmobranchs are categorised into one 
of these five groups by how species interact with their 
environments throughout critical parts of their life 
histories (see Grant et al. 2019). The latter two groups 
(transients and vagrants) are primarily marine and 
do not rely on non-marine environments (Grant et al. 
2019). Freshwater obligate, euryhaline generalist, and 
estuarine generalist elasmobranch species constitute 
6.1% of the world’s described elasmobranch species 
(74 of 1,209 species; Grant et  al. 2019; Ebert et  al. 
2021b; Kyne and Lucifora 2022). The 29 euryhaline 
generalist and estuarine generalist species (hereafter 
‘euryhaline’ and ‘estuarine’ species, respectively; see 
definitions in Methods) are disproportionately at risk 
of extinction or are severely unknown, with 72.4% 
(21 species) listed as threatened with extinction (20 
species, 69.0%) or Data Deficient (one species, 3.4%) 
on the IUCN Red List (IUCN 2023; Table  1). This 
highlights an urgent need for appropriate manage-
ment of their habitats and populations.

Estuaries and rivers are highly productive and sup-
port high levels of biodiversity. River systems are 
however, becoming increasingly degraded and the 
landward boundaries of river systems minimise the 
ability of non-marine elasmobranch species to evade 
threats (Nilsson et  al. 2005; Knip et  al. 2010; Lyon 
et al. 2017), making them increasingly susceptible to 
anthropogenic pressures. Unfavourable conditions in 
non-marine environments are also likely to become 
more frequent and severe with climate change and 
increased reliance on these systems by humans (Grant 
et  al. 2019; Lennox et  al. 2019). Non-marine elas-
mobranch species also primarily occur in tropical 
regions (Grant et al. 2019) where elasmobranchs face 
an elevated risk of extinction due to larger human 
population growth in these regions and resulting high 
rates of overfishing, habitat modification and destruc-
tion, and pollution (Compagno and Cook 1995; Knip 
et al. 2010; Grant et al. 2019; Dulvy et al. 2021).

The physical parameters of estuarine and fresh-
water environments, such as temperature, salinity, 
dissolved oxygen, and turbidity are highly variable 
compared with marine environments (e.g., Wenner 
et al. 2004; Mateus et al. 2008; Regnier et al. 2013). 
Environmental variability can influence behaviour 
of elasmobranchs, for example, species moving 
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up- or downstream in response to tidal and seasonal 
fluctuations in salinity (Dwyer et  al. 2020; Pillans 
et  al. 2020). Resource use and activity in euryha-
line elasmobranchs may also change ontogenetically 

(Simpfendorfer et  al. 2010). Adults of euryhaline 
elasmobranch species may occur in any salinity, while 
juveniles are likely to be found in lower salinities or 
freshwater and are rarely seen in marine environments 

Table 1   Euryhaline and estuarine elasmobranchs by family. Regularly used or recent synonyms were sourced from Fricke et  al. 
(2022). The number of species in each family relative to the global total (Ebert et al. 2021b) is provided under each family name

IUCN Red List of Threatened Species categories: CR, Critically Endangered; EN, Endangered; VU, Vulnerable; NT, Near Threat-
ened; LC, Least Concern; DD, Data Deficient (IUCN 2023). Adapted from Grant et al. (2019)

Family Species Synonym(s) Common name IUCN 
Red List 
category

Euryhaline species
Carcharhinidae (4/56 spp) Carcharhinus leucas Bull Shark VU

Glyphis gangeticus Glyphis fowlerae
Glyphis siamensis

Ganges River Shark CR

Glyphis garricki Northern River Shark VU
Glyphis glyphis Speartooth Shark VU

Pristidae (1/5 spp) Pristis pristis Pristis microdon
Pristis perotteti

Largetooth Sawfish CR

Dasyatidae (5/97 spp) Hemitrygon bennettii Dasyatis bennettii Bennett’s Stingray VU
Hypanus guttatus Dasyatis guttata Longnose Stingray NT
Hypanus sabinus Dasyatis sabina Atlantic Stingray LC
Urogymnus dalyensis Himantura dalyensis Freshwater Whipray LC
Urogymnus polylepis Himantura polylepis

Himantura chaophraya
Giant Freshwater Whipray EN

Estuarine species
Dasyatidae (12/97 spp) Fontitrygon colarensis Dasyatis colarensis Colares Stingray CR

Fontitrygon margarita Dasyatis margarita Daisy Whipray VU
Fontitrygon margaritella Dasyatis margaritella Pearl Whipray NT
Hemitrygon fluviorum Dasyatis fluviorum Estuary Stingray NT
Himantura australis Australian Whipray LC
Himantura uarnak Raja uarnak

Himantura tutul
Coach Whipray EN

Hypanus say Dasyatis sayi
Dasyatis say

Bluntnose Stingray NT

Pastinachus ater Pastinachus atrus Broad Cowtail Ray VU
Pastinachus solocirostris Roughnose Cowtail Ray EN
Pateobatis hortlei Himantura hortlei Hortle’s Whipray NT
Urogymnus acanthobothrium Mumburarr Whipray DD
Urogymnus lobistoma Himantura lobistoma Tubemouth Whipray EN

Pristidae (4/5 spp) Anoxypristis cuspidata Narrow Sawfish EN
Pristis clavata Dwarf Sawfish CR
Pristis pectinata Smalltooth Sawfish CR
Pristis zijsron Green Sawfish CR

Rhinidae (1/10 spp) Rhynchobatus springeri Broadnose Wedgefish CR
Rhinopteridae (1/10 spp) Rhinoptera bonasus American Cownose Ray VU
Rajidae (1/157 spp) Zearaja maugeana Dipturus maugeanus Maugean Skate EN
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(Thorburn and Rowland 2008; Pillans et  al. 2009; 
Morgan et  al. 2011; Grant et  al. 2019). Euryhaline 
species retain functional osmoregulatory organs that 
are required in both freshwater and marine environ-
ments (Pillans et al. 2005; 2006; Ballantyne and Rob-
inson 2010). There is no indication that juveniles of 
euryhaline species are physiologically restricted to 
specific salinity environments – rather juveniles may 
be using nursery areas for other ecological reasons, 
such as to avoid large coastal predators, avoid com-
petition from other marine species, or prefer specific 
upstream conditions (e.g., light, temperature) (Heu-
pel et al. 2007; Grant et al. 2019; Pillans et al. 2020). 
Estuarine species are typically found in low salinity 
areas of estuaries as juveniles and in marine environ-
ments as adults (Grant et  al. 2019). Unlike euryha-
line species, estuarine elasmobranchs may not have 
the physiological adaptations to cope with freshwa-
ter environments, as they do not occur in freshwa-
ter environments for prolonged periods (Grant et  al. 
2019). Identification of estuarine species is difficult as 
the physiology and osmoregulatory differences of the 
estuarine species described by Grant et al. (2019) has 
not been explicitly studied.

For most non-marine elasmobranch species, fun-
damental life history traits, movement ecology, 
habitat use, and distribution of species throughout 
their life cycles are poorly understood (Grant et  al. 
2019). Understanding life history, biology, and natu-
ral mortality of a species is required to manage its 
population, facilitate recovery, and understand how 
species may respond to threats or disturbance, such 
as increased mortality from fishing (Simpfendor-
fer et  al. 2008; Jorgensen et  al. 2022; Villagra et  al. 
2022). A knowledge of the mechanisms which drive 
movements, habitat choice, and community struc-
ture is also critical for understanding how a species 
may respond to environmental changes and to imple-
ment appropriate protective measures (Margules and 
Pressey 2000; Schlaff et al. 2014; Dwyer et al. 2020; 
Pillans et  al. 2022). For many species, particularly 
highly mobile species, it is difficult to effectively 
manage or conserve their entire geographic range 
and life history, thus habitats important for foraging, 
mating, parturition, and juvenile development may 
become critical for protection (Papastamatiou et  al. 
2015; Hyde et al. 2022).

The aim of this study is to conduct a review of the 
life history and ecology of euryhaline and estuarine 

elasmobranchs. This review will identify current 
knowledge gaps in life history, movement ecology, 
habitat use, and population structure research through 
a gap analysis approach. This gap analysis will help 
to identify where data is lacking on the species-level, 
identify broader trends in species groups, and identify 
potential future research areas. Although understand-
ing human dimensions, both through understanding 
uses and values, and threats, is important to species 
conservation, particularly in the global south, this 
study focuses on life history, biology, and ecology. 
The human dimension is outside the scope of this 
review.

Methods

A review was conducted on the existing knowledge on 
important life history and ecological parameters of all 
29 known euryhaline generalist (hereafter, ‘euryha-
line’) and estuarine generalist (hereafter, ‘estuarine’) 
elasmobranch species (following Grant et  al. 2019; 
Table 1). Euryhaline species are capable of living in 
and moving between salinity gradients from marine 
(~ 35 ppt) to estuarine (5–30 ppt) to freshwater (< 5 
ppt), are physiologically capable of prolonged expo-
sure to a range of salinities, and typically use fresh-
water and/or estuarine environments for specific life 
stages (e.g., parturition and/or nursery areas) (Grant 
et  al. 2019). Estuarine species commonly occur in 
environments ranging from estuarine to marine, are 
physiologically capable of occurring in lower salinity 
waters of estuaries for prolonged periods, however, 
cannot withstand prolonged exposure to freshwater, 
and typically use estuarine environments during early 
life stages (e.g., nursery areas) (Grant et al. 2019).

Parameters reviewed for each species consisted 
of maximum recorded size, size-at-birth, size- and 
age-at-maturity, maximum age (observed or age at 
which asymptotic growth reached), growth, genera-
tion length, natural mortality, reproductive mode and 
cycle, litter size, gestation length, parturition (season-
ality), short- and long-term movement ecology, habi-
tat use, depth range, and population structure, and 
these fell under four main topics (Tables 2, 3). 

Searches were conducted online via Google 
Scholar and the Charles Darwin University Library 
search database. Searches were initially conducted 
using species names and regularly used or recent 
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synonyms (Table  1). Literature encompassing the 
above parameters were then selected. Additional 
search terms were developed by including each 
species’ name and each of the above parameters 
individually, for example ‘Hemitrygon fluviorum 

reproduction’. Articles cited include peer-reviewed 
journal articles, grey literature such as reports to 
governments and organisations, and IUCN Red List 
Assessments (IUCN, 2023) where they contained 
unpublished or primary data.

Where there were a range of values for a particu-
lar parameter, a range encompassing the lowest and 
highest values was given in the results. Variation in 
parameters may result from a parameter being esti-
mated in multiple studies or from regional variation.

Generation length (GL) can be defined as the aver-
age age of parents in the current cohort and there are 
several methods available for calculating this (Cooke 
et  al. 2018). Where data were available, a simple 
measure of GL was calculated using only female age-
at-maturity and maximum age to account for data 
scarcity among these species following Kyne et  al. 
(2021c), where:

Fecundity was calculated as the number of pups 
per year if reproductive periodicity was known.

Once information was gathered, a gap analysis 
was conducted to identify priority research areas. 
Most parameters from Table  2 were included in the 
gap analysis, excluding maximum recorded size, 
reproductive mode and seasonality, depth range, and 
philopatry. Maximum recorded size and depth range 
are basic data which are available for all species and 
therefore excluded from the gap analysis. Reproduc-
tive mode is known or presumed to be viviparous 

GL =
[

(maximum age-age-at-maturity)∕2
]

+ age-at-maturity

Table 2  Summary of the parameters included in the literature 
review on availability of data for euryhaline and estuarine elas-
mobranch species. Parameters with * indicate those that were 
excluded from the gap analysis

Topic Parameter

Growth, age-at-maturity, and 
natural mortality

Maximum recorded size*

Size-at-birth
Size-at-maturity
Age-at-maturity
Maximum age
Growth coefficient (k)
Generation length
Natural mortality

Reproductive biology Reproductive mode*
Reproductive cycle
Litter size and fecundity
Gestation length
Parturition (seasonality)*

Movement ecology and 
habitat use

Short-term movement ecology

Long-term movement ecology
Habitat use
Depth range*

Population structure Genetic population structure
Philopatry*

Table 3  Definitions of some key parameters reviewed for each species

Definition

Natural mortality Natural (e.g., predation, disease, old age) rate of loss of a population (Villagra et al. 2022)
Movement ecology The study of individuals in a population and their behaviours within their (local) environments with a focus on 

environmental and biological causes and consequences of movement (Jeltsch et al. 2013)
Habitat use The proportion of time that an animal spends in a particular habitat, that is, an environmental space which is 

made up of environmental variables that may be biotic or abiotic, dynamic or static (Johnson 1980; Beyer 
et al. 2010)

Nursery area A location where newborns or young-of-the-year are more commonly encountered than other areas, where 
juveniles remain or return for extended periods (weeks or months), and which is repeatedly used across years 
(Heupel et al. 2007)

Population structure The identification of subpopulations with genetic differentiation (Frisk et al. 2014)
Philopatry The tendency for individuals to return to their natal sites (often for breeding – reproductive philopatry) which 

can be indicative of complex migrations/movement (Chapman et al. 2015)
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for all species, except for Zearaja maugeana which 
is oviparous (Grant et al. 2019; Awruch et al. 2021), 
and philopatry is included within population struc-
ture for the purposes of the gap analysis. The exclu-
sion of these parameters results in 14 gap analysis 
parameters. A level of understanding for the remain-
ing parameters was assessed and categorised as 
high, medium, and low (no data). These categories 
were assessed for each species and each gap analysis 
parameter based on the outcomes of the review. For 
example, (a) for age-at-maturity, if age-at-maturity 
for a species was approximately estimated with no 
information on difference between age-at-maturity 
between sexes, the species was categorised as hav-
ing a medium level understanding of this parameter; 
if no estimate of age-at-maturity has been made, 
the species was categorised as having a low level 
of understanding for that parameter; (b) if litter size 
was known for a number of individuals of a species, 
the species was categorised as having a high level 
of understanding for that parameter; if a species had 
a litter size from only one individual, that species 
was categorised as having a medium level of under-
standing; and if there were no records of litter size, 
the species was categorised as having a low level of 
understanding.

Results

Available information on the growth, age- and-size-
at-maturity, and natural mortality, reproductive biol-
ogy, movement ecology and habitat use, and popu-
lation structure (Table  2) of the 29 euryhaline and 
estuarine species (Table 1) are presented in the Sup-
plementary Information (Online Resources 1–4). 
A gap analysis follows summarising the level of 
understanding for all species across each parameter 
(Table 4).

Of 14 parameters included in the gap analysis 
(Table  4), only two species (6.9%) had a high level 
of understanding of at least 80% of these parameters 
(euryhaline species; Carcharhinus leucas and Pristis 
pristis). Seven species (24.1%) had a high level of 
understanding of 40–79% of parameters (two euryha-
line species [20.0%]:  Hypanus guttatus, H. sabinus; 
five estuarine species [26.3%]: Fontitrygon marga-
ritella, Hypanus say, Anoxypristis cuspidata, Pristis 
pectinata, Rhinoptera bonasus). Most species (69.0%) 

had a high level of understanding of less than 40% of 
parameters. Nine species had a low level of informa-
tion for at least 80% of the gap analysis parameters 
(31.0%; two euryhaline species [20.0%]: Glyphis 
gangeticus, Hemitrygon bennettii; seven estuarine 
species [36.8%]: F. colarensis, F. margarita, Him-
antura uarnak, Pastinachus solocirostris, Pateobatis 
hortlei, Urogymnus lobistoma, Rhynchobatus spring-
eri). Rhynchobatus springeri was lacking information 
on all but one of the gap analysis parameters.

Growth, age-at-maturity, and natural mortality

Only five species (17.2%; three euryhaline [30.0%]: 
C. leucas, P. pristis, H. guttatus; two estuarine 
[10.5%]: F. margaritella, R. bonasus) have a high 
level of information of age- and size-at-maturity, 
size-at-birth, and a growth coefficient estimate (k). 
Considerable variation exists in growth and age-at-
maturity in euryhaline and estuarine species (Online 
Resource 1). Pristis zijsron attains the largest body 
size at 730 cm total length (TL; Compagno et  al. 
1989), followed by P. pristis at 705 cm TL (Devadoss 
et al. 1989), and F. margaritella is the smallest-bod-
ied species, attaining 34 cm disc width (DW; Moore 
et al. 2019) (Online Resource 1).

Anoxypristis cuspidata is estimated to be the fast-
est growing species (k 0.31  year–1; Peverell, 2009), 
followed by R. bonasus (0.262  year–1; Fisher et  al. 
2013). The slowest growth estimates are for C. leu-
cas (0.035  year–1; Thorburn and Rowland 2008) and 
P. pristis (0.045  year–1; Simpfendorfer 2000). Car-
charhinus leucas is estimated to be the longest-lived 
species, with a maximum observed age of 48.9 years 
(Wintner et  al. 2002). Anoxypristis cuspidata is the 
shortest-lived species, reaching 9 years (Peverell 
2009). Of the eleven species aged, mean maximum 
age is 24.8 years.

The earliest age-at-maturity among the euryhaline 
and estuarine species is two years in male F. mar-
garitella and A. cuspidata (Peverell 2009; Clements 
et al. 2022). Carcharhinus leucas has the latest age-
at-maturity, with males maturing at up to 25 years 
old in the Indo-Pacific (Wintner et al. 2002). Among 
species with larger distributions, regional variation 
in growth, size, and maturity have been recorded 
(e.g., C. leucas [e.g., Wintner et al. 2002; Tillett et al. 
2011], P. pristis [Thorson 1976; Peverell 2009], H. 
guttatus [Yokota and Lessa 2007], R. bonasus [Neer 
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and Thompson 2005; Fisher et al. 2013]). Carcharhi-
nus leucas has the longest generation length (up to 35 
years; this study) and A. cuspidata has the shortest 
generation length of 6 years (this study).

Natural mortality has been estimated for nine spe-
cies (31.0%; three euryhaline species [30.0%]; six 
estuarine species [31.6%]) (Online Resource 1). All 
five sawfish species have estimates of natural mor-
tality, forming the majority of natural mortality 
information among euryhaline and estuarine species 
combined. Among euryhaline species, natural mor-
tality ranges from 0.08  year–1 (C. leucas, life-history 
and telemetry data; Heupel and Simpfendorfer 2011) 
to 0.866  year–1 (P. pristis, telemetry data; Buckley 
et al. 2020). Rhinoptera bonasus has the lowest natu-
ral mortality of estuarine species (0.076  year–1, age-
dependent; Myers et al. 2007), and A. cuspidata has 
the highest (0.631  year–1, age-dependent; Moreno 
Iturria, 2012).

Reproductive mode and biology

All euryhaline and estuarine species are viviparous or 
presumed viviparous, except for Z. maugeana which 
is oviparous (Grant et al. 2019; Awruch et al. 2021). 
All euryhaline sharks are viviparous with placentotro-
phy (Pillans et al. 2009; White et al. 2015; Pirog et al. 
2019; Bester-van der Merwe et  al. 2022). The saw-
fishes and R. springeri are lecithotrophic viviparous 
(e.g., Thorson 1976; White et  al. 2017; Kyne et  al. 
2020), and the dasyatid rays are histotrophic vivipa-
rous (e.g., Last et al. 2006; White et al. 2006; White 
et al. 2017).

Litter sizes range from 1–20 pups, although there 
is considerable variation between species. The major-
ity of euryhaline and estuarine species produce lit-
ters of up to five pups (15 species; 51.7%) (Online 
Resource 2). Larger litter sizes are observed in the 
carcharhinid sharks, the sawfishes, and Z. maugeana 

Table 4  Gap analysis of availability of information on growth 
and age-at-maturity, reproductive biology, movement ecology, 
habitat use, and population structure of the euryhaline and 

estuarine elasmobranchs. Cells shaded green represent a high 
level of understanding, yellow represents a medium level, and 
red represents a low level (see Methods)

Species Sbir Smat Amat Amax k GL M RC LS GesL STM LTM Hab PopS
Euryhaline species
Carcharhinus leucas
Glyphis gange�cus
Glyphis garricki
Glyphis glyphis
Pris�s pris�s 
Hemitrygon benne�i
Hypanus gu�atus
Hypanus sabinus
Urogymnus dalyensis
Urogymnus polylepis
Estuarine species
Fon�trygon colarensis
Fon�trygon margarita
Fon�trygon 
margaritella 
Hemitrygon fluviorum
Himantura australis
Himantura uarnak 
Hypanus say 
Pas�nachus ater 
Pas�nachus 
solocirostris
Pateoba�s hortlei
Urogymnus 
acanthobothrium
Urogymnus lobistoma
Anoxypris�s cuspidata
Pris�s clavata
Pris�s pec�nata
Pris�s zijsron
Rhynchobatus springeri
Rhinoptera bonasus
Zearaja maugeana

Sbir, size-at-birth; Smat, size-at-maturity; Amat, age-at-maturity; Amax, maximum age; k, growth coefficient; GL, generation length; 
M, natural mortality; RC, reproductive cycle; LS, litter size; GesL, gestation length; STM, short-term movement ecology; LTM, 
long-term movement ecology; Hab, habitat use; PopS, population structure.
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is also predicted to produce up to 20 eggs per batch, 
possibly multiple times per year (Bell et  al. 2016; 
Awruch et  al. 2021). The smallest litter sizes are 
among the dasyatid rays, with eight species (27.6%) 
producing three pups or less per reproductive cycle 
(Online Resource 2).

There is no information on reproductive biol-
ogy for G. gangeticus, H. bennettii, U. dalyensis, P. 
hortlei, P. clavata, or R. springeri. Reproductive cycle 
is unknown for 18 species (62.1%) and presumed in a 
further five species (17.2%; three euryhaline [30.0%]: 
C. leucas [Brunnschweiler and Baensch 2011; Pirog 
et al. 2019], G. garricki [Pillans et al. 2009], H. gutta-
tus [Yokota and Lessa 2007]; two estuarine [10.5%]: 
H. fluviorum [Pierce and Bennett 2010a], A. cuspi-
data [Peverell 2009]) (Table 4). Potential regional dif-
ferences in reproductive cycle have been noted  in P. 
pristis, with a suspected biennial cycle in Lake Nica-
ragua (Thorson 1976) and a suspected annual cycle in 
northern Australia (Peverell 2009).

Movement ecology and habitat use

There is a high level of understanding of both short- 
and long-term movement for two species (6.9%; C. 
leucas, P. pristis). A further seven species (24.1%) 
have at least a medium level of understanding of both 
short- and long-term movement ecology (three eury-
haline [30.0%]: G. glyphis [juveniles only], H. sabi-
nus, U. dalyensis; four estuarine [21.1%]: P. clavata, 
P. pectinata, P. zijsron, R. bonasus) (Table 4, Online 
Resource 3).

Short-term movement ecology is thought to 
follow tidal cycle and direction for eight species 
(27.6%; five euryhaline [50.0%], three estuarine 
[15.8%]: C. leucas [Pillans 2006; Ortega et  al. 
2009; Pillans et al. 2020], G. glyphis [Pillans et al. 
2008; Pillans et  al. 2009], P. pristis [Whitty et  al. 
2009; Buckley et al. 2020], U. dalyensis [Campbell 
et al. 2012], H. sabinus [Brinton and Curran 2017], 
P. ater [Martins et  al. 2020], P. clavata [Stevens 
et  al. 2008], P. zijsron [Morgan et  al. 2017]). Ten 
species undergo seasonal migrations in response to 
environmental factors such as salinity and tempera-
ture (34.4%; five euryhaline [50.0%], five estuarine 
[17.2%]: C. leucas [Thorburn and Rowland 2008; 
Espinoza et al. 2021], G. glyphis [Lyon et al. 2017; 
Dwyer et  al. 2019; Pillans et  al. 2022], P. pristis 
[Peverell 2009], H sabinus [Ramsden et  al. 2017; 

Brinton and Curran 2017], U. dalyensis [Campbell 
et  al. 2012], F. colarensis [Last et  al. 2016a], P. 
clavata [Morgan et al. 2021], P. pectinata [Simpfen-
dorfer et al. 2011], P. zijsron [Morgan et al. 2017], 
R. bonasus [Collins et al. 2008; Fisher et al. 2013]) 
(Online Resource 3).

Euryhaline and estuarine species are benthic, 
demersal, and pelagic in marine waters, estuaries, riv-
ers, floodplains, and lakes (Online Resource 3). Seven 
species (24.1%; two euryhaline [20.0%]: G. gangeti-
cus, U. polylepis; five estuarine [26.3%]: H. uarnak, 
H. say, P. solocirostris, U. lobistoma, R. springeri) 
have no habitat use information aside from knowl-
edge of habitat based on presence/absence or capture 
locations. Habitat use is understood at a high level in 
six species (20.7%; four euryhaline [40.0%]: C. leu-
cas, G. glyphis (juveniles only), P. pristis, H. sabinus; 
two estuarine [10.5%]: Z. maugeana, P. pectinata) 
(Table 4).

Euryhaline and estuarine species occur at a range 
of depths, from 0 to 164 m (Online Resource 3). The 
majority occur in shallow waters with depths of up 
to 50 m (16 species, 55.2%; G. gangeticus, G. gar-
ricki, G. glyphis, P. pristis, H. bennettii, H. sabinus, 
U. dalyensis, F. colarensis, H. fluviorum, H. australis, 
H. uarnak, P. hortlei, U. lobistoma, A. cuspidata, P. 
clavata, R. springeri). Habitat partitioning between 
juveniles and adults occurs or is presumed based on 
depths or ontogenetic diet changes in eleven species 
(37.9%; four euryhaline [40.0%]: C. leucas [Thorburn 
and Rowland 2008], G. glyphis [Feutry et  al. 2017], 
P. pristis [Whitty et  al. 2009], H. guttatus [Yokota 
and Lessa 2007; Gianeti et al. 2019]; eight estuarine 
[42.1%]: H. australis [Cerutti-Pereyra et al. 2014], P. 
ater [Cerutti-Pereyra et al. 2014; Martins et al. 2020], 
U. acanthobothrium [Last et al. 2016b], A. cuspidata 
[Peverell 2005], P. clavata [Morgan et  al. 2021], P. 
pectinata [Poulakis et  al. 2011], P. zijsron [Morgan 
et al. 2017]). Depth partitioning where neonates and 
juveniles usually occur in shallow water and adults 
move into deeper waters is common in species with 
high levels of information on habitat use (as above, 
excluding G. glyphis).

Use of nursery areas by juveniles has been docu-
mented in five species (17.2%; 3 euryhaline [30.0%]: 
C. leucas [e.g., Heupel and Simpfendorfer 2008], 
G. glyphis [Feutry et  al. 2017; Lyon et  al. 2017], 
P. pristis [e.g., Morgan et  al. 2004]; two estuarine 
[10.5%]: A. cuspidata [Peverell 2005], P. pectinata 
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[Simpfendorfer et al. 2011]). The period of time spent 
by these species varies, but can be several years (e.g., 
up to 5 years for C. leucas [Pillans et al. 2020] and at 
the onset of maturation for P. pristis [Thorburn et al. 
2007; Whitty et al. 2008]) and depends on character-
istics of the estuary or species-specific life history.

Population structure

Population genetic data exists for ten species (34.5%; 
five euryhaline species [50.0%]; five estuarine spe-
cies [26.3%]) (Online Resource 4). The five species 
of sawfishes are responsible for most data, followed 
by all four euryhaline carcharhinid sharks. Carcharhi-
nus leucas and P. pristis are the only species for 
which global population structure has been studied, 
where C. leucas has genetic connectivity along con-
tinuous continental coastlines and four global genetic 
clusters (Eastern Pacific, Western Atlantic, Eastern 
Atlantic, and Indo-West Pacific), with isolated popu-
lations in Fiji and Japan (Glaus et al. 2020; Devloo-
Delva et al. 2023). Pristis pristis has different haplo-
types from Atlantic, Indo-West Pacific, and Eastern 
Pacific regions (Faria et al. 2013). Glyphis gangeticus 
and Z. maugeana have only one genetic study each. 
Glyphis gangeticus was found to have recent molecu-
lar gene flow between populations throughout Asia, 
suggesting marine dispersal (Li et al. 2015). Zearaja 
maugeana lacked evidence of population structure at 
a fine scale within the one estuary it is known to per-
sist in (Weltz et al. 2018).

Of the eight species for which there is population 
structure information, female reproductive philopa-
try has been documented in six species (C. leucas, G. 
garricki, G. glyphis, P. pristis, A. cuspidata, P. pec-
tinata), and male-biased dispersal in five (C. leucas, 
G. garricki, G. glyphis, P. pristis, A. cuspidata) (Karl 
et  al. 2011; Phillips et  al. 2011; Tillett et  al. 2012; 
Feldheim et al. 2017; Feutry et al. 2017; Green et al. 
2018; Feutry et  al. 2020; Feutry et  al. 2021; Patter-
son et  al.  2022). Reproductive dispersal is limited 
in G. garricki, G. glyphis, P. clavata, and P. zijsron 
(Phillips et al. 2017; Feutry et al. 2017; 2020; Kyne 
et al. 2021a; Patterson et al. 2022). Multiple paternity 
occurs in C. leucas (Pirog et al. 2019) and some poly-
androus mating occurs in P. pectinata (Feldheim et al. 
2017).

Discussion

Significant gaps exist in the knowledge required for 
appropriate management of elasmobranchs. Basic 
knowledge including species life histories is widely 
unavailable (Jorgensen et  al. 2022). To date, studies 
have primarily involved charismatic or commercially 
important species, and research is generally hindered 
by the availability of funding and logistical problems 
such as accessing habitats (Jorgensen et  al. 2022). 
Knowledge gaps have implications for effective man-
agement and conservation. For example, life history 
parameters are widely used in demographic model-
ling for fisheries management and species conserva-
tion (e.g., Musick 1999; Cailliet 2015). This review 
has identified where research is needed on euryhaline 
and estuarine elasmobranch life history and ecology 
in order to improve the baseline of understanding and 
therefore assist management. Comprehensive gap 
analyses are lacking for other elasmobranch groups, 
but this approach could also be applied to groups 
such as pelagic sharks and rays which also face high 
extinction risk (Pacoureau et al. 2021).

Batoids represent the bulk of euryhaline and estua-
rine elasmobranchs. A large proportion of elasmo-
branch research has focused on sharks, while research 
on batoids has lagged significantly behind (Flowers 
et al. 2016). Despite a decrease in Data Deficient ray 
species over the last decade from 47.5% in 2013 to 
14.4% in 2022 (Flowers et  al. 2016; IUCN 2022), 
many of the euryhaline and estuarine rays remain 
virtually unknown (e.g., Urogymnus polylepis, Fon-
titrygon margarita, Pateobatis hortlei, Pastinachus 
solocirostris, U. acanthobothrium, Rhynchobatus 
springeri; this study). Rays, including the euryha-
line and estuarine rays, form a large proportion of 
commercial and artisanal catch and bycatch (e.g., 
Compagno and Last 2010; Dulvy et al. 2021), and a 
higher proportion (36%) of rays are threatened with 
extinction compared with 31% of sharks (Dulvy et al. 
2021). Increased focus on rays in research is required 
to reflect their extinction risk and high levels of 
exploitation. Taxonomic resolution has also hindered 
research, with many euryhaline and estuarine species 
only being recently taxonomically resolved (e.g., R. 
springeri [Compagno and Last 2010], Glyphis spp. 
[Li et  al. 2015], Pristis spp. [Faria et  al. 2013]), or 
being placed in provisional genera (e.g., F. colaren-
sis; Last et  al. 2016a). Slow species delineation and 
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unresolved nomenclature for many non-marine spe-
cies has made identification, monitoring, and man-
agement more difficult (Last et al. 2016a; Grant et al. 
2019; Kyne and Lucifora 2022).

Like elasmobranchs more broadly, significant 
knowledge gaps exist for euryhaline and estuarine 
species. Of the 29 known euryhaline and estuarine 
species, a high level of understanding of species-
specific life-history (including natural mortality), 
movement ecology, habitat use, and population 
structure is available for only two euryhaline species 
– Carcharhinus leucas and Pristis pristis (e.g., Thor-
son 1976; Peverell 2009; Heupel and Simpfendorfer 
2011; Espinoza et  al. 2021; see Kyne and Lucifora 
2022 for review) (Table  4). Although C. leucas and 
P. pristis have wide global distributions throughout 
tropical and warm-temperate waters (in the latter case 
for C. leucas), the majority of data for the two species 
comes from only three regions (Australia, USA, and 
Nicaragua). This regionally-specific information may 
mask regional differences in biological parameters, 
for example, reproductive periodicity, growth, and 
mortality (e.g., Thorson 1976; Simpfendorfer 2000; 
Peverell 2005; Peverell 2009; Moreno Iturria 2012). 
Even for these species, available data may not be rep-
resentative of wider populations due to its collection 
from isolated populations (e.g., Lake Nicaragua P. 
pristis; Thorson 1976) or due to small sample sizes 
(Kyne et al. 2021c). Effective management strategies 
cannot be implemented where a representative cross-
section of the species is not tracked throughout its 
entire geographical range (Jorgensen et al. 2022).

Nine euryhaline and estuarine species remain 
virtually unknown, with a low level of understand-
ing on the majority of parameters reviewed (2 eury-
haline species: G. gangeticus, Hemitrygon bennet-
tii; 7 estuarine species: F. colarensis, F. margarita, 
Himantura uarnak, P. solocirostris, P. hortlei, U. 
lobistoma, R. springeri). Rhynchobatus springeri in 
particular is lacking information on all but one of the 
14 parameters included in the gap analysis, with only 
an estimate of size-at-maturity for males (Table  4). 
Despite the family Dasyatidae making up the major-
ity of euryhaline and estuarine species (17 of 29 spe-
cies, 58.6%), the five sawfishes comprising the fam-
ily Pristidae have the most overall directed research 
on life history, movement ecology, habitat use, and 
population structure. The lack of research for many 
of these species is likely due to some euryhaline and 

estuarine species only recently being described or 
delineated as well as being difficult to identify (e.g., 
R. springeri [Compagno & Last 2010], U. acanthobo-
thrium [Last et al. 2016b]). Similar species may also 
be lumped together in catch statistics (e.g., F. marga-
rita and F. margaritella recorded as Fontitrygon spp. 
in western Ghana [Seidu et al. 2022]). Euryhaline and 
estuarine elasmobranchs are also often not targeted 
by commercial fisheries although are regularly caught 
and retained as bycatch (e.g., G. gangeticus [Jabado 
et al. 2018a], G. garricki and G. glyphis [Grant et al. 
2021], F. margaritella [Moore et al. 2019; Seidu et al. 
2022], P. zisjron [Elhassan 2018]). The lack of data 
demonstrated here is not representative of a lack of 
conservation need. Many of these species are facing 
a very high risk of extinction, with thirteen (44.8%) 
euryhaline and estuarine species listed as Critically 
Endangered or Endangered (IUCN 2023). A con-
certed effort must be made to fill knowledge gaps and 
manage the conservation of these species and their 
habitats.

Growth, age-at-maturity, and natural mortality

Life history characteristics are crucial for understand-
ing population dynamics and can be used as a meas-
ure of a species’ sensitivity to exploitation (Cailliet 
2015; Jorgensen et al. 2022). A lack of a basic under-
standing of a species’ life history hinders its conser-
vation and appropriate management (Jorgensen et al. 
2022). Age, growth, and natural mortality estimates 
are essential to the management of elasmobranchs 
(Pauly 1980; Natanson et  al. 2018). Elasmobranchs 
generally (although considerable variation exists) are 
large-bodied, have slow growth, and mature at a late 
age, making them particularly vulnerable to overex-
ploitation (Musick 1999). The euryhaline and estua-
rine elasmobranchs exhibit a range of conservative 
life-history characteristics, with considerable varia-
tion in growth and age-at-maturity (Online Resource 
1). Species with an estimated growth coefficient, k, 
below 0.1 are considered to be particularly suscep-
tible to overexploitation (Musick 1999), and eight 
of the 14 euryhaline and estuarine species with esti-
mates of growth fall within this category. The remain-
ing 15 species (51.7%) have no estimate of k, despite 
its importance in management of species. Among 
the reviewed species, the slowest growth rate esti-
mates are for C. leucas (0.035  year–1; Thorburn and 
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Rowland 2008) and P. pristis (0.045  year–1; Simpfen-
dorfer 2000). The von Bertalanffy growth coefficient 
is considered to be an important population parameter 
and is often used in stock assessments, thus sampling 
of a population should consider variables which could 
affect individual growth and sample sizes should be 
as large as possible to be accurate and representative 
of the species (Kimura 2008).

Maximum age and age- and size-at-maturity esti-
mates are a useful proxy for assessing productivity 
and recovery potential (Awruch et al. 2021; Villagra 
et  al. 2022). Despite this, only nine species (31.0%) 
have estimates of both maximum age and age-at-
maturity (Online Resource 1). Estimations of growth 
and age in elasmobranchs rely on lethal techniques 
due to the removal and analysis of vertebral sections 
(Awruch et al. 2021; Villagra et al. 2022). It is there-
fore difficult to obtain a sufficient sample size that 
is representative of the species, particularly for rare 
or threatened species (Villagra et  al. 2022). Aging 
is also difficult to validate, often inaccurate, and is 
an evolving discipline, therefore many older studies 
using these techniques may be inaccurate (Natanson 
et al. 2018; Villagra et al. 2022). As improved aging 
techniques emerge (e.g., Rigby et  al. 2016; Mayne 
et al. 2019), they should be applied to the euryhaline 
and estuarine elasmobranchs to address vital gaps in 
knowledge.

Natural mortality plays a key role in shaping popu-
lations and is fundamental for species-appropriate 
management (Heupel and Simpfendorfer 2011; Zhou 
et al. 2021). Of the 29 euryhaline and estuarine spe-
cies, only 9 species (31.0%) have estimates of natu-
ral mortality (Online Resource 1). The majority of 
these estimates are for the sawfishes, with data on 
all five species (Simpfendorfer 2000; Moreno Iturria 
2012; Buckley et  al. 2020). Direct methods such as 
acoustic telemetry are considered the most accurate 
assessment of natural mortality (Liu et al. 2020). Car-
charhinus leucas and P. pristis are the only species 
for which an estimate of natural mortality has been 
calculated using acoustic telemetry data (Heupel 
and Simpfendorfer 2011; Buckley et  al. 2020). The 
remaining eight species use life-history methods to 
estimate natural mortality. Based on C. leucas and 
P. pristis, mortality generally declines as the ani-
mal ages and becomes larger-bodied (Simpfendorfer 
2000; Heupel and Simpfendorfer 2011; Moreno Itur-
ria, 2012; Buckley et  al. 2020). Rhinoptera bonasus 

has the lowest estimated natural mortality of all eury-
haline and estuarine species, at 0.076  year–1 (age-
dependent) using the Euler-Lotka equation (Myers 
et al. 2007), however this estimate has been debated 
as too low (Grubbs et  al. 2016). The Euler-Lotka 
equation has also been used incorrectly in many stud-
ies (Cortés, 2016; Zhou et al. 2021) and the age-inde-
pendent estimates of 0.26–0.33  year–1 (Myers et  al. 
2007) are more likely. Anoxypristis cuspidata has the 
highest estimated natural mortality (0.631  year–1, age-
dependent; Moreno Iturria 2012), however Moreno 
Iturria (2012) argued that this may have been bio-
logically unlikely and considered more conservative 
estimates (0.424–0.544  year–1) more plausible. Infor-
mation on natural mortality is lacking overall for the 
euryhaline and estuarine species, and direct estimates 
of natural mortality are required for the majority of 
species.

Reproductive mode and biology

Maternal investment has evolved to maximise off-
spring survival while minimising the energetic cost 
to the mother (Williams 1966). As a result, a range 
of reproductive modes are employed by the species 
reviewed here (Online Resource 2). Each reproduc-
tive strategy represents a differing level of maternal 
investment (Musick and Ellis 2005; Bester-van der 
Merwe et  al. 2022). All non-marine elasmobranchs 
are viviparous (live bearing), except for Zearaja 
maugeana which is oviparous (egg laying) (Grant 
et al. 2019; Awruch et al. 2021). Fecundity is gener-
ally higher in oviparous species than viviparous spe-
cies (Bester-van der Merwe et  al. 2022), however 
reproductive output of Z. maugeana is likely reduced 
by its discontinuous reproductive cycle (Awruch et al. 
2021). The dasyatid rays which make up the major-
ity of euryhaline and estuarine elasmobranchs are 
histotrophic viviparous, whereby the walls of the 
uterus produce uterine milk (Bester-van der Merwe 
et  al. 2022). Placental viviparity is unique to car-
charhinid sharks, while the sawfishes and R. spring-
eri are lecithotrophic (receiving nutrition only from 
a yolk-sac; Thorson 1976; White et  al. 2017; Kyne 
et  al. 2020; Bester-van der Merwe et  al. 2022). Lit-
ter sizes are variable, but the majority of species for 
which litter size is known produce small litters of up 
to 5 pups. The number of pups in a litter is likely to 
be dependent on the size of the female, thus a lack 
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of large mature females in a population can limit a 
species’ ability to recover (e.g., Peverell 2009; Far-
rell et al. 2010; Miller et al. 2022). Gestation length 
is known for only five of the euryhaline and estuarine 
species, and reproductive cycle is well understood for 
only three species. While the incubation length of Z. 
maugeana is estimated at around 7 months based on 
one individual, incubation period of skates can be 
highly variable depending on environmental condi-
tions (Hoff 2008; Moreno et al. 2020). Without basic 
information on reproductive biology, reproductive 
output of a species is unknown, affecting manage-
ment. For example, a longer reproductive cycle (e.g., 
biennial rather than annual) implies a lower fecundity 
(average number of pups or eggs per year), which 
affects recovery potential and maximum sustainable 
yield (Zhou et al. 2021; Villagra et al. 2022).

Closely related species and sub-populations of 
the same species can have significantly different life 
history traits in different geographic locations due 
to adaptations to different environmental gradients 
or due to different levels of anthropogenic pressures 
(Villagra et al. 2022). This highlights a need for geo-
graphically broad research with large sample sizes. 
Regional variation in growth, size, and age- and 
size-at-maturity have been recorded in euryhaline 
and estuarine species with larger distributions, likely 
due to regional differences in environmental vari-
ables (e.g., C. leucas [e.g., Wintner et al. 2002; Tillett 
et al. 2011], P. pristis [Thorson 1976; Peverell, 2009], 
H. guttatus [Yokota and Lessa 2007; Da Silva et  al. 
2018], R. bonasus [Neer and Thompson 2005; Fisher 
et  al. 2013]). Potential regional differences in repro-
ductive periodicity have also been observed, with 
biennial and annual reproductive cycles observed in 
P. pristis (Thorson 1976; Peverell 2009). Patterson 
et  al. (2022) demonstrated evidence for both annual 
and biennial reproduction in G. glyphis within the 
same population through close-kin mark-recapture 
data. Reproductive periodicity, and therefore fecun-
dity, may therefore be driven by regional adaptations 
and variability (Miller et  al. 2022), and region-spe-
cific research is required for the appropriate manage-
ment of species with large distributions. Despite the 
importance of life history data, the majority of the 
euryhaline and estuarine species have data based on a 
single or a few individuals in very few locations, and 
therefore at a restricted regional scale.

Movement ecology and habitat use

Management of elasmobranchs requires an under-
standing of their movements and distribution through-
out their life histories (Chapman et  al. 2015; Grant 
et  al. 2019; Pillans et  al. 2022).  A detailed under-
standing of both short- and long-term movement 
ecology is understood however, for only two species 
(C. leucas, P. pristis) (Table  4). For the majority of 
euryhaline and estuarine species there is little to no 
data on movement ecology. In species where adults 
are known to move offshore (e.g., C. leucas, P. pec-
tinata, A. cuspidata, presumably G. glyphis) the bulk 
of research is directed toward juveniles and nursery 
areas, as these shallow habitats are often more acces-
sible and less costly for research than deeper marine 
waters (Peverell, 2009), despite the importance of 
appropriate management of adult populations for spe-
cies recruitment (Prince 2005; Kinney and Simpfen-
dorfer 2009). The movement ecology and habitat use 
of elasmobranchs can be driven by a range of both 
abiotic factors (e.g., salinity, temperature, dissolved 
oxygen, photoperiod) and biotic factors (e.g., prey 
density, activity, and availability, predator avoidance) 
which also need to be understood to manage and pro-
tect critical habitats (Schlaff et al. 2014). Policies for 
the management of elasmobranchs must consider that 
many sharks and rays exhibit site fidelity, (seasonal) 
residency, philopatry, and complex movement pat-
terns on finer geographic scales than their dispersal 
ability might suggest (Chapman et  al. 2015). Over-
fishing in areas where elasmobranchs exhibit site 
fidelity or residency could have a disproportionate 
effect on the overall species population and reduce its 
ability to recover (Chapman et al. 2015; Flowers et al. 
2016; Pillans et  al. 2022). Fragmentation of rivers 
resulting from dam construction also affects species 
migration and dispersal throughout systems, as well 
as altering habitat and water quality, driving declines 
in non-marine species (Grill et al. 2015; 2019). Partu-
rition sites and nursery areas are also essential areas 
for species conservation and recovery, and exploita-
tion in these areas could also have wider impacts on 
the population (Poulakis et al. 2011).

Of the movement ecology data available, seasonal 
migrations appear to be common among euryhaline 
and estuarine species (Online Resource 3). Euryha-
line species tend to follow predictable downstream 
and upstream movements in response to seasonal 
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flow, salinity, dissolved oxygen, and temperature 
(e.g., C. leucas, G. glyphis [Dwyer et  al. 2020; Pil-
lans et  al. 2020]). There is also evidence of migra-
tions in response to environmental factors in estua-
rine species (e.g., P. clavata [Morgan et  al. 2021], 
P. pectinata [Simpfendorfer et  al. 2011], P. zijsron 
[Morgan et al. 2017], R. bonasus [Collins et al. 2007; 
2008]), suggesting that euryhaline and estuarine spe-
cies use behaviour to reduce metabolic demands (e.g., 
osmoregulation, thermoregulation; Lyon et al. 2017). 
Many euryhaline and estuarine elasmobranchs also 
use the physical characteristics of their environment, 
such as the strong tidal flows of tropical river sys-
tems to reduce the energy expenditure of movement 
by moving with tidal cycles (e.g., G. glyphis [Lyon 
et al. 2017], U. dalyensis [Campbell et al. 2012]; H. 
sabinus [Brinton and Curran 2017]). The movements 
of P. pristis also follow tidal flow to preserve energy 
during feeding rather than resisting tidal move-
ment, which may increase growth rates, particularly 
in younger individuals (Whitty et  al. 2009; Buckley 
et al. 2020).

Seven of the euryhaline and estuarine species 
(24.1%; Table 4) have no available habitat use infor-
mation aside from knowledge of habitat based on 
presence/absence or capture locations, and habitat 
use is well understood in only six species. From the 
available information, habitat partitioning between 
juveniles and adults is relatively common among the 
euryhaline and estuarine species and is known or pre-
sumed based on depths or ontogenetic changes in diet 
in eleven species (37.9%; Online Resource 3). Juve-
niles tend to occur in shallower depths (e.g., Peverell 
2005; Yokota and Lessa 2007; Poulakis et al. 2011), 
and sometimes use habitats close to mangroves for 
protection from predators and for foraging (e.g., Ste-
vens et  al. 2008; Cerutti-Pereyra et  al. 2014; Mar-
tins et al. 2020). Use of nursery areas (Heupel et al. 
2007) has been recorded for five of the euryhaline 
and estuarine species, with juveniles remaining in 
nurseries for varying periods of time depending on 
estuary characteristics, although this can be several 
years in longer-lived species such as C. leucas (e.g., 
Heupel and Simpfendorfer 2008; Pillans et al. 2020). 
For euryhaline species, downstream migration can 
also be costly for neonates and juveniles, due to an 
elevated predation risk and increased competition 
with large marine species (Dwyer et al. 2020). Eury-
haline species therefore tend to spend minimal time 

in downstream environments as juveniles, except for 
during wet season months where upstream salinity is 
reduced due to high water flows (Dwyer et al. 2020). 
The period of time spent by C. leucas juveniles in riv-
ers varies among river systems, likely due to differing 
food resources, risk of predation, and access to suit-
able environmental conditions (Pillans et al. 2020).

Population structure

Population structure is inherently linked to movement 
ecology, as the movements of adult elasmobranchs 
primarily determines population structure while juve-
niles generally remain where they were pupped for a 
significant amount of time (Frisk et  al. 2014; Chap-
man et  al. 2015). Genetic research has been carried 
out on only ten of the euryhaline and estuarine spe-
cies (34.5%), and there is population structure data 
for only eight of these. Of these, most species exhibit 
male-biased dispersal and female philopatry (Online 
Resource 4). The disproportionate energetic invest-
ment into reproduction between males and females 
indicates that male-biased dispersal and female 
philopatry should be common in elasmobranchs 
(Phillips et  al. 2021). Female reproductive philopa-
try benefits females by providing a suitable parturi-
tion site after long, energetically demanding gesta-
tion periods (Phillips et al. 2021), however can make 
species vulnerable to significant population decline 
where parturition sites are overfished (Chapman 
et  al. 2015; Phillips et  al. 2021). Female reproduc-
tive philopatry is known to occur in six species (see 
Online Resource 4) and is also likely in P. clavata, P. 
zijsron (matrilineal structuring; Phillips et  al. 2011), 
and G. gangeticus (based on the population struc-
tures of G. garricki and G. glyphis). Female philopa-
try is also possible in the oviparous Z. maugeana, 
as philopatry has been recorded in oviparous sharks 
(Day et al. 2019) and there are many advantages for 
natal philopatry in oviparous species (Refsnider and 
Janzen 2010). Male-biased dispersal has been identi-
fied in five species (see Online Resource 4).

The global population structure of C. leucas has 
been well-studied (Glaus et  al. 2020; Devloo-Delva 
et al. 2023), while a basic understanding of the global 
population structures of the sawfishes is based on 
the  NADH-2 gene (Faria et  al. 2013). Glyphis gar-
ricki demonstrates fine-scale population structuring in 
Australia and Papua New Guinea (Feutry et al. 2020), 
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while G. glyphis likely has two distinct populations 
in Australia and demonstrates haplotype differen-
tiation and low connectivity between rivers (Feutry 
et al. 2017; Kyne et al. 2021a; Patterson et al. 2022). 
Zearaja maugeana is restricted to one population in 
Macquarie Harbour, Tasmania, Australia, and has 
likely undergone a recent bottleneck or founder event 
(Treloar et  al. 2017; Weltz et  al. 2018). The fresh-
water population of H. bennettii in Zuojiang River, 
China, is isolated from coastal waters by dams, and 
although breeding is occurring the isolated popula-
tion is declining (Zhang et  al. 2010). A thorough 
understanding of gene flow, dispersal, and any bar-
riers to dispersal is critically important to assess the 
global conservation status of a species and manage its 
conservation (Phillips et al. 2021; Devloo-Delva et al. 
2023). Given that reproductive dispersal is known to 
be limited in G. garricki, G. glyphis, P. clavata, and P. 
zijsron (Phillips et al. 2017; Feutry et al. 2017; 2020; 
Kyne et  al. 2021a), and there are clear or unknown 
barriers to dispersal (e.g., dams for H. bennettii) for 
other euryhaline and estuarine species, a research 
focus on population structure and reproductive dis-
persal is also required for these species.

Future research directions

This gap analysis and literature review identifies sev-
eral key future research priorities. Some rays in par-
ticular are lacking basic life history data. For exam-
ple, the biology and ecology of R. springeri, which is 
endemic to Southeast Asia where it is heavily fished 
for its fins and meat (Moore et al. 2017; Jabado 2018; 
Kyne et al. 2020), is virtually unknown. For euryha-
line and estuarine species with large geographical 
distributions, regional variation in parameters such as 
growth, size, age- and size-at-maturity, and reproduc-
tive biology (e.g., gestation length and reproductive 
cycle) have been identified (e.g., Wintner et al. 2002; 
Tillett et  al. 2011; Thorson 1976; Peverell, 2009). 
Effort therefore needs to be made to research repre-
sentative samples of a species’ global population to 
understand these regional variations and how they 
affect regional management of a species. As improved 
non-lethal aging techniques emerge such as infra-
red spectroscopy (Rigby et  al. 2016) and genomic 
aging (Mayne et  al. 2019), they should be applied 
to the euryhaline and estuarine elasmobranchs to 
increase the accuracy of life history estimations while 

reducing the negative effect of lethal techniques on 
small populations.

Direct methods for calculating natural mortal-
ity are considered more accurate than indirect meth-
ods (Liu et al. 2020), however only C. leucas and P. 
pristis have estimates using direct methods (Heupel 
and Simpfendorfer 2011; Buckley et  al. 2020). To 
better understand the resilience of euryhaline and 
estuarine species, direct methods should be applied 
to future research. Information on the short- and 
long-term movement ecology, the environmental 
drivers of movement ecology, and habitat use and 
preferences for the euryhaline and estuarine species 
is largely lacking and needs to be prioritised. Most 
research has occurred on juveniles in shallow habi-
tats (Peverell 2009), despite the importance of move-
ment ecology and habitat use throughout a species’ 
life cycle for appropriate management (Schlaff et al. 
2014; Chapman et  al. 2015). A detailed understand-
ing of how each species moves and utilises habitat 
is critical for understanding how modifications to 
habitats, such the construction of dams, may affect 
them. A broader understanding of genetic population 
structure and barriers to geneflow also needs to be 
developed among the euryhaline and estuarine spe-
cies to understand the viability of each species and 
manage accordingly (Patterson et  al. 2022; Devloo-
Delva et  al. 2023). Finally, a detailed understanding 
of human interactions and utilisation of these spe-
cies is required to implement successful conserva-
tion measures in places where these species are an 
important resource for livelihoods and food security. 
Filling knowledge gaps will require international col-
laborations, knowledge sharing, adequate resourcing, 
and capacity building across the global tropics where 
most euryhaline and estuarine elasmobranchs occur.

Conclusion

Euryhaline and estuarine elasmobranchs represent a 
diverse and unique group of sharks and rays which 
are disproportionately at risk of extinction (IUCN 
2023). Understanding the life history traits, move-
ment ecology, habitat use, and population structure 
of these species is vitally important for the imple-
mentation of species-appropriate management and 
conservation measures (Pauly 1980; Schlaff et  al. 
2014; Cailliet 2015; Chapman et  al. 2015; Phillips 
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et  al. 2021; Jorgensen et  al. 2022; Devloo-Delva 
et  al. 2023). To date, the majority of research on 
elasmobranchs has focused on charismatic and com-
mercially important marine species (Jorgensen et al. 
2022), and research on non-marine elasmobranchs 
has lagged behind (Grant et  al. 2019). Although 
many (if not all) of the euryhaline and estua-
rine species interact with fisheries (e.g., Peverell 
2005; Jabado et  al. 2018a; Moore et  al. 2019) and 
also face other threatening processes, they have 
received little research attention. As a result, there 
is a detailed understanding of the life history, move-
ment ecology, habitat use, and population structure 
of only 2 of 29 species – the Bull Shark C. leucas 
and the Largetooth Sawfish P. pristis – while 11 
species remain virtually unknown. This gap analy-
sis identifies priority species and research areas 
where key information for species management is 
lacking. Given the rarity of many of these species 
and the costs and logistics associated with access-
ing remote habitats, obtaining data for a representa-
tive sample of a population is difficult. As climate 
change escalates and human populations continue 
to grow, increasing water extraction and modifica-
tion of river systems and estuaries will disrupt flows 
and reduce the availability of suitable habitats for 
non-marine elasmobranchs (Simpfendorfer et  al. 
2011; Lear et al. 2021). It is essential to address the 
knowledge gaps identified in this study to ensure the 
persistence of the ecologically unique and highly 
threatened euryhaline and estuarine elasmobranchs.
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