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Abstract International conservation goals have 
been set to mitigate Southern Ocean ecosystem 
deterioration, with multiple monitoring programs 
evaluating progress towards those goals. The scale 
of continuous monitoring through visual observa-
tions, however, is challenged by the remoteness of 
the area and logistical constraints. Given the ecologi-
cal and economic importance of the Southern Ocean, 
it is imperative that additional biological monitoring 
approaches are explored. Recently, marine sponges, 
which are frequently caught and discarded in South-
ern Ocean fisheries, have been shown to naturally 
accumulate environmental DNA (eDNA). Here, we 

compare fish eDNA signals from marine sponge 
bycatch specimens to fish catch records for nine loca-
tions on the continental shelf (523.5–709 m) and 17 
from the continental slope (887.5–1611.5  m) within 
the Ross Sea, Antarctica. We recorded a total of 20 
fishes, with 12 fishes reported as catch, 18 observed 
by eDNA, and ten detected by both methods. While 
sampling location was the largest contributor to the 
variation observed in the dataset, eDNA obtained 
significantly higher species richness and displayed 
a significantly different species composition com-
pared to fish catch records. Overall, eDNA read 
count correlated more strongly with fish abundance 
over biomass. Species composition correlated on a 
regional scale between methods, however eDNA sig-
nal strength was a low predictor of catch numbers at 
the species level. Our results highlight the potential 
of sponge eDNA monitoring in the Southern Ocean 
by detecting a larger fraction of the fish community 
compared to catch recordings, thereby increasing our 
knowledge of this understudied ecosystem and, ulti-
mately, aiding conservation efforts.

Keywords Metabarcoding · Passive eDNA 
sampling · Ross Sea · Southern Ocean · Fisheries · 
Biodiversity

Supplementary Information The online version 
contains supplementary material available at https:// doi. 
org/ 10. 1007/ s11160- 023- 09805-3.

G.-J. Jeunen (*) · J. Treece · S. Ferreira · N. J. Gemmell 
Department of Anatomy, School of Biomedical Sciences, 
University of Otago, Dunedin 9016, New Zealand
e-mail: gjeunen@gmail.com

M. Lamare 
Department of Marine Science, University of Otago, 
Dunedin 9016, New Zealand

J. Devine · S. Mills 
National Institute of Water and Atmospheric Research, 
Wellington 6021, New Zealand

S. Mariani 
School of Biological and Environmental Sciences, 
Liverpool John Moores University, Liverpool L3 3AF, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s11160-023-09805-3&domain=pdf
http://orcid.org/0000-0001-7458-3550
https://doi.org/10.1007/s11160-023-09805-3
https://doi.org/10.1007/s11160-023-09805-3


222 Rev Fish Biol Fisheries (2024) 34:221–238

1 3
Vol:. (1234567890)

Introduction

Marine ecosystems are currently undergoing dramatic 
shifts in structure and functioning, due to increased 
anthropogenic impacts and rapid climate change 
(Allison et al. 2009). Antarctic ecosystems represent 
some of the least modified marine ecosystems on the 
planet (Aronson et  al. 2011) and the largest marine 
protected area (Ballard et  al. 2012). The Southern 
Ocean is, however, already being impacted by climate 
change, notably along the Antarctic Peninsula (Clarke 
et  al. 2006), as well as being exposed to increased 
fishing and tourism pressures (Aronson et  al. 2011; 
Tejedo et al. 2022). Antarctic-wide impacts of warm-
ing, loss of sea ice, and ocean acidification are pre-
dicted through modelling over the coming dec-
ades (Koerich et  al. 2022). While multiple national 
research programs are currently being undertaken to 
determine the effects of such a raft of pressures on 
Antarctica’s marine ecosystem (CCAMLR 2022a, 
b), Southern Ocean research is by its nature logisti-
cally and financially demanding (Xavier et al. 2016). 
Hence, most regions are understudied and necessary 
biological information for successful conservation is 
incomplete (Griffiths 2010; Xavier et al. 2016).

One such data-deprived region is the Ross Sea, 
a large embayment of the Southern Ocean in Ant-
arctica, between Victoria Land and Marie Byrd 
Land (74.5487° S, 166.3074° W). The Ross Sea is 
the southernmost sea on Earth with a total area of 
637,000   km2 and exhibits substantial variations in 
physical forcing, ice cover, and biological processes 
on a variety of temporal and spatial scales (Smith 
et al. 2014). The Ross Sea contains some of the most 
productive waters globally, sustaining the largest phy-
toplankton biomass in the Southern Ocean (Smith 
et al. 2014), highly abundant zooplankton (Sala et al. 
2002), the most diverse benthos in the Southern 
Ocean (Clarke and Johnston 2003), and exceptional 
abundances of apex predators (Ballard et  al. 2012). 
The fish fauna exhibits low diversity and is dominated 
by notothenioids (cod icefishes), liparids (snailfishes), 
and zoarcids (eelpouts; Ainley and Pauly 2014; East-
man 2005). The abundance of notothenioids, specifi-
cally the Antarctic toothfish (Dissostichus mawsoni 
Norman, 1937, Nototheniidae), has supported a com-
mercial longline fishery since 1997 (Fisheries New 
Zealand 2022). While important aspects of the Ross 
Sea ecosystem are yet to be explored (Griffiths 2010), 

an international consensus was reached to establish 
the world’s largest MPA in 2016 to provide protection 
to previously fished areas (Ballard et al. 2012).

Due to the logistical constraints for routine moni-
toring in the Southern Ocean, much of the data used 
to increase our understanding on continental shelf 
and slope fish population distributions and abun-
dances is generated in association with commercial 
fishing activities, including catch and bycatch infor-
mation (Polanowski et al. 2018). These data are inte-
grated into management of fishing activity through 
the CCAMLR system (Trathan and Agnew 2010). 
In addition to direct observations of fish catches, the 
catches provide other opportunities to obtain impor-
tant biological information associated with the fishery 
and wider pelagic ecosystems. For example, analysis 
of gut samples from commercially caught Antarctic 
toothfish provided new information on their cepha-
lopod prey (Stevens et  al. 2014). While essential to 
our current understanding of the Ross Sea ecosystem, 
hook-and-line fishing is known to be selective and 
biased towards the target organism (Løkkeborg and 
Bjordal 1992; Moreno 1991). Hence, it is imperative 
that additional monitoring approaches are explored to 
enable the gathering of essential ecological data.

Environmental DNA (eDNA) monitoring has been 
proposed as an innovative method with great potential 
(Ficetola et al. 2008; Thomsen and Willerslev 2015), 
whereby species are detected indirectly through DNA 
signals obtained from environmental samples, such 
as water (Bowers et al. 2021), sediment (Koziol et al. 
2019), or air (Lynggaard et  al. 2022). Within the 
marine biome, water is the most frequently used sub-
strate in eDNA surveys (Bowers et al. 2021). Aquatic 
eDNA surveys have shown to be highly accurate, due 
to high spatial (Jeunen et al. 2019a, b) and temporal 
(Berry et al. 2019) resolutions, as well as sensitive, by 
facilitating early detection of invasive species (Bow-
ers et al. 2021). Furthermore, aquatic eDNA metabar-
coding surveys have compared favorably to a variety 
of traditional monitoring methods with regards to 
diversity detection in a time-efficient and cost-effec-
tive manner (Fediajevaite et  al. 2021), including 
baited remote underwater videos (Jeunen et al. 2020; 
Stat et al. 2019), trawling (Salter et al. 2019; Stoeckle 
et al. 2021; Thomsen et al. 2016), and underwater vis-
ual census (Polanco Fernández et al. 2021).

Several studies have compared aquatic eDNA 
metabarcoding to trawling catch records (Salter et al. 
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2019; Stoeckle et al. 2021; Thomsen et al. 2016). In 
general, aquatic eDNA tends to recover a larger por-
tion of the fish diversity. While false-negative detec-
tions are inherent to all survey methods deployed 
thus far, false-negative eDNA detections compared 
to catch records are a frequent occurrence, due to 
missing reference barcodes (Weigand et  al. 2019), 
low taxonomic resolution in the amplicon region 
for specific taxonomic groups (Zhang et  al. 2020), 
or amplification bias induced through mismatches 
in primer-binding regions (Hansen et  al. 1998). The 
partial overlap in species detection, as well as difficul-
ties in obtaining abundance, sex, and size information 
from eDNA surveys, has led to a proposed combined 
approach to gather as much information possible 
(Zhou et al. 2022). Routine implementation of eDNA 
analysis into existing monitoring programs has so far 
been hampered by the need for immediate, careful, 
and time-consuming sample collection, DNA preser-
vation and storage (Bessey et al. 2021).

To circumvent the need for water filtration, pas-
sive eDNA collection has been trialed with success 
(Bessey et  al. 2021; Jeunen et  al. 2022b; Maiello 
et al. 2022), whereby filter membranes (Bessey et al. 
2021; Jeunen et al. 2022b), artificial sponges (Jeunen 
et al. 2022b), or other substrates (Maiello et al. 2022; 
Verdier et al. 2021) are submerged to capture eDNA 
from the water column. Besides achieving compara-
ble results to active filtration (Jeunen et  al. 2022b), 
passive filtration devices allow for increased sampling 
and replication by omitting the time-consuming active 
filtration step (Bessey et al. 2021). An alternative to 
using artificial substrates for passive eDNA collection 
is to exploit the natural eDNA accumulation in filter-
feeding organisms, such as marine sponges (Cai et al. 
2022; Harper et  al. 2023; Jeunen et  al. 2021; Mari-
ani et  al. 2019; Turon et  al. 2020). Similar to artifi-
cial substrates, sponge eDNA displays high similar-
ity with aquatic eDNA surveys (Jeunen et  al. 2021) 
and might be preferred over using artificial substrates, 
as they are frequently caught as bycatch and omit the 
need to attach passive samplers to fishing gear.

In this study, we explore the use of novel eDNA 
methods to describe the biogeographical patterns of 
fish on the continental shelf (9 locations; depth range: 
523.5–709  m) and slope (17 locations; depth range: 
887.5–1611.5  m) in the Ross Sea, Antarctica. Envi-
ronmental DNA was obtained from marine sponges 
caught as bycatch on the demersal longline fishing 

vessel, FV San Aotea II. Catch records enabled us to 
validate eDNA signals, as well as determine the util-
ity of eDNA biodiversity monitoring in the Southern 
Ocean. Furthermore, catch biomass and abundance 
measures were correlated to eDNA signal strength to 
investigate the quantitative value of eDNA metabar-
coding on a regional and local scale. Two questions 
were specifically addressed: (1) Does the eDNA accu-
mulated in sponges caught as bycatch in longline fish-
eries detect all caught species and provide additional 
information to fish biodiversity patterns in the Ross 
Sea, and (2) can we estimate catch and bycatch bio-
mass/abundance from eDNA obtained from marine 
sponge bycatch specimens?

Materials and methods

Study area and sample collection

Data between catch records and eDNA detections 
were compared across a total of 26 sites located on 
the continental slope (17 locations) and shelf in the 
Ross Sea (9 locations; Fig. 1; Supplemental Table 1). 
The exact location of sampling sites has not been dis-
closed to preserve commercial interest of the fishing 
vessel.

Sponge specimens were collected during longline 
fishing by FV San Aotea II on the continental shelf 
and slope regions of the Ross Sea between the  13th 
of December 2021 and  17th of January 2022 (Fig. 1; 
Supplemental Table  1). During the deployment of 
the longlines, sponges are accidentally hooked off 
the seafloor and brought to the surface as reported 
bycatch when the lines are retrieved. A total of 30 
marine sponge specimens on 26 fishing lines were 
sampled for this experiment, with 23 fishing lines 
represented by a single marine sponge specimen, 
two fishing lines represented by two marine sponge 
specimens, and one fishing line represented by three 
marine sponge specimens. Marine sponges were 
taxonomically identified to class level (22 Demos-
pongiae [Demosponges]; 8 Hexactinellida [Glass 
sponges]) on the fishing vessel by fishery observers 
and each placed in a separate 50 ml falcon tube filled 
with 99.8% molecular-grade ethanol (Fisher BioRea-
gents™, Fisher Scientific). Specimens were stored 
in the dark on ice during shipment to the University 
of Otago’s PCR-free eDNA facilities at Portobello 



224 Rev Fish Biol Fisheries (2024) 34:221–238

1 3
Vol:. (1234567890)

Marine Laboratory (PML). The ethanol-stored 
specimens were stored at 4  °C in the dark until fur-
ther sample processing. Due to logistical difficulties 
of working onboard a commercial fishing vessel in 
the Southern Ocean, no negative field controls were 
collected.

Fish catch recordings

For each of the 26 fishing lines where sponges were 
caught as bycatch, catch composition was recorded 
by fisheries observers, as per governmental regula-
tions. Although taxon identification is usually con-
ducted at a level coarser than the species—except 
for toothfish—observers were asked by CCAMLR to 
identify catches to the lowest taxonomic level possi-
ble and measure up to ten individual bycatch species 
per longline set. Fish bycatch measurements followed 
standard practices according to the Ross Sea data 
collection plan (Hanchet et  al. 2015) and CCAMLR 

observer protocols (CCAMLR 2023), which con-
sisted of length, weight, sex, and maturity stage for 
each recorded specimen. A tissue sample from each 
species caught on the 26 fishing lines within the 
taxonomic group Actinopterygii was dissected and 
shipped frozen to the University of Otago for barcod-
ing purposes. Tissue samples from Chondrichthyes, 
which are tagged and released after capture, were not 
obtained for this study.

Fish reference barcodes

A tissue biopsy of ~ 25 mg was dissected from 
each Actinopterygii species caught as bycatch and 
extracted using the Qiagen DNeasy Blood & Tissue 
Kit (Qiagen GmbH, Hilden, Germany) according to 
the manufacturer’s recommendation, except for an 
overnight lysis step. Total DNA was quantified using 
qubit (Qubit™ dsDNA HS Assay Kit, ThermoFisher 
Scientific) and visualized with gel electrophoresis to 
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Fig. 1  a Map of Antarctica and the Southern Ocean with sam-
ple collection sites in the Ross Sea indicated by a black square. 
Bathymetry of the Southern Ocean floor is color coded from 
light blue (shallow) to dark blue (deep sea). Bathymetry infor-
mation was gathered from Quantarctica inside QGIS (https:// 
www. scar. org/ resou rces/ quant arcti ca/). b Map of Ross Sea and 
the Ross Sea ice shelf (grey) with the continental shelf sam-
pling region indicated in red and the continental slope sam-

pling region indicated in blue. Fish silhouettes represent the 
results of the indicator species analysis, with continental shelf 
eDNA and catch indicator species depicted in light red and 
dark red, respectively. Continental slope eDNA and catch indi-
cator species are depicted in light blue and dark blue, respec-
tively. Number inside fish silhouettes indicates species name as 
found in Supplemental Table 8

https://www.scar.org/resources/quantarctica/
https://www.scar.org/resources/quantarctica/
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determine high molecular weight DNA was present. 
DNA was amplified using the 16SarL/16SbrH primer 
set (Palumbi 1991; Supplemental Table  2) to gener-
ate reference barcodes for the fish metabarcoding 
assay used in this experiment. PCR was carried out 
in 20 µl reactions using BIOTAQ™ DNA Polymerase 
(Meridian Bioscience®) according to the manufac-
turer’s instructions, with a 0.2 mM final concentra-
tion of each primer and dNTPs, as well as a 2 mM 
final concentration of  MgCl2. The thermal cycling 
profile included an initial denaturation step of 94 °C 
for 2 min; followed by 30 cycles of 1 min at 94 °C, 
90 s at 53 °C, 90 s at 72 °C; and a final extension step 
for 10 min at 72 °C. PCR products were checked for 
amplification through gel electrophoresis, and upon 
successful amplification the reaction was cleaned 
using a QIAquick PCR purification Kit (Qiagen, Cat. 
No. 28104). Cleaned up products were then quanti-
fied by spectrophotometry using a DeNovix® DS-11 
FX+ , and Sanger sequenced in both the forward and 
reverse direction by submitting 6 ng of each product 
with 3.2 pmol of either primer in a total volume of 5 
µl through the Genetic Analysis Service of the Uni-
versity of Otago (https:// gas. otago. ac. nz). Forward 
and reverse sequences from each tissue sample were 
imported into Geneious Prime® v 2022.0.1 (Kearse 
et  al. 2012). Sequences were checked for accuracy 
based on the electropherogram. Reverse sequences 
were reverse complemented, and a full barcode 
sequence was generated through pairwise alignment 
using the ‘Geneious Alignment’ with standard set-
tings. The full barcode sequence was exported in.fasta 
format and imported into CRABS v 0.1.3 (Jeunen 
et  al. 2022a) to generate a custom curated reference 
database (see “Bioinformatic analysis and taxonomy 
assignment” section for more information).

Laboratory processing of eDNA samples

Pre-PCR laboratory work was conducted in a desig-
nated PCR-free clean room. Prior to laboratory work, 
bench spaces and equipment were sterilized using 
a 10-min exposure to 10% bleach dilution (0.5% 
hypochlorite final concentration) and wiped with 
ultrapure water (UltraPure™ DNase/RNase‐Free Dis-
tilled Water, Invitrogen™) to reduce contamination 
risk (Prince and Andrus 1992). Additionally, negative 
control samples were processed alongside samples to 
investigate issues with cross-contamination. Negative 

control samples consisted of 50 µl ultrapure water for 
DNA extraction negatives and 2 µl ultrapure water for 
PCR no-template controls. Field controls were not 
collected on the fishing vessel due to extreme envi-
ronmental conditions and sample collection being 
undertaken by fishery observers.

One tissue biopsy of ~ 0.5  cm3 was dissected from 
each sponge specimen for DNA extraction. DNA 
extraction followed the protocol described in (Jeunen 
et  al. 2021). Briefly, DNA was extracted using the 
Qiagen DNeasy Blood and Tissue Kit according to 
the manufacturer’s recommendations, with slight 
modifications (Supplemental Table 3). DNA extracts 
were stored at − 20 °C until further processing.

Library preparation followed the protocol 
described in (Jeunen et al. 2018). Briefly, eDNA sam-
ples were analyzed for fish diversity using the fish 
(16S) metabarcoding assay (Berry et al. 2017), target-
ing a ~ 200 bp fragment of the 16S rDNA gene region. 
Prior to library preparation, input DNA for each 
sample was optimized using a dilution series (undi-
luted, tenfold dilution, 100-fold dilution) to identify 
inhibitors and low-template samples (Murray et  al. 
2015). Amplification was carried out in duplicate in 
25  µl reactions. The qPCR mastermix consisted of 
1 × SensiFAST SYBR Lo-ROX Mix (Bioline, Lon-
don, UK), 0.4 µmol/l of each primer (Integrated DNA 
Technologies, Australia), 2 µl of template DNA, and 
ultrapure water as required. The thermal cycling pro-
file included an initial denaturation step of 95 °C for 
10 min; followed by 50 cycles of 30 s at 95 °C, 30 s at 
54 °C, 45 s at 72 °C; and a final melt-curve analysis. 
A one-step amplification protocol using fusion prim-
ers was employed for library building (Berry et  al. 
2017). Fusion primers contained an Illumina adapter, 
a modified sequencing primer, a barcode tag (6–8 
bp in length) and the template specific primer (Mur-
ray et al. 2015). Each sample was assigned a unique 
barcode combination (different forward and reverse 
barcodes). qPCR conditions followed the protocol 
as described above. Post qPCR, sample duplicates 
were pooled to reduce stochastic effects from PCR 
amplification (Alberdi et al. 2018; Leray and Knowl-
ton 2015). Samples were then pooled into mini-pools 
based on end-point qPCR fluorescence, Ct-values, 
and melt-curve analysis (Murray et  al. 2015). Size 
selection and qPCR clean-up followed the AMPure 
XP (Beckman Coulter, US) standard protocol. Mini-
pools were visualized using gel electrophoresis to 

https://gas.otago.ac.nz
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determine the presence of a single band and molar-
ity of mini-pools was measured on Qubit. Pool-
ing occurred equimolarly to produce a single DNA 
library. Due to differences in cycle number between 
samples and negative controls, the latter were spiked 
into the library to allow for optimal concentration of 
the library (Jeunen et al. 2019a). The resultant library 
was size selected once more using Pippin Prep (Cat # 
PIP0001; Sage Science, USA) and purified with Qia-
gen’s QIAquick PCR Purification Kit (Qiagen GmbH, 
Hilden, Germany) prior to final library quantita-
tion on QIAxcel Advanced System (Qiagen GmbH, 
Hilden, Germany) and Qubit. Sequencing was per-
formed on an Illumina MiSeq® using a 1 × 300 bp V2 
Nano Illumina sequencing kit, following the manu-
facturer’s protocols, with 5% PhiX to minimize issues 
associated with low-complexity libraries.

Bioinformatic analysis and taxonomy assignment

Prior to the bioinformatic processing of sequencing 
data, raw fastq files were checked for quality using 
FastQC v 0.11.5 (Andrews 2010). Reads were demul-
tiplexed and assigned to samples using cutadapt v 4.1 
(Martin 2011), allowing for a single mismatch in the 
barcode and primer region. The assigned amplicons 
were filtered using ‘-fastq_filter’ function in USE-
ARCH v 11.0.667 (Edgar 2010) based on a maximum 
expected error of 1.0 and minimum length of 150 
bp. The success of quality filtering was checked in 
FastQC by comparing reports of FASTQ files before 
and after quality filtering. Remaining reads were 
dereplicated using the ‘-fastx_uniques’ function in 
USEARCH. Chimeric sequences were removed and 
ZOTUs (Zero-radius Operational Taxonomic Units) 
were generated using the ‘-unoise3’ function in USE-
ARCH (Edgar 2016b). Finally, a ZOTU table was 
generated using the ‘-otutab’ function in USEARCH.

A custom curated reference database was gener-
ated using CRABS v 0.1.3 (Jeunen et  al. 2022a). 
The custom curated reference database consisted of 
sequences downloaded from multiple online reposi-
tories ((‘db_download’ function) and in-house gen-
erated barcodes of Southern Ocean fish species (See 
“Fish reference barcodes” section; Supplemental 
File 1; ‘db_import’ function). Amplicon regions 
were extracted from sequences through in silico PCR 
analysis (‘insilico_pcr’ function) and pairwise global 
alignments (‘pga’ function). The ‘visualization’ 

function in CRABS was used to explore the reference 
database for missing barcodes (‘-method db_com-
pleteness’), mismatches in primer-binding regions 
(‘-method primer_efficiency’), and taxonomic resolu-
tion of the amplicon region (‘-method phylo’).

Taxonomy of ZOTUs were assigned using the 
‘-sintax’ function in USEARCH (Edgar 2016a), with 
the custom curated reference databases generated 
by CRABS as input for the ‘-db’ parameter. ZOTUs 
were assigned to species level when a confidence of 
1.00 was observed for the SINTAX algorithm and 
assigned to genus level for a confidence level between 
0.97 and 0.99. The final taxonomic resolution of each 
taxonomic group was lowered to the lowest resolu-
tion observed between catch recordings and eDNA 
signals to enable accurate comparisons. For example, 
individuals within the Zoarcidae (eelpouts) family 
caught as bycatch are recorded as Zoarcidae, while 
CRABS identified no base pair mismatches in the 
amplicon regions for the genera Macrourus (rattails), 
Pogonophryne (barbeled plunderfishes), and certain 
species within the Trematomus genus (cod icefishes; 
CRABS ‘-method phylo’ function). After taxonomy 
assignment, the ZOTU table underwent final process-
ing prior to statistical analysis, whereby (1) single 
read detections within each sample were removed 
to avoid issues related to tag jumping (Schnell et al. 
2015), (2) reads were averaged between multiple 
sponges caught on a single line, and (3) the ZOTU 
table was transformed to relative abundance.

Statistical analysis and visualization

Rarefaction curves were generated from the unfil-
tered ZOTU table to assess sequencing coverage 
using the vegan v 2.5-7 package in R v 4.0.5 (R; 
http:// www.R- proje ct. org). Species richness was 
calculated for each sample and compared between 
eDNA and bycatch through multiple pairwise t-tests 
with Bonferroni correction to adjust for multiple 
comparisons using the rstatix v 0.7.0 package. Spe-
cies accumulation curves were generated in the Bio-
diversityR v 2.13-1 package to assess differences 
in total number of fish species between eDNA and 
bycatch. Prior to beta diversity analyses, data tables 
were transformed to presence-absence. A permu-
tational multivariate analysis of variance (PER-
MANOVA) was used to determine whether fish 
assemblage composition differed between eDNA 

http://www.R-project.org
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and bycatch. Significant differences in dispersion 
between groups was tested (PERMDISP) to assess 
the reliability of PERMANOVA. A principal coor-
dinate analysis (PCoA) was performed to visualize 
patterns of sample dissimilarity using the Jaccard 
index. Indicator values were calculated for each 
species using the labdsv v 2.0-1 package. Upper 
limits were set for indicator species, that is, species 
driving the difference in eDNA signal between sam-
pling regions, to an indicator value index > 0.70 and 
a p value < 0.025 (Dufrêne and Legendre 1997). In 
this study, indicator values were used to determine 
the taxa driving the partitioning of samples between 
the two sampling regions found in the ordination 
analysis. Habitat preference of indicator species was 
used as biological validation of the difference found 
between sampling regions. Prior to Pearson corre-
lation analysis, data tables were log-transformed to 
account for non-normal distributions. Pearson cor-
relation was calculated using the ‘cor.test’ function 
within the native stats v 4.2.1 package. All bioinfor-
matic and statistical scripts can be found in Supple-
mental Files 2 and 3.

Results

Fish catch recordings

Across all 26 fishing lines, a total weight of 
22,834 kg of fish were recorded by fishery observ-
ers, with 16,479 kg caught on the continental slope 
and 6356  kg caught on the continental shelf (Sup-
plemental Table 4a, b). Besides the target Antarctic 
toothfish, which constituted the highest abundance 
(22,151.5  kg; 97.0%) and count (955 individuals; 
65.1%), an additional 14 fish species were recorded 
as bycatch. Taxonomic IDs within the Macrourus 
(Rattail fish) and Pogonophryne (Barbeled Plunder-
fish) genera were combined, as eDNA taxonomic 
resolution was set to genus level for both groups. 
Therefore, a total of 12 unique taxonomic IDs were 
caught by the fishing vessel, covering 9 families, 4 
orders, and 2 classes. Macrourus sp. was the most 
by-caught taxon (1.3%), followed by the Antarc-
tic starry skate (Amblyraja georgiana [Norman, 
1938], Rajidae; 1.0%), and eel cod Muraenolepis 
sp. (0.3%).

Sequencing results

Demultiplexing of raw sequencing data resulted in 
assigning 156,854 sequences to eDNA samples (Sup-
plemental Table  5). Filtering and quality control 
returned 144,671 (92.2%) sequences. Although PCR 
products of negative controls were spiked into the 
library, no sequences were returned after quality con-
trol. Denoising resulted in 27 ZOTUs, with 153,724 
(98.0%) raw sequences matching to ZOTUs to create 
the unfiltered ZOTU table. After final quality filtra-
tion and taxonomy assignment, 153,695 (98.0%) 
sequences were incorporated for statistical analysis. 
Overall, eDNA samples achieved sufficient sequenc-
ing coverage based on the plateauing of rarefaction 
curves (Supplemental File 4) and mean number of 
reads per sample ± SD: 5123 ± 1443.

Taxonomy assignment returned 20 unique taxo-
nomic IDs. After combining the taxonomic IDs of the 
Zoarcidae family (eelpouts), as bycatch recordings 
are limited to family level for this taxonomic group, 
a total of 18 unique taxonomic IDs were observed 
within eDNA samples, covering 11 families, 5 orders, 
and 2 classes (Supplemental Table  6). Overall, the 
Antarctic toothfish achieved the highest abundant 
eDNA signal (61.3%), followed by Macrourus sp. 
(15.0%), Chionobathyscus dewitti Andriashev & 
Neyelov, 1978 (Channichthyidae; 6.8%), and Trem-
atomus sp. (6.5%).

Alpha and beta diversity comparison

A total of 20 fish taxa were detected across all sam-
pling regions and monitoring methods, with a large 
overlap in species detection between methods across 
all samples and within each sampling region (Fig. 2; 
Table 1). While an eDNA signal for the skate genus, 
Bathyraja, was detected, we were unable to resolve 
the ZOTU to species level, despite the potential 
species-level taxonomic resolution reported dur-
ing the in silico PCR analysis (Supplemental File 
5). Thus, eDNA failed to distinguish two species 
recorded as bycatch, i.e., Eaton’s skate (Bathyraja 
eatonii [Günther, 1876]; Arhynchobatidae) and 
McCain’s skate (Bathyraja maccaini Springer, 1971; 
Arhynchobatidae).

Overall, species were detected more frequently 
with eDNA than recorded as catch, except for 
Pogonophryne sp., Macrourus sp., and Dissostichus 
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mawsoni, which were detected in the same number of 
samples (Fig.  3a). Significant differences in species 
richness were observed between monitoring methods 
within each sampling region according to multiple 
pairwise t-test with Bonferroni correction (continen-
tal shelf: t[8] = 8.4, p << 0.001; continental slope: 
t[16] = 3.9, p < 0.01), with eDNA significantly detect-
ing a greater number of species on average compared 
to catch records (Fig. 3b). This result was further cor-
roborated by species accumulation curves (Fig.  3c). 
Additionally, eDNA signals differed significantly in 
species richness between sampling regions accord-
ing to Welch’s t-test (t[24] = 4.2, p < 0.001), with the 
continental slope containing a greater fish diversity 
over the continental shelf. Catch records, on the other 
hand, revealed no significant difference between sam-
pling regions (t[24] = 0.7, p < 0.5).

Significant differences were also observed in com-
munity composition between sampling regions and 

monitoring methods according to PERMANOVA 
(sampling region: F1,48 = 86.6, p < 0.001; monitoring 
method: F1,48 = 19.6, p < 0.001), while no significant 
differences in dispersion were detected according to 
PERMDISP (F3,48 = 0.29; p < 1.0). PERMANOVA 
revealed sampling region  (R2 = 0.54) to be the largest 
explanatory variable for the variation observed in the 
dataset, followed by monitoring method  (R2 = 0.12). 
Community differences between sampling regions 
and monitoring methods were confirmed by ordina-
tion analysis (PCoA analysis; Jaccard index; pres-
ence-absence transformation; Fig.  3d), whereby 
sampling regions separated along the primary axis 
explaining 43.4% of the variation and monitoring 
methods separated along the secondary axis explain-
ing 15.5% of the variation.

Due to differences in fish community detection 
between monitoring methods (alpha and beta diver-
sity analyses), the indicator species analysis was 
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Fig. 2  Venn diagrams depicting species overlap between our 
eDNA survey and bycatch recordings for a all datapoints com-
bined in purple, b the continental shelf sampling region in 
red, and c the continental slope sampling region in blue. Total 
number of species per monitoring method and proportion of 

species is represented between brackets. Venn diagram size is 
proportional to the number of detected species. Fish silhouette 
size is not representative of actual fish size. Number within 
silhouettes indicates species name as found in Supplemental 
Table 8

Table 1  Number of 
fish taxa detected in the 
continental shelf and 
continental slope sampling 
regions based on eDNA 
metabarcoding and catch 
records

Values in bold indicate 
the total number of taxa 
detected across both 
sampling locations

Sampling location Order Family Genus Species

eDNA metabarcoding Continental shelf 4 7 11 9
Continental slope 5 11 12 7
Total 5 11 14 10

Demersal longlining Continental shelf 3 5 4 3
Continental slope 4 9 8 5
Total 4 9 9 7

Combined surveys Continental shelf 4 8 12 10
Continental slope 5 11 12 8
Total 5 11 14 12
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conducted per monitoring method. The eDNA moni-
toring method identified two indicator species for the 
continental slope region, including Macrourus sp., 
and Muraenolepis sp., and five indicator species for 
the continental shelf region, including Blunt scaly-
head (Trematomus eulepidotus Regan, 1914; Nototh-
eniidae), Trematomus sp., Pogonophryne sp., Myers’ 
icefish (Chionodraco myersi DWitt & Tyler, 1960; 

Channichthyidae), and Jonah’s icefish (Neopagetop-
sis ionah Nybelin, 1947; Channichthyidae; Fig.  1b). 
Catch records identified the same two indicator spe-
cies for the continental slope region, however, only 
identified a single indicator species for the continen-
tal shelf region, i.e., Trematomus sp. (Fig.  1b; Sup-
plemental Table 7). Ecological descriptions from all 
indicator species identified in our dataset showed 
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Fig. 3  a Frequency of taxon detection between eDNA and 
bycatch recordings. Maximum number of detections is 26. 
The red line (y = x) separates the taxa between those more fre-
quently detected by eDNA (above) and those more frequently 
detected by catch (below). b Boxplots representing average 
species richness between eDNA and catch for the continental 
shelf (red) and continental slope (blue) sampling regions. Out-
liers are indicated by colored circles. The median is indicated 
by a black line within each boxplot. Significant differences, as 
indicated by multiple pairwise t-test with Bonferroni correc-
tion, are visualized with **p < 0.001 and ****p < 0.00005. c 
Species accumulation curves per sampling region (continen-
tal shelf [red] and continental slope [blue]) and monitoring 
method (eDNA [light color] and catch [dark color]). Num-

ber of samples are represented on x-axis and number of taxa 
on y-axis. The solid line indicates the average value, while 
shaded area depicts the standard error. d Principal Coordinates 
Analysis (PCoA) depicting similarity in community composi-
tion based on taxonomic incidence (Jaccard index; presence-
absence), with the primary x-axis explaining 43.4% of the 
variation seen in the dataset and secondary y-axis explaining 
15.5% of variation. Catch and eDNA data from the continental 
shelf are depicted in dark red triangles and light red crosses, 
respectively. Catch and eDNA data from the continental slope 
are depicted in dark blue circles and light blue plusses, respec-
tively. Ellipses surrounding each group of samples represent 
95% confidence intervals
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strong habitat preference in concordance with the 
spatial trend of the detections made either by eDNA 
or recorded as fish catch.

Catch abundance and biomass correlation to eDNA 
signal strength

Overall, eDNA signal strength and catch records 
showed significant correlation on a regional scale 
(Fig.  4). Across all samples, eDNA signal strength 
correlated better with catch abundance  (R2 = 0.69; 
p < 0.005) compared to biomass  (R2 = 0.41; p < 0.05). 
Additionally, correlation between eDNA and catch 
abundance was higher for the continental shelf region 
 (R2 = 0.96; p << 0.001) compared to the continental 
slope region  (R2 = 0.75; p < 0.005).

While regional fish diversity patterns correlated 
significantly between eDNA signal strength and 
catch abundance, single species correlation between 
monitoring methods displayed variable significance 
(Fig.  5). On average, low  R2 values were obtained, 
indicating low predictive success for eDNA signal 
strength to estimate catch records, with the lowest 
 R2 value of 0.0541 reported for biomass correla-
tion of Zoarcidae and the highest  R2 value of 0.8454 
reported for abundance correlation of Trematomus 
sp. While the target fish, D. mawsoni, obtained a sig-
nificant correlation between eDNA signal strength 
and catch abundance (p < 0.005), an  R2 value of 
0.32 was recorded due to the consistent number 
of specimens recorded and highly variable eDNA 
signal strength. Highly significant correlation and 

high  R2 values were observed for Trematomus sp. 
(p << 0.001;  R2 = 0.845), followed by Striped rock-
cod (Trematomus hansoni Boulenger, 1902; Noto-
theniidae; p << 0.001;  R2 = 0.788), Macrourus sp. 
(p << 0.001;  R2 = 0.523), and Muraenolepis sp. 
(p << 0.001;  R2 = 0.493). Non-significant correlation 
was observed for Chionobathyscus dewitti (p < 0.1; 
 R2 = 0.116) and Zoarcidae sp. (p < 0.1;  R2 = 0.135).

Discussion

This study provides evidence for the application of 
using the naturally accumulated eDNA obtained from 
marine sponges (Cai et al. 2022; Jeunen et al. 2021; 
Mariani et  al. 2019; Turon et  al. 2020) caught as 
bycatch in demersal longlining fisheries to describe 
fish diversity patterns in the Ross Sea, Antarctica. 
Compared to fish catch records, eDNA metabarcod-
ing allows for a more comprehensive investigation 
into fish biodiversity by detecting a larger proportion 
of the fish community. In addition, while our results 
show eDNA signal strength to be a suitable measure-
ment for regional fish community composition (Salter 
et  al. 2019; Stoeckle et  al. 2021; Thomsen et  al. 
2016), the metabarcoding application is currently 
unable to predict catch numbers at the species level.

Our eDNA survey exceeded fish catch records in 
total number of fishes detected, as well as average 
species diversity per sample, thereby enabling us to 
gather additional biogeographical information on 
the data-limited Ross Sea ecosystem (Ainley 2002). 
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Fig. 5  Correlation between 
relative eDNA signal 
strength (x-axis) and catch 
biomass (blue; primary 
y-axis) and catch abundance 
(orange; secondary y-axis) 
for each taxon detected 
using both methods. Data 
was log–log transformed 
prior to analysis. Linear 
regression is indicated by 
a dashed line. The p-value, 
 R2-value, and equation is 
provided above the graph 
for biomass and abundance 
for each species
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This discrepancy between monitoring methods could 
have resulted from the high selectivity and bias of the 
hook-and-line fishing method endorsed by CCAMLR 
in the Ross Sea Antarctic toothfish fishery (Løkke-
borg and Bjordal 1992; Moreno 1991). While selec-
tivity and bias towards the target fish reduces bycatch, 
the utilization of such catch records to describe fish 
diversity patterns could potentially be hampered. 
Aquatic and natural sampler eDNA metabarcoding 
surveys, on the other hand, have previously been suc-
cessfully implemented to describe biodiversity pat-
terns in the marine environment (Berry et  al. 2019; 
Jeunen et  al. 2021; Nguyen et  al. 2020; O’Donnell 
et al. 2017). Furthermore, aquatic eDNA metabarcod-
ing surveys are frequently reported to outperform tra-
ditional monitoring surveys with regards to number of 
species detected (Afzali et al. 2020; Salter et al. 2019; 
Stat et al. 2019; Stoeckle et al. 2021; Thomsen et al. 
2016). These previous findings agree with this study. 
The increase in number of species lies mainly in the 
manner of detection, whereby eDNA surveys do not 
rely on visual observations, but rather detect species 
indirectly through DNA released in the environment 
by inhabiting organisms, thereby increasing detec-
tion accuracy for low-abundant or elusive organisms 
(Mauvisseau et  al. 2017; Simpfendorfer et  al. 2016; 
Uthicke et al. 2022). Detection probability for eDNA 
surveys, however, might still be impacted through, 
e.g., (1) amplification bias (Kelly et  al. 2019), (2) 
varying DNA shedding rates (Sassoubre et al. 2016; 
Wood et al. 2020), or (3) incomplete reference data-
bases (Hestetun et  al. 2020), potentially causing the 
reported false-negative detections in eDNA surveys 
in this study and elsewhere (Maiello et  al. 2022; 
Stoeckle et al. 2021; Thomsen et al. 2016).

The only two species that could not be detected 
by our eDNA metabarcoding survey were the skates, 
Bathyraja eatonii and Bathyraja maccaini. While 
one eDNA signal for Bathyraja sp. was recovered, 
we were unable to resolve the ZOTU to species 
level. To date, 55 species have been described in this 
genus, with six species occurring in Antarctic and 
sub-Antarctic waters where they represent the domi-
nant group of Chondrichthyan fauna (Long 1994; 
Smith et  al. 2008). Only 12 species (21.8%) were 
represented with a reference barcode in our database, 
including three (50%) Antarctic and sub-Antarctic 
species, i.e., Bathyraja eatonii, Bathyraja mac-
caini, and Dark-belly skate (Bathyraja meridionalis 

Stehmann, 1987; Arhynchobatidae; Supplemental 
File 5). Given the multiple mismatches between the 
ZOTU and all reference barcodes and the species-
level resolution of the amplicon region for the Bathy-
raja genus (based on the 12 available reference bar-
codes), it is likely the detected eDNA signal is from 
a described species lacking a reference barcode for 
the 16S rDNA gene or an undescribed species, as this 
taxonomic group is understudied with new species 
being described in recent years (Smith et  al. 2008; 
Stehmann et  al. 2021). Incomplete reference data-
bases are, hence, a major limitation to eDNA surveys 
(Hestetun et  al. 2020). It should be noted, however, 
that the reference barcodes used in this study for 
Bathyraja were obtained from the online data reposi-
tory NCBI, known to contain erroneous sequences 
(Bagheri et  al. 2020). Reference barcode validation 
could, therefore, lead to a reclassification to one of 
the two species recorded as bycatch. The reliance of 
eDNA to assign taxonomy based on online databases 
is powerful, because the entire community contrib-
utes to the completion of the reference database; but 
it is also a downside, due to lack of stringent curation 
potentially leading to misclassification (Bagheri et al. 
2020). Additionally, only a single tissue biopsy was 
collected from each sponge specimens in our experi-
ment. The inclusion of multiple replicate biopsies 
per sponge specimen could have increased the detec-
tion likelihood for rarer species due to the abundance 
distribution observed in eDNA metabarcoding data 
between high and low abundant DNA signals, thereby 
increasing the probability of detecting both skate spe-
cies (Skelton et  al. 2022). While eDNA most likely 
failed to detect both species, we cannot exclude the 
possibility of misidentification by fisheries observers, 
due to the understudied and poorly described nature 
of this taxonomic group (Smith et al. 2008; Stehmann 
and Bürkel 1990).

Highest taxonomic resolution was not consist-
ently obtained for one survey method over the other. 
For example, taxonomic resolution of Macrourus 
sp., Pogonophryne sp., and Trematomus sp. had 
to be reduced to genus level for catch recordings, 
while taxonomic resolution of Zoarcidae sp. was 
reduced to family level for eDNA detection (Sup-
plemental Table 8). While both monitoring methods 
achieved highest resolution for certain taxonomic 
groups, eDNA shows the highest potential for accu-
rate, high-resolution taxonomy assignment by not 
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relying on morphology-based identification (Seymour 
et al. 2021). To achieve this potential, reference data-
bases will need to be completed and curated (Bagheri 
et al. 2020; Hestetun et al. 2020). Additionally, short 
amplicon primers with high taxonomic resolution 
and without amplification bias will need to be devel-
oped (Kelly et  al. 2019). Alternatively, innovative 
sequencing technologies, such as Oxford Nanopore 
Technologies (ONT), enable longer DNA fragments 
to be sequenced, thereby potentially increasing the 
taxonomic resolution of eDNA metabarcoding data 
(Ames et al. 2021; Doorenspleet et al. 2021). Finally, 
the use of species-specific assays has the potential to 
increase the taxonomic resolution, as well as detec-
tion probability due to increased sensitivity over 
eDNA metabarcoding (Yu et al. 2022). However, the 
cost and time associated with the design of multiple 
specific assays is likely a hindrance for high diverse 
community monitoring (Yu et al. 2022).

Our natural sampler eDNA survey correlated 
highly to regional fish abundance and biomass obser-
vations from fish catch records, indicating quanti-
tative information to be gathered from eDNA on a 
regional scale (Salter et al. 2019; Stoeckle et al. 2021; 
Thomsen et  al. 2016). Similar observations were 
made for comparative experiments between aquatic 
eDNA and trawling (Salter et al. 2019; Stoeckle et al. 
2021; Thomsen et  al. 2016). However, the metric to 
which eDNA best correlated differed among studies, 
whereby Thomsen et  al (2016) described variable 
results dependent on taxonomic resolution, Salter 
et  al. (2019) found the highest correlation between 
eDNA and biomass, and Stoeckle et al (2021) identi-
fied an allometric index calculated from biomass to 
obtain the highest correlation. Further investigations 
into quantitative eDNA metabarcoding are, therefore, 
needed to tease out the current discrepancies between 
studies. While regional abundance information was 
obtained for our eDNA survey, we could not estimate 
fish catch numbers from a single line using eDNA 
metabarcoding. The lack of predictive power for our 
eDNA survey could be due to the bias of the longlin-
ing fishing method. For example, target species Dis-
sostichus mawsoni biomass/abundance catch records 
were consistent across sampling regions, while 
eDNA signal strength varied. The consistent catch 
records could have been induced by the attraction 
of D. mawsoni to bait, thereby masking local abun-
dance patterns (Kuriyama et  al. 2018). For bycatch 

specimens, abundance/biomass estimates from catch 
records might be biased due to the selectivity of the 
gear against these organisms (Løkkeborg and Bjor-
dal 1992). Hence, eDNA metabarcoding might be 
a better predictor of local fish abundance compared 
to longlining records. On the other hand, difficul-
ties in obtaining abundance information from eDNA 
metabarcoding data are a well-known limitation of 
the methodology (Kelly et  al. 2019). Environmental 
DNA signal strength can be influenced by biological 
(e.g., species-specific DNA shedding rates Kirtane 
et al. 2021), physical (e.g., environmental parameters 
Rourke et al. 2022), and technical (e.g., PCR ampli-
fication Kelly et  al. 2019) factors, thereby poten-
tially reducing the correlation between eDNA signal 
strength and taxon biomass/abundance.

Our results show the potential of using marine 
sponge bycatch specimens as a low-tech and cost-
effective eDNA survey method to monitor the fish 
diversity in the Southern Ocean (Mariani et al. 2019). 
Marine sponges as natural eDNA samplers have been 
shown to achieve comparable results to aquatic eDNA 
surveys (Jeunen et al. 2021) and considered an inno-
vative application of passive eDNA sampling (Bessey 
et al. 2021; Jeunen et al. 2022b), an effort to increase 
sample number in eDNA surveys by circumventing 
the need for the time-consuming step of active filtra-
tion (Bessey et al. 2021; Jeunen et al. 2022b). The use 
of marine sponge bycatch specimens in eDNA sur-
veys will, furthermore, enable additional data gather-
ing of the Porifera taxonomic group, which is among 
the less-studied benthic invertebrates with regards 
to extinction risk and conservation status (Bell et al. 
2015). Additionally, yearly sponge bycatch sampling 
from the annual fishing season will enable us to 
investigate temporal biodiversity patterns associated 
with anthropogenic and climate impacts (Berry et al. 
2019). Obtaining eDNA signals from previously col-
lected sponge specimens stored in museums will also 
allow us to infer past ecosystem states and further 
our understanding of this understudied ecosystem to 
aid conservation efforts, such as the world’s largest 
marine protected area (Ballard et al. 2012).

Relying on bycatch specimens, however, could 
potentially hinder robust experimental design and 
consistent monitoring, as marine sponges are caught 
only when entangled on fishing lines dragging over 
the seafloor (Parker et  al. 2009). For example, dur-
ing the voyage underpinning this study, the San Aotea 
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II fishing vessel recorded marine sponge specimens 
as bycatch in 26 (19.0%) out of the 137 fishing lines 
deployed. Additionally, the collection of specimens 
onboard commercial fishing vessels could potentially 
limit the opportunity for robust in-field contamination 
control, the standard approach within aquatic eDNA 
surveys (Takahashi et al. 2023). The upside of using 
bycatch specimens, on the other hand, is the lack of 
additional destructive sampling to gather data. An 
alternative consideration to marine sponges is the 
deployment of passive filtration devices, such as the 
metaprobe (Maiello et al. 2022) or artificial sponges 
(Jeunen et al. 2022b). Prior to deployment, however, 
it is imperative to investigate the impact of attached 
passive samplers to fishing lines to ensure commer-
cial interests are not hindered. Autonomous sampling 
devices are another avenue currently being explored 
for eDNA surveys (Hansen et  al. 2020; Yamahara 
et al. 2019). While initial success has been reported, 
deployment costs in remote areas, such as the South-
ern Ocean, and initial acquisition cost could hinder 
large-scale monitoring.

Conclusion

Effective conservation relies on detailed and exten-
sive knowledge of the ecosystem. While international 
conservation goals have been put in place to limit the 
effect of detrimental anthropogenic pressures (Ballard 
et  al. 2012), continuous monitoring is hindered by 
logistical constraints brought on from the remoteness 
of the Southern Ocean. In this experiment, we pro-
vide evidence for using marine sponge bycatch speci-
mens as natural eDNA samplers to gain additional 
information on fish diversity patterns in the Southern 
Ocean. These passive samplers enabled us to survey 
a larger proportion of the fish community compared 
to fish catch records. Furthermore, proper curation 
of specimens and eDNA extracts will enable the re-
examination of results when technological advances 
might allow for accurate abundance estimates and 
population genetic structure investigations. Finally, 
annual sponge bycatch collection and museum-stored 
sponges have the potential to let us uncover long-term 
temporal biodiversity patterns in relation to anthro-
pogenic and climate impacts, thereby expanding our 
knowledge of this understudied ecosystem and aid 
conservation efforts.
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