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and stakeholder input to fill knowledge gaps and pro-
mote information sharing. Moreover, fisheries man-
agement, by which we mean the end-to-end process of 
data collection, scientific analysis, and implementa-
tion of evidence-informed management actions, must 
integrate improved communication, engagement, and 
capacity building, while incorporating feedback loops 
at each stage. Increasing application of management 
strategy evaluation is viewed as a critical unifying 
component, which will bridge fisheries modeling dis-
ciplines, aid management decision-making, and better 
incorporate the array of stakeholders, thereby lead-
ing to a more proactive, pragmatic, transparent, and 
inclusive management framework–ensuring better 
informed decisions in an uncertain world.

Keywords Stock assessment · Fisheries 
management · Data-limited methods (DLMs) · 
Ecosystem and climate models · Spatial modeling · 
Management strategy evaluation (MSE)

Introduction

Fisheries management broadly encapsulates the end-
to-end process of creating fisheries policy based on 
evidence-informed scientific advice to ensure the 
sustainable harvest of marine resources, and includes 
data collection, scientific research and advice, stake-
holder engagement, and subsequent implementation 
of management actions (Cochrane and Garcia 2009). 

Abstract Marine population modeling, which 
underpins the scientific advice to support fisheries 
interventions, is an active research field with recent 
advancements to address modern challenges (e.g., 
climate change) and enduring issues (e.g., data limi-
tations). Based on discussions during the ‘Land of 
Plenty’ session at the 2021 World Fisheries Congress, 
we synthesize current challenges, recent advances, 
and interdisciplinary developments in biological fish-
eries models (i.e., data-limited, stock assessment, 
spatial, ecosystem, and climate), management strat-
egy evaluation, and the scientific advice that bridges 
the science-policy interface. Our review demonstrates 
that proliferation of interdisciplinary research teams 
and enhanced data collection protocols have enabled 
increased integration of spatiotemporal, ecosystem, 
and socioeconomic dimensions in many fisheries 
models. However, not all management systems have 
the resources to implement model-based advice, 
while protocols for sharing confidential data are lack-
ing and impeding research advances. We recommend 
that management and modeling frameworks continue 
to adopt participatory co-management approaches 
that emphasize wider inclusion of local knowledge 
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Ensuring sustainable fisheries and healthy marine 
ecosystems has been the goal of fisheries manage-
ment since the turn of the twentieth century, when the 
limited production of fish species and the potentially 
detrimental impacts of industrial fishing became 
widely recognized (Larkin 1978; Quinn 2003; Ange-
lini and Moloney 2007). The ability of management 
frameworks to maintain healthy populations of fish 
and the livelihood of fishers has been mixed over the 
course of the 20th and early 21st centuries (Caddy 
and Cochrane 2001; Hilborn et  al. 2020). However, 
fisheries successes have proliferated as stewardship 
of the world’s living marine resources has evolved to 
more thoroughly rely on evidence-based and scien-
tifically-informed management (Hilborn 2012; Mel-
nychuk et  al. 2017). Because evidence-based man-
agement relies on outputs from a variety of fields, 
understanding critical challenges across such fields 
can help illustrate issues facing fisheries manage-
ment, while highlighting emergent solutions.

Historically, legal mandates and resultant poli-
cies have driven the development of the scientific 
tools needed to inform fisheries management deci-
sions (Hilborn 2012). Concomitantly, the amount, 
quality, and types of fisheries and biological data 
have influenced the scientific approaches that advise 
marine policy (Anderson 2015). Traditionally, the 
scientific basis for fisheries management actions has 
been derived from stock assessments, which analyze 
fishery catch and effort data, fishery-independent sur-
vey information, and demographic rates to determine 
the impacts of fishing on a population and identify 
sustainable rates of exploitation (Methot 2009). The 
implementation of total allowable catch quotas based 
on the outputs of stock assessments were considered 
a major advance in quantitative fisheries management 
and a primary factor in rebuilding of many fish stocks 
globally (Hilborn 2012)—when the scientific advice 
has been heeded (Galland et  al. 2018; Karnauskas 
et al. 2021). Despite what was heralded as a ‘golden 
age’ of fisheries modeling in the 1980s and 1990s, at 
the turn of the 21st century, Quinn (2003) foresaw 
several dilemmas to continued advancements. These 
impediments included: inadequate communication 
among managers, stakeholders, and scientists; the 
inability to understand and adequately utilize uncer-
tainty within the management framework; data and 
computing power limitations preventing implemen-
tation of complex integrated analyses; the lack of 

rigorous testing of multispecies and ecosystem mod-
els and replacement of, instead of coevolution with, 
single-species assessments; and difficulties incorpo-
rating spatial structure, habitat relationships, and cli-
mate-induced changes into assessment models.

In the intervening two decades since Quinn’s 
(2003) ‘clouds on the horizon’ outlook, major strides 
have been made in the collection of data to support 
fisheries models, the modeling frameworks used to 
determine marine population health, and the associ-
ated management frameworks. In particular, a criti-
cal aid to management decision-making has been 
the development and expansion of simulation-based 
management strategy evaluation (MSE). MSE ena-
bles a priori analysis of tradeoffs in performance met-
rics associated with potential management strategies 
(i.e., the combination of data collection, the analyses 
applied to those data, and the decision rule or harvest 
control rule, HCR, used to determine management 
actions based on those data or analyses; note that a 
fully specified and simulation tested management 
strategy is referred to as a management procedure, 
see Supplementary Information Table  S1 for defini-
tions of common terms), and exploration of manage-
ment strategy robustness (i.e., the ability to maintain 
desired performance across the range of plausible 
simulated dynamics) to potential system uncertainties 
(Rademeyer et  al. 2007; Punt et  al. 2016). Simulta-
neously, expanded research on data-limited methods 
(DLMs), which are empirical or analytical approaches 
to obtain performance indicators of population sta-
tus in the absence of an integrated stock assessment 
model, has allowed the provision of quantitative sci-
entific advice for the large diversity of data-limited 
fisheries.

Despite strides in managing the world’s marine 
resources, several stressors have received renewed 
attention as potential impediments to sustainable use, 
including climate change, loss of biological diver-
sity, and socioeconomic inequities. Management 
bodies worldwide increasingly acknowledge these 
challenges and are implementing novel approaches 
to engage stakeholders and citizens in fisheries man-
agement (e.g., the inauguration of the United Nation’s 
‘Ocean Decade’ in 2021; Pecl et  al. 2022). Moreo-
ver, recent advances across scientific disciplines and 
the expansion of modeling tools suggests there are 
opportunities for synergism to address these chal-
lenges. A review of current developments across 
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fisheries modeling disciplines is needed to highlight 
important research themes, while helping to identify 
the challenges that remain for the provision of evi-
dence-based fisheries management advice. Based on 
a multi-session symposium during the 2021 World 
Fisheries Congress, titled ‘Land of Plenty: Advances 
and Future Directions in Population Dynamics Mod-
eling to Support Fishery Management’, we will syn-
thesize the challenges and emerging solutions in fish-
eries modeling. We will conclude with a perspective 
on near-term evolutions in the evidence-based scien-
tific advisory process by developing a strategic guide 
for improving fishery management frameworks (i.e., 
including data collection, scientific analyses, advice 
formulation, and stakeholder engagement). While the 
science and policy used to manage fisheries is often 
intertwined with the broader complexities of ocean 
governance and marine spatial planning initiatives in 
the emerging blue economy, the latter topics are out-
side the scope of the current manuscript. We focus 
on quantitative fisheries management advice and the 
modeling tools used to support decisions related to 
sustainable harvest of fish populations.

Novel data to stimulate improvements in scientific 
advice

Scientific understanding of the marine environment, 
and the ability to realistically model it, requires col-
lection of considerable data. Ever-improving tech-
nology has enabled increased collection, better 
resolution, wider applicability, improved dataset 
interoperability, and faster collation and dissemi-
nation of data. However, the ability of modelers 
to effectively utilize the increasing number of data 
streams often lags, because most fisheries models 
exploit the contrast in long-term time series. Many 
new data types are only now starting to emerge 
from experimental collection protocols to be more 
widely integrated and institutionalized. However, it 
is expected that there will be rapid incorporation of a 
variety of ‘new’ data types within fisheries models in 
the near future. Given that the collection of data (and 
associated knowledge gained) is the cornerstone for 
developing evidence-informed management advice, 
we begin with a discussion of data advances that are 
likely to spur improvements in fisheries modeling and 
management (see Table  1 for a summary of novel 

data streams and associated potential uses in fisheries 
models).

Fisheries monitoring data

Robust fisheries-dependent data from a combination 
of human at-sea observer programs, recently intro-
duced fisheries electronic monitoring (EM) systems, 
port sampling, and self-reported logbooks can be used 
to develop indices of abundance, understand species 
distributions, identify bycatch hotspots, and eluci-
date age- or size-composition of the population (Gil-
man et  al. 2017). Fisheries EM systems are increas-
ingly being used to complement conventional onboard 
observer programs and to initiate at-sea monitoring 
where none had previously existed (van Helmond 
et  al. 2020). While EM systems are not yet able to 
collect all of the data types collected by conventional 
observer programs, EM may provide more certain 
data (van Helmond et al. 2020) because it overcomes 
sources of statistical sampling bias faced by observer 
programs (e.g., changes in fishing practices, coercion, 
or deception when observers are present; Babcock 
et  al. 2003; Benoit and Allard 2009; Gilman et  al. 
2019b). Unlike observers, EM analysts can view mul-
tiple fields of view simultaneously, while continuously 
monitoring the fishing platform. Thus, increasing 
implementation of EM systems will help provide more 
consistent and dedicated sampling programs glob-
ally, though overhead costs (e.g., video analysis) may 
impede application in resource-limited regions. For 
recreational and small-scale fisheries, EM can take 
the form of slipway, boat ramp, or dock-based camera 
systems that can estimate fishing effort and potentially 
catch (e.g., Powers and Anson 2016). Increasingly, 
fishing vessel position data can also be obtained, for 
example, from satellite-based vessel monitoring sys-
tems (VMS) or Automated Identification Systems 
(AIS), which can be used to identify spatiotemporal 
patterns in the distribution of fisheries. With advanc-
ing technology (i.e., continued miniaturization and 
reduced cost), it is envisioned that similar monitoring 
of coastal waters will be possible through GPS report-
ing on small vessels, recreational reporting of precise 
catch locations from phone-based apps, and even data 
collected from divers or spear-fishers (e.g., includ-
ing depth and temperature profiles as from electronic 
tags attached to fish). As VMS and EM data collec-
tion continue to expand, research should focus on 
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identifying fine-scale patterns in resource extraction to 
enable better understanding of linkages between catch 
rates and habitat, oceanographic variables, and spe-
cies distributions (e.g., Gardner et  al. 2022). Despite 
the undeniable benefits of increasingly high resolution 
data on fishery removals, behavior, and distribution, 
the ability to utilize the wealth of information from 
fishery-dependent sources is limited if the data can-
not be readily shared or easily accessible by research-
ers due to increasing confidentiality concerns (Bradley 
et al. 2019). Therefore, collaboration among scientists, 
managers, and stakeholders is needed to improve trust, 
transparency, and sharing of information to ensure 
development of protocols that enable fishery-depend-
ent data to be fully utilized.

Local ecological knowledge, crowdsourcing, and 
self-reported socioeconomic data

Understanding ecological functioning and socioeco-
nomic dynamics often requires first-hand observation 
and adequate sample sizes, both of which are costly 
and difficult to obtain from scientific platforms. In 
particular, socioeconomic data can be elusive for all 
harvest sectors and fisheries and may not be accessible 
even when collected due to confidentiality concerns, 
despite being imperative for developing biosocio-
economic models, understanding fishermen behavior, 
and developing appropriate economic performance 
measures. It is increasingly being recognized that 
commercial, recreational, indigenous, and traditional 
stakeholders hold a wealth of ecological and systems 
knowledge, given their first-hand observations and 
experiences (Beaudreau and Levin 2014). In particu-
lar, local ecological knowledge (LEK) can be useful 
to develop hypotheses about ecosystem functioning 
(e.g., Duplisea 2018), map resource and fishing effort 
distributions (Hall-Arber et al. 2009), fill in spatiotem-
poral data gaps (Lopes et al. 2019), establish popula-
tion or ecosystem baselines, and help understand the 
broader bio-socioeconomic system (Rosellon-Druker 
et  al. 2019), particularly when such data are not for-
mally reported in logbooks. Similarly, the increasing 
use of crowdsourced or cooperative research collec-
tion programs, through either citizen science col-
lected or fishermen self-reported data (e.g., in the 
form of app-based reporting or voluntary submis-
sion of samples), is proving to be a cost-effective 
way to improve sample sizes and spatiotemporal data 

coverage (Fairclough et al. 2014; Thorson et al. 2014; 
Bonney et  al. 2021; Russo et  al. 2021). App-based 
self-reporting approaches have been particularly use-
ful for collecting socioeconomic data and may help 
improve stakeholder engagement and willingness to 
share otherwise confidential information (Skov et  al. 
2021). In the future, the ability to data-mine and ana-
lyze the increasing quantity of digital fisheries data 
(e.g., social media posts and search trends) will fur-
ther enable rapid collation of baselines and subsequent 
patterns in both socioeconomic and ecological factors 
(Lennox et al. 2022). However, self-reported data can 
sometimes be unrepresentative when economic or 
social factors exist and each of these data sources is 
associated with potential sampling biases. Thus, self-
reported data must be carefully vetted to ensure data 
quality and avoid the pitfalls of anecdotal evidence 
and non-representative samples, which can bias model 
outputs and increase scientific uncertainty (Balazs 
et al. 2021). Although methods exist to address many 
types of biases associated with self-reported data (e.g., 
Fairclough et  al. 2014), further emphasis should be 
placed on similar research (i.e., to overcome sampling 
limitations) to ensure wider utilization of the plethora 
of fishery- and citizen-dependent data becoming avail-
able. Moreover, further expansion of participatory 
modeling initiatives would promote increased sharing 
of socioeconomic data, while developing pathways for 
increased accessibility (i.e., across research groups 
and government organizations) and subsequent analy-
sis of otherwise confidential data streams.

Autonomous sampling

Although fishery-independent surveys are desirable, 
many situations exist that make surveys infeasible due 
to large survey areas (e.g., entire oceanic basins for 
tuna species), limited manpower, dangerous condi-
tions, or areas that are inaccessible to the survey gear 
(e.g., high-relief habitat). The ability to conduct acous-
tic surveys from uncrewed platforms could help replace 
or augment expensive vessel-based surveys (e.g., De 
Robertis et al. 2021), thereby addressing many of these 
concerns using a more cost-effective approach, though 
lack of age- or size-composition data from acoustic 
surveys remains problematic. Remote video surveys 
can provide indices of abundance and length compo-
sition (e.g., Thompson et  al. 2022), though applica-
tion may be limited to sessile species or species with 
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Table 1  A summary of novel data sources and how they can be utilized in fisheries models

Data source Types of data collected Model use

Electronic Monitoring (EM) Catch estimates
CPUE
Bycatch
Discards

Index of abundance for empirical manage-
ment strategies and model fitting

Spatiotemporal models of distribution, 
bycatch hotspots, and habitat affinity

Inform stock assessment development and 
model fitting

Inform technical interactions for ecosystem 
models

Vessel Monitoring System (VMS) Georeferenced vessel, catch, and bycatch 
locations

Spatiotemporal models of species distribu-
tion, bycatch hotspots, and habitat affinity

Impacts of area-based management tools 
(ABMTs) on effort redistribution

Local Ecological Knowledge (LEK) and 
Community Data

Spatiotemporal distribution maps
Self-reported catch, effort, bycatch, and 

socioeconomic data
Personal ecological observations

Compare and ground-truth model outputs
Fill spatiotemporal data gaps
Develop baselines of abundance or ecosys-

tem health
Identify model assumptions or hypotheses

Crowdsourced Citizen Science Data Observations of presence or absence
Self-collected samples (e.g., report or 

release tagged fish, biological samples, 
eDNA)

Improve stock assessment sample sizes for 
biological data

Spatiotemporal models of distribution, 
bycatch hotspots, habitat affinity, and 
range shifts

Develop indices of abundance
Fill spatiotemporal data gaps

Socioeconomic Surveys (e.g., App-based 
Self-Reporting or Digital Fisheries Data)

Ex-vessel prices and costs
Drivers of fishermen behavior
Social dynamics
Non-harvest use valuations
Self-reported catch, effort, bycatch, and 

socioeconomic data (e.g., recreational 
fishery statistics)

Data to estimate parameters of bioeconomic 
models

Develop performance measures for MSE
Develop integrated ecosystem assessments
More precise recreational catch and effort 

estimates for stock assessment

Fishery-Independent Surveys Biomass estimates
Age and length frequency
Biological samples
eDNA
Stomach contents
Genetic structure

Develop indices of abundance and estimates 
of total abundance

Improve sample sizes for age and length 
composition inputs to stock assessments 
along with maturity, growth, and fecun-
dity estimates

Spatiotemporal models of species distribu-
tion and range expansion or contraction

Index of abundance for empirical manage-
ment strategies

Inform stock assessment development and 
model fitting

Identify population structure for spatial 
stock assessments

Data to inform multispecies interactions 
(e.g., predation)

Uncrewed Survey Platforms Acoustic or video survey biomass esti-
mates

Length frequency distributions from 
cameras

Oceanographic and environmental data
eDNA

Indices of abundance for stock assessment 
or empirical management strategies

Improved sample sizes for length composi-
tion inputs to stock assessments

Spatiotemporal models of species distribu-
tion and range shifts

Inform ecosystem and habitat linkages
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strong habitat affinity (e.g., reef fish). Similarly, pas-
sive acoustic networks are available at basin scales to 
track phenology and distribution for mobile protected 
species (Davis et  al. 2020), allowing improved infer-
ence about the seasonal overlap between populations 
and conventional surveys. Biohybrid systems (e.g., 
‘FishBots’ that can mimic biological counterparts) 
also show promise for enabling in situ data collection 
(Schmickl et  al. 2021). Future autonomous sampling 
research should focus on the evolution of joint survey 
platforms that combine multiple collection methods 
without substantially increasing vessel days or labor 
requirements (e.g., simultaneous collection of acous-
tic, video, oceanographic, and environmental DNA, 
eDNA, data). For example, recent pilot studies demon-
strate promise for combining eDNA and acoustic-mid-
water trawl sampling (Shelton et al. 2022).

Integrated ocean monitoring networks

Improved technology has led to a proliferation in 
bio-logging data via satellite tags, archival tags, and 

acoustic telemetry, which provide information on 
movement, distribution, abundance, and mortality 
(e.g., direct estimates of natural mortality, which is a 
problematic parameter for population models; Sippel 
et al. 2015; Block et al. 2019). As these data become 
better integrated into ocean monitoring systems, the 
ability to track animals globally and across regional 
sensor arrays (e.g., for telemetry data) will continue 
to improve the ability to link animal movements with 
biophysical variables (Lowerre-Barbieri et al. 2019). 
Moreover, marine animals can themselves become 
autonomous oceanographic samplers when fit with 
electronic tags and associated ocean sensors, thereby 
providing data from historically undersampled loca-
tions (e.g., ice covered polar seas and remote tropi-
cal coastal regions; McMahon et al. 2021). Similarly, 
remote sensing and in situ measurement systems now 
allow synoptic, near real-time information on an array 
of oceanographic variables (e.g., temperature, chloro-
phyll concentrations, velocity fields, habitat data, etc.; 
Davidson et al. 2019). Operational oceanography data 
have greatly improved oceanographic models critical 

Table 1  (continued)

Data source Types of data collected Model use

Biohybrid Systems
(e.g., FishBots)

Oceanographic and environmental data
Behavior (e.g., feeding, predator–prey, 

habitat use)
Movement

Inform environmental linkages
Inform assumptions regarding connectivity 

patterns and habitat use
Test hypotheses and develop mechanistic 

understanding
Tagging Data Biologging (e.g., acoustic telemetry, archi-

val tags, satellite tags)
Mark-recapture
Oceanographic data (from tag sensors)
Gene-tagging
Close-kin mark-recapture (CKMR)

Inform assumptions regarding connectivity 
patterns and habitat use

Estimate movement and mortality in tag-
ging, assessment, spatial, or ecosystem 
models

Spatiotemporal models of species distribu-
tion, habitat affinity, and range shifts

Develop indices of abundance and estimates 
of total abundance

Operational biophysical models
Integrated Ocean Monitoring Remote sensing

Synoptic, real-time oceanography
Operational biophysical models (e.g., larval 

individual-based models)
Environmental and ecosystem linkages to 

population processes
Natural Markers Otolith microchemistry

Parasite infestation
Catch composition to assign input data to 

population of origin
Inform assumptions regarding connectivity 

patterns and habitat use
Estimate movement and mortality in tag-

ging, assessment, spatial, or ecosystem 
models
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to understanding fish early life history, dispersal, eco-
system dynamics, and potential environmental link-
ages (Hidalgo et al. 2016), while enhancing the abil-
ity to inform dynamic ocean management (Maxwell 
et  al. 2015). Resources to ensure long-term mainte-
nance and yearly updates of oceanographic models 
should be a priority, especially as biophysical models 
are further integrated into scientific advice.

Natural markers and omics

The recent and rapid advancements in the ‘omics’ sci-
ences, particularly the ability to perform high through-
put genetic sequencing, allows cost-effective, often 
non-lethal, monitoring of species population structure 
and genetic composition of catch (Papa et  al. 2021), 
presence-absence (e.g., eDNA; Wang et al. 2021), and 
absolute abundance (e.g., gene-tagging or close-kin 
mark-recapture, CKMR; Preece et  al. 2015; Braving-
ton et al. 2016). Additionally, by analyzing the DNA of 
stomach contents, genetic analyses can provide insight 
into diet and predator–prey interactions (e.g., Paquin 
et  al. 2014). Genetic data can also be combined with 
analysis of natural markers (e.g., parasite infestation or 
otolith microchemistry) to more fully understand popu-
lation structure, migration patterns, and habitat usage 
throughout the entire life cycle, including natal birth 
locations, larval drift, juvenile nursery areas, adult 
feeding areas, and spawning migrations (e.g., Hussy 
et al. 2022). Perhaps most revolutionary, though, is the 
ability to estimate absolute abundance using CKMR 
or gene tagging, which represents a potential sea-
change in monitoring marine population trends and 
may powerfully augment age-structured stock assess-
ment approaches (Preece et al. 2015; Bravington et al. 
2016; Conn et al. 2020). Continued research to address 
potential bias associated with analyzing CKMR data 
(e.g., due to spatial sampling limitations and the need 
for additional demographic information; Conn et  al. 
2020; Trenkel et  al. 2022) should be a high priority, 
because there is an undeniable utility of CKMR data 
for supporting fisheries management (e.g. Hillary et al. 
2016, 2019).

A key future direction: hypothesis-driven data 
collection

Historically, data collectors and modelers did not 
often collaborate during data collection study design 

phases. The result has been that not all collected data 
are able to be effectively utilized within modeling 
or management frameworks. However, emphasis is 
increasingly being placed on conducting hypothesis-
driven data collection and research, which requires 
careful communication among observationists and 
modelers. Through clear communication across dis-
ciplines, experimental designs for data collection can 
be tailored to the needs of management, while also 
supporting development of robust scientific advice. 
Stakeholder input and LEK, along with increased 
utilization of cooperative research and crowdsourc-
ing, can be particularly helpful for implementing 
collection protocols that are both feasible and cost-
effective. By tailoring and tuning data collection, 
while also developing clear pathways for communi-
cation and knowledge sharing, there is likely to be 
a synergistic effect leading to development of more 
mechanistic models of environmental and climate 
drivers based on first principles. In addition, simu-
lation analyses (e.g., MSE) can be used to prioritize 
data types and identify data collection experimental 
designs that are most likely to result in cost-effective 
and robust management outcomes. However, given 
species redistributions due to climate change, careful 
consideration must be given to optimizing sampling 
locations. For example, data collection protocols need 
to be adequately augmented to ensure that sampling 
occurs at distributional fringes enabling detection of 
range shifts, which may require increased utilization 
of non-traditional (e.g., citizen science or eDNA) data 
(Karp et  al. 2019; Melbourne-Thomas et  al. 2022). 
Ultimately, CKMR calibrated visual surveys, which 
provide direct estimates of fish abundance, are a 
quantum leap forward over historical survey methods 
that provide only an indicator of abundance trends, 
and should help greatly improve scientific advice in 
coming years.

Current challenges and emerging solutions 
for provision of evidence‑informed fisheries 
management advice

A review across five interrelated fields of fisher-
ies modeling, including data-limited methods, stock 
assessment, spatial modeling, ecosystem modeling, 
and MSE, is undertaken to highlight existing chal-
lenges and evolving methodology in the development 
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of scientifically-informed fisheries management 
advice. We conclude with a summary of the primary 
impediments occurring at the science-policy interface 
(see Table  2 for a summary of these primary chal-
lenges and emergent solutions).

Data-limited assessment and management methods

The majority of fisheries (by volume) do not pos-
sess the data needed to support traditional assess-
ment methods nor the resource capacity to develop 
model-based management advice (e.g., Alabsi and 
Komatus 2014; Geromont and Butterworth 2015). 
The term ‘data-limited’ continues to be the catch-
all phrase for fisheries or stocks that have data 
deficiencies, but it can also refer to situations that 
lack technical or managerial resources (Cope et al. 
In Press; Dowling et  al. 2015). The obvious issue 
for these data-limited cases is low quality or lack 
of data, which necessitates maximizing information 
content from existing data sources (e.g., trends in 
catch data; McGarvey et al. 2005), borrowing infor-
mation from similar data-rich species (e.g., Jiao 
et al. 2011), exploring low-cost monitoring methods 
(e.g., eDNA; Lacoursiére-Roussel et  al. 2016), or 
collecting LEK (e.g., Machado et al. 2021) to moni-
tor population trends. The methods used to assess 
stocks with data-limitations have grown, particu-
larly over the past two decades (see Dowling et al. 
2008, 2019), largely due to mandates in areas with 
strong governance to maintain sustainable stock lev-
els through management of all species (Newman 
et  al. 2014, 2015). However, questions remain on 
how best to inform managerial decisions given the 
growth of DLMs and the multitude of stocks that 
are categorized as ‘data-limited’. Each data-limited 
case presents unique challenges and no single solu-
tion or generic best practice exists (Dowling et  al. 
2019).

Generic DLMs result in model misapplication

Assessment practitioners feel pressure to undertake for-
mal stock assessments even when extreme data limita-
tions exist, which often results in model misapplication 
as practitioners seek generic solutions or blanket appli-
cation of a single analytical approach to many stocks 
(e.g., as an efficient way to simultaneously assess and 
manage multiple data-limited stocks). Although DLMs 

are often presented as ‘simple’ and can be technically 
easy to apply, practitioners can fail to appreciate their 
limitations and simplifying assumptions, while best 
practices for DLM use are complex and dynamic. 
Blindly applying a suite of DLMs without understand-
ing how the data were collected or the underlying 
model assumptions can lead to unreliable assessments 
and inappropriate management advice (Dowling et  al. 
2019). Likewise, increased uncertainty is expected in 
DLMs due to the need for simplifying model assump-
tions, sharing biological data across regions or spe-
cies, mis-identification of similar species, and low or 
haphazard sampling intensity. Given the proliferation 
of DLMs, tools are warranted to guide practitioners in 
identification of appropriate DLMs to utilize, while also 
highlighting critical assumptions of chosen DLMs (e.g., 
FishPath; Dowling et  al. 2016; Crosman et  al. 2020). 
Indeed, robust and effective management strategies 
can still be implemented using DLMs when the limi-
tations of the data collection, fishery, and management 
frameworks are adequately considered and addressed. 
This can be accomplished through tailored MSEs (e.g., 
Carruthers et  al. 2014, 2016a), which are able to test 
whether management strategies are robust to modeling 
limitations, and can be guided through dedicated digital 
tools (e.g., www. merafi sh. org). Initiatives to incorpo-
rate existing DLMs within a few easily accessible tools 
should remain a priority, with a focus on flexibility to 
incorporate new data types (Cope 2013; Cope et  al. 
2015; Carruthers and Hordyk 2018).

Difficulties monitoring and managing multispecies 
fisheries

Many stocks worldwide are caught in multispecies 
fisheries, but lack the data or resources to adequately 
monitor each stock individually. Approaches to 
assess and manage data-limited multispecies fisher-
ies include selecting indicator species to represent 
stocks not assessed using quantitative stock assess-
ment or aggregating stocks into a group (i.e.,  a spe-
cies complex). The indicator species approach 
assumes that the chosen species are representative of 
other unassessed species. The species selected, how-
ever, should generally have higher risk levels (i.e., be 
more vulnerable to external pressures) compared to 
the other non-indicator species (Landres et al. 1988; 
Newman et  al. 2018). Conversely, monitoring and 
assessing a stock complex relies on appropriately 

http://www.merafish.org
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Table 2  Current challenges for the development of evidence-informed management advice and recommendations to help overcome 
these issues

Category Challenge Recommendation

Data Data limitations Better incorporation of novel data streams
Institutionalize novel data collection with permanent funding
Increased utilization of cooperative research opportunities
Emphasize data collection over modeling in data and capacity limited 

regions
Focus on collection of community data to establish baselines in artisanal 

fisheries
Data integration Better communication between data collectors and modelers to understand 

sampling bias and non-independence
Expansion of the integrated modeling framework to explicitly account for 

sampling issues within observation and likelihood components
Increased utilization of spatial models to fit data at scale of collection
Incorporate random effects and spatial autocorrelation to reduce effective 

parameters in models
Utilize hybrid and multiscalar modeling frameworks to fit varying scales of 

data
Use MSE to optimize data collection programs to support the needs of 

management
Models Inadequate assumptions Improved communication across disciplines, better stakeholder engage-

ment, and use of LEK to develop hypotheses and assumptions
Focus on hypothesis-driven data collection to help develop mechanistic 

understanding of processes
Interdisciplinary research teams to adequately account for system processes 

and acknowledge process error
Use MSE to determine robustness of assessment models to specification 

error
Continued development of good practices to aid model building decisions

Parameter non-stationarity Interdisciplinary research teams to better identify regime shifts and causes
Process studies to identify causal mechanisms that link population pro-

cesses to environmental drivers
Simultaneous and parallel development of single species and ecosystem 

models to aid synergistic understanding of system and reference points
Utilize random effects to address variability

Appropriate diagnostics Continued development of good practices
Increased training opportunities to disseminate good practices
Communication among disciplines and regions to share approaches

Conveying realistic uncertainty Improved communication between scientists, stakeholders, and managers
Development of intuitive and interactive graphical outputs along with digi-

tal applications to aid understanding of model assumptions on results
Clear acknowledgement of model limitations and uncertainty
Development of multiple models and model ensembles to address structural 

uncertainty
Developing sustainable catch targets Focus on developing baselines through community initiatives and social 

learning in data and capacity limited situations
Apply meta-analytic techniques to borrow life history parameters (across 

regions and species) when data is limited or models are unstable
Use simple management strategies and make management objectives more 

intuitive
Develop reference points from single species and multispecies models 

simultaneously to help identify appropriate bounds on harvest
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assigning stocks to a complex assuming that grouped 
species will have similar life history traits and func-
tional responses to ecosystem and anthropogenic per-
turbations (e.g., Cope et al. 2011; Omori et al. 2021). 
As the trend towards ecosystem-based fisheries man-
agement (EBFM) continues, increased emphasis will 

be placed on simultaneously managing across spe-
cies, which should aid in developing management 
advice that transcends technical interactions across 
multiple species (Fulton et al. 2019). However, moni-
toring data will still be required to inform decision-
making. Therefore, further work is recommended on 

Table 2  (continued)

Category Challenge Recommendation

Policy Formation Ill-defined objectives, poor transpar-
ency, limited legitimacy

Facilitated communication among stakeholders, managers, and scientists to 
ensure all participants understand the goals of management

Use MSE to formalize co-management, encourage participatory modeling, 
and aid clear communication of trade-offs in performance measures

Explore more intuitive, empirical harvest control rules
Training to aid stakeholders in better understanding the management pro-

cess, how to effectively participate, and to help manage expectations
Define tangible and quantifiable management goals (e.g., for ABMTs) 

before implementation to enable measuring performance
Better integrate interdisciplinary research into management advice to 

ensure stakeholder needs are being measured and addressed

Institutional inertia MSE to clearly demonstrate the robustness and improved performance of 
new management strategies

Clear acknowledgement and communication of uncertainty
Improved and facilitated communication
Emphasize pragmatism and a focus on data collection (over inaction) when 

data are limited
Training and exposure to alternate model and management approaches to 

aid acceptance of new methods (e.g., empirical management strategies, 
spatial assessments, and MICE)

Increasing application of spatiotemporal models to inform adaptive fine-
scale area based management tools (ABMTs)

Weak governance Implement social learning initiatives to communicate importance of self-
governance

Use community driven data to establish baselines and develop sustainable 
harvest approaches

Emphasize pragmatism and local stewardship for artisanal fisheries

Marine spatial planning Account for non-harvest use in MSE management objectives and perfor-
mance metrics

Expand participation in management to include non-fishery stakeholders 
associated with the blue economy

Integrate social science models and data to better address broader socioeco-
nomic objectives

Utilize spatially explicit models to better account for partitioning of the 
marine realm (e.g., when developing MSE operating models)

Adapting to climate change Use MSE to explore management strategy robustness to climate impacts 
(e.g., species redistribution)

Improve communication across regional and institutional boundaries to 
address species on the move

Implement more flexible and adaptable management utilizing high resolu-
tion spatiotemporal models as species move across boundaries

Improve data collection at the fringes of a species’ range to ensure ability to 
identify changing distributions

Increasingly explore stakeholder collected data to improve sample sizes and 
identify changes in distribution



385Rev Fish Biol Fisheries (2023) 33:375–410 

1 3
Vol.: (0123456789)

developing tools to assess and manage species com-
plexes (e.g., using multispecies spatiotemporal mod-
els; Omori and Thorson 2022), but pragmatic man-
agement solutions should emphasize increased data 
collection on all species associated with complexes.

A key future direction: empirical management 
strategies

Data- and capacity-limited fisheries face resource 
limitations, perceived uniqueness of circumstances, 
and a broad universe of assessment and manage-
ment options that is difficult to navigate. Rather 
than aiming for a ‘gold standard’ with respect to 
formal stock assessment, and thus delaying man-
agement action until an improved assessment 
option is available, emphasis on local stewardship 
is required. For management of data-limited fish-
eries, increased pragmatism is likely to become a 
more widely recognized priority, where manag-
ers accept the current limitations and aim to work 
within these constraints to achieve sustainable, 
rather than optimal, management of the resource. 
Thus, the emphasis will be placed on improved, 
targeted data collection that addresses priority 
management objectives (as opposed to data col-
lection that are not directly applicable for assess-
ing and managing these fisheries). Incremental 
and adaptive management approaches should be 
emphasized, given that it is unrealistic to readily 
overcome data and capacity limitations to move 
from no analytical assessment to a model-based 
approach. For instance, when a measure of rela-
tive abundance, yield-per-recruit, egg-per-recruit, 
or an indicator based on a representative length-
frequency sample can be developed, it provides 
the minimum requirement for an HCR to regu-
late exploitation levels (Hordyk et  al. 2015; Jar-
dim et  al. 2015; Wakefield et  al. 2020). Multiple 
empirical indicators can be used in indicator-based 
decision frameworks, wherein greater insight into 
stock status is provided by considering indica-
tors in combination (Harford et  al. 2021). Empiri-
cal and data-limited methods should be embedded 
within management strategies that are robust to the 
higher levels of uncertainty in assessment output 
by including precautionary management measures 
or buffers (Dowling et  al. 2019). Achieving gen-
eral consensus and buy-in from stakeholders to 

implement a management strategy that adjusts lev-
els of exploitation in response to observable indica-
tor changes can greatly improve management deci-
sion-making for data-limited fisheries (Dichmont 
and Brown 2010; Plagányi et  al. 2020), especially 
when tested through MSE. By adopting an adap-
tive approach tailored to existing limitations and 
starting with what is practical, fisheries can access 
the lower rungs of the formal management ‘lad-
der’. Eventually, resource and context permitting, 
management can be refined through consideration 
of the risk-cost-catch incentives (i.e., the trade-
offs between risks of overfishing or not achieving 
objectives, costs to sustainably manage the fishery, 
and the associated amount of catch that is allowed 
to be removed; Dichmont et. al. 2016). Similarly, 
where information or knowledge exists regard-
ing broader ecosystem dynamics that may impact 
a data-limited species or fishery, such information 
can still be considered, even if qualitatively, within 
management advice (e.g., through the use of risk 
tables; Dorn and Zador 2020).

General stock assessment

Conversely, when data permit, full model-based 
stock assessments are often implemented to deter-
mine stock status. Much of modern “data-rich” stock 
assessment science is based on the ‘integrated analy-
sis’ paradigm in which the development of the mod-
eled population dynamics is based on knowledge of 
the system under consideration, the available data, 
and how the assessment will be used for management 
purposes. The basic techniques for conducting stock 
assessments are well developed for age-structured 
and size-structured assessment models (e.g., Maunder 
and Punt 2013; Punt et al. 2013), but many challenges 
remain.

Inconsistent use of model diagnostics

A core step when conducting any stock assessment is 
to evaluate whether the model provides an adequate 
fit to the data. However, there remains inconsistency 
regarding which diagnostics to use and what consti-
tutes evidence for model rejection. Most assessments 
examine multiple diagnostics, all of which have on 
occasion led to rejection of assessments for manage-
ment purposes (Punt et  al. 2020a). Ultimately, the 
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aim of applying model diagnostics is to find a model 
configuration for which there is no evidence for 
model mis-specification and that provides plausible 
results. Some progress has been made on identifying 
threshold values for these diagnostics (e.g., Hurtado 
et  al. 2015; Carvalho et  al. 2017) and simulations 
have evaluated the ability of some of the proposed 
diagnostics to detect model mis-specification (e.g., 
Carvalho et al. 2017). How to deal with retrospective 
patterns remains a key challenge, because adoption 
of an assessment with clear evidence of retrospec-
tive issues can lead to inappropriate harvest recom-
mendations and a loss of stakeholder confidence in 
the results of the assessment (Szuwalski et al. 2018). 
Future work to identify best diagnostics and when an 
assessment should be rejected (or modified) remains 
a key research topic.

One model is good but are multiple models better?

There is not a single assessment framework that can 
include all hypothesized relationships as nested sub-
models. Thus, researchers are increasingly advocat-
ing that assessments include an ensemble of mod-
els (e.g., Jardim et  al. 2021). Building an ensemble 
involves a priori decisions about the set of models to 
include, their relative weighting, and how outputs are 
combined to generate a representative distribution or 
point-estimate. Here we emphasize two strong argu-
ments for building ensemble models relative to build-
ing a single model that includes alternative hypoth-
eses via estimated parameters (i.e., continuous-model 
expansion):

1. Mitigate known biases: Stock assessment models 
may result in biased estimates of key parameters 
(e.g., Lee et al. 2012), and in these cases a pre-
weighted model ensemble defined by alternative 
parameter values may perform better than estima-
tion using a Bayesian prior (i.e., particularly in 
data-limited situations; Rudd et al. 2019).

2. Management-relevant weighting: Ensemble mod-
els allow for models to be weighted based on 
metrics that might be more relevant than fit to 
historical data. For example, ensembles might be 
weighted based on retrospective performance for 
a key variable (Stewart and Hicks 2018), stake-
holder and reviewer feedback (Thompson et  al. 
2021), or hypotheses that are indistinguishable 

given available data but consequential for man-
agement purposes.

Although the machinery for conducting assess-
ments based on multiple models exists, the weighting 
scheme can influence the final management advice, 
which often makes choosing appropriate weighting 
controversial. Future research to understand how to 
select the models to include in an ensemble and how 
to weight them, including automatic weighting meth-
ods, is warranted.

Reference point subjectiveness

Fisheries management typically involves comparing 
a measured population or fishery variable (e.g., cur-
rent biomass or fishing mortality) against a target or 
limit reference point (Methot et al. 2014; ICES 2022). 
Calculating reference points often requires defining 
values for parameters that are difficult to estimate 
(e.g., stock-recruit parameters; Goethel et  al. 2018). 
For this reason, reference points are often developed 
using generalized simulations and, in turn, based on 
prior meta-analysis (e.g., Clark 1991). However, dif-
ferences among stocks are not adequately acknowl-
edged leading to inappropriate or subjective reference 
points, which can hinder management performance 
(Harford et  al. 2019). Moreover, inconsistent defini-
tions and methods for calculation of limit reference 
points (i.e., population levels below which sustain-
ability of the resource is likely to be impaired) cre-
ates further management uncertainty, inconsistent 
application across regions or agencies, and confusion 
among stakeholders and the public as to the risks to 
a stock when limits are approached (van Deurs et al. 
2021). Robust evidence synthesis using meta-ana-
lytic approaches could provide an objective basis for 
reference points (or proxies that capture the intent 
of the reference points), yet there is surprisingly lit-
tle life-history and meta-analytic research to support 
evidence-informed reference point estimation. For 
instance, thoroughly analyzing how life history rela-
tionships or demographic rates vary across species or 
taxonomic groups using meta-analysis can help iden-
tify specific parameters that warrant monitoring (e.g., 
Thorson 2020). Similarly, meta-analysis is necessary 
to identify plausible combinations of demographic 
rates for simulation testing, and to identify whether 
tests have been conducted across an appropriately 
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wide range of species. A resurgence of research 
regarding fish life-histories, emphasizing data-limited 
and climate-linked contexts, and involving both theo-
retical and comparative (meta-analytic) methods is 
needed to identify objective reference points.

Difficulties addressing reference point nonstationarity

Time-variation in biological parameters, such as 
growth, natural mortality, and recruitment is widely 
recognized and accounted for within integrated 
assessment models, but how to address resulting 
time-variation in reference points is more contro-
versial. Some assessments utilize dynamic reference 
points (MacCall et  al. 1985; Berger 2019) or allow 
for regime-shift-like changes (e.g., Wayte 2013). 
Best practice guidelines for selecting when to invoke 
a regime-shift have been developed (Klaer et  al. 
2015), but accounting for regime-shifts and the use 
of dynamic reference points remains rare in practice, 
and the willingness to allow for these factors differs 
across jurisdictions. One major impediment is the 
breakdown of an observed or hypothesized environ-
mental relationship, which is used to model the time-
varying parameter, as new data are collected. Moreo-
ver, it may take decades of observation and modeling 
to develop confidence in predictive relationships 
(e.g., Hollowed et al. 2020). Although it is desirable 
to account for changes in population parameters over 
time, the implications for target and limit reference 
points are often controversial. For instance, reduc-
tions in productivity can lead to lower reference point 
targets and a lack of management action in the face 
of declining biomass (e.g., Edgar et al. 2019). There 
is a need to extend previous work (e.g., Berger 2019; 
Bessel Browne et al. 2022) to examine the costs and 
benefits of adopting time-varying parameters and ref-
erence points and to refine best practice guidelines in 
this regard.

A key future direction: increased use of random 
effects

The complexity of a population dynamics model, 
as well as its ability to emulate temporal and spatial 
variation in processes such as recruitment, selectiv-
ity, and growth, depends on how many parameters 
it estimates. Traditionally, stock assessments and 
the associated supporting analyses treated all of the 

model parameters as fixed effects, perhaps with a 
prior to constrain their estimation to plausible values. 
When time-, spatial-, or age-variation in a process 
was accounted for in a stock assessment, it was done 
so using ‘penalized likelihood’ with the parameters 
defining the variation treated as fixed effects and sub-
ject to a penalty. Moreover, the parameter determin-
ing the extent of variation was pre-specified or tuned 
and was often subsequently found to be substantially 
biased. However, in the statistical literature, such var-
iation would be treated by modelling the associated 
parameters as random effects. It is now recognized 
that ‘penalized likelihood’ is only a rudimentary 
approximation to random effects (Methot and Tay-
lor 2011; Thorson 2019a), and is generally limited to 
allowing only one process to be time-varying owing 
to computational constraints.

Random effects are a unifying statistical frame-
work for otherwise disparate research fields in fish-
eries biology (Thorson and Minto 2015). The use of 
random effects in ecology was previously restricted 
to linear models owing to the computational demands 
of approximating the marginal likelihood maximized 
for parameter estimation. However, access to auto-
matic differentiation software (e.g., Template Model 
Builder; Kristensen et  al. 2016) has substantially 
aided the adoption of random effects.

The methods on which stock assessments are based 
now use random effects in multiple ways. For exam-
ple, random effects have allowed population dynam-
ics models to be formulated as state-space mod-
els, allowing the extent of observation and process 
error to be estimated simultaneously (e.g., Berg and 
Nielsen 2016; Winker et  al. 2020; Stock and Miller 
2021). Additionally, random effects are now used in 
stock assessment methods to represent (a) time- and 
age-varying selectivity and catchability (Xu et  al. 
2019), (b) uncertainty in population-dynamics arising 
from immigration, emigration, and natural mortality 
(Stock et  al. 2021; Clark 2022), (c) spatial variation 
in population density within a stock domain, which 
would otherwise result in variable stock-level selec-
tivity (Sampson and Scott 2011; Cao et al. 2020), (d) 
excess variation in age- and length-composition data 
(Thorson et al. 2017), and (e) otherwise unexplained 
variation about the stock-recruit function (Brooks 
et al. 2018).

Random effects are also central to hierarchical 
models, which provide some of the auxiliary analyses 
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that support specification of stock assessments. 
These analyses include comparison of the explana-
tory power of environmental covariates for predict-
ing demographic rates (Miller et  al. 2016; O’Leary 
et al. 2020), evaluation of correlations in demography 
among multiple species in the same region (Stawitz 
et  al. 2015) or adjacent stocks in a single species 
(Minto et  al. 2014), and estimation of spatial varia-
tion in survey data (Berg and Kristensen 2012; Thor-
son et al. 2015).

It is expected that random effects will continue to 
gain popularity across fisheries modeling disciplines 
and aid the development of more biologically realistic 
models.

Spatial models

Population spatial structure is influenced by the 
marine biophysical environment (e.g., currents, tem-
perature, prey, and predators), fish behavior (e.g., 
habitat preferences, dispersal, and movement), and 
fishing patterns, which can manifest in an array of 
biogeographic patterns (Cadrin 2020). Spatiotempo-
ral (including species distribution) models can eluci-
date local and broad-scale distributions, while linking 
population dynamics to environment or habitat vari-
ables (Thorson 2019b; Thorson et  al. 2021). On the 
other hand, spatially-stratified models can account for 
population structure and broad-scale spatial dynamics 
(Goethel et  al. 2011; Sippel et  al. 2015). As a rela-
tively new (i.e., within the last few decades) approach 
for fisheries models, spatial applications encounter 
many data and methodological impediments.

Data impediments

There is an inherent trade-off between data quantity 
and spatial model precision, because sample sizes 
decrease with increased model resolution (Cope and 
Punt 2011). Accounting for spatial autocorrelation 
and random effects, as is done in spatiotemporal mod-
els, can help overcome these data limitations by shar-
ing information across the model domain and reduc-
ing the effective number of parameters that need to be 
estimated (Thorson 2019b). Although most fishery-
dependent and -independent data collection programs 
now routinely collect precise spatial coordinates, his-
torical data collected prior to the widespread avail-
ability of GPS or VMS were typically only reported 

by large scale management areas (Goethel and Cadrin 
2021). Thus, historical analysis of fine-scale spatial 
patterns is often precluded, baselines are difficult to 
establish, and the spatial resolution for models that 
use the full time series is forced to be coarser than 
desired. Information regarding the population struc-
ture (i.e., stock identification information) is also 
a prerequisite for spatial assessments, but it can be 
expensive and time consuming to collect and analyze 
(Cadrin 2020). Continued research on how best to 
integrate the myriad new georeferenced data sources, 
including how to handle potential sampling bias, is 
needed to ensure wider application of spatial models.

Methodological constraints

Overparameterization is a routine concern for spatial 
models, because the number of parameters increases 
with the number of spatial units modeled, whereas 
the associated data sample sizes decrease (Cope and 
Punt 2011; Goethel et al. 2011) unless random effects 
are introduced. Identifying the appropriate or feasible 
spatial and temporal structure, which is influenced by 
the data, computing power, and management goals, 
often requires balancing competing objectives (i.e., 
resolution, realism, accuracy, precision, run time, and 
cost) and influences all subsequent model assump-
tions (Punt 2019; Thorson 2019b). Though the 
desired spatiotemporal resolution is seldom achieved, 
management goals can still be met with models of 
intermediate complexity, and sub-optimal resolution 
should be weighed against the alternative of using 
spatially aggregated approaches. Various methods 
exist for validating spatial model assumptions and 
robustness, including direct observation (e.g., for ses-
sile species; Anderson et  al. 2016), cross-validation, 
and retrospective model skill testing for spatiotem-
poral applications (Thorson 2019b). Increased appli-
cation of spatially explicit MSE (e.g., Carruthers 
et  al. 2016b; Punt et  al. 2017; Jacobson et  al. 2022) 
is necessary to identify the types of spatial processes 
(e.g., movement, population structure, and/or demo-
graphic variation) that need to be explicitly modeled 
to develop robust management strategies, while high-
lighting tradeoffs between model resolution and data 
requirements. Additionally, best practices for calcu-
lating spatially explicit biological reference points 
remains an open-ended research question (Bosley 
et al. 2019; Kapur et al. 2021).
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A key future direction: model hybridization

Multiscalar, modular, and hybrid (i.e., cross-frame-
work) modeling approaches will continue to gain 
traction as facets of each framework are borrowed 
and shared. For example, by using hybrid modeling 
approaches, the multiscalar nature of common data 
sources (e.g., fine-scale biologging data and broad-
scale historical fishery data) and population processes 
can be explicitly addressed, while also adjusting to 
the scale of management (e.g., by embedding spati-
otemporal sub-models within coarser resolution spa-
tially stratified assessments; Thorson et  al. 2021). 
Similarly, wider incorporation of state-space frame-
works that utilize spatial and temporal random effects 
and spatial autocorrelation will aid implementation of 
spatially explicit assessment approaches by reducing 
the number of effective parameters (e.g., Cao et  al. 
2020). As habitat usage becomes better understood, 
increased sophistication and validation of habitat 
preference functions to define movement and connec-
tivity dynamics (e.g., Marsh et al. 2015) will further 
enable finer resolution models (e.g., the spatial popu-
lation model, SPM; Dunn et al. 2015). Given the need 
to better understand spatial processes during early life 
history stages (i.e., the reproductive resilience para-
digm; Lowerre-Barbieri et al. 2017), spatially explicit 
full life cycle models that imbed larval bio-physical 
individual-based models (IBMs) within coarser 
resolution models of adult dynamics will also be 
more widely implemented (e.g., Goethel et al. 2011; 
Archambault et al. 2016). Habitat preference and uti-
lization across life stages (i.e., spatial ecology) repre-
sent a natural segue for incorporating ecosystem com-
ponents into management advice (Lowerre-Barbieri 
et  al. 2019). Thus, as fine-scale spatial models are 
increasingly implemented as operational assessments, 
they will provide a step towards EBFM (and easier 
incremental addition of ecosystem processes in sin-
gle species assessment), while also being particularly 
useful as conditioned operating models for MSE.

Ecosystem modeling

There has been increased sophistication in ecosys-
tem models as EBFM has begun to be implemented 
worldwide and climate-induced impacts on marine 
resources have been more broadly acknowledged. In 

many jurisdictions, Models of Intermediate Complex-
ity for Ecosystem Assessment (MICE) fit to observed 
data (e.g., Plaganyi et al. 2014) and whole of ecosys-
tem models (e.g., the Atlantis model; Fulton et  al. 
2011) are now used to provide a holistic understand-
ing of potential management actions on ecosystem 
functioning (Perryman et  al. 2021). Yet, integrating 
ecosystem model outputs into quantitative manage-
ment advice remains elusive.

Difficulty integrating ecosystem and assessment 
frameworks

Because most fishery management processes are 
structured at the stock level, a reasonable first step 
towards EBFM is to integrate key climate and eco-
system effects into existing stock assessments (Lynch 
et  al. 2018). However, difficulties arise with eco-
system-linked stock assessments due to attempts 
to model complex relationships between popula-
tion dynamics processes and environmental vari-
ables using relatively simple linkages based on cor-
relations (Skern-Mauritzen et  al. 2016). Correlative 
approaches have often explained limited variance 
in population dynamics parameters, such as annual 
recruitment, likely because the actual ecosystem link-
age remains poorly understood. Additionally, correla-
tions often weaken or fail over time, which empha-
sizes the need to develop mechanistic understanding 
of stock productivity drivers at the ecosystem level 
(Skern‐Mauritzen et  al. 2016). Overall, we envision 
a tiered approach for identifying and eventually incor-
porating ecosystem information in stock assessments 
and MSEs:

1. Explore Common Impacts Across Species: 
Common trends in fish condition or productiv-
ity across species can point to ecosystem level 
changes in productivity regimes and highlight 
potential drivers or regime shifts that should be 
addressed in an assessment (Gaichas et al. 2018).

2. Develop Conceptual Network Models: The mod-
els can identify and integrate pertinent ecosys-
tem drivers and can help determine the pro-
cesses most likely to have significant impacts 
on population dynamics that should be incorpo-
rated into a stock assessment (Rosellon-Druker 
et al. 2021).
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3. Perform Systematic Hypothesis Testing: The 
conceptual model or multispecies investigations 
can then be used to develop specific hypoth-
eses regarding environmental drivers at each life 
stage, which can be systematically tested within 
the assessment framework to elucidate mechanis-
tic linkages (e.g., Tolimieri et  al. 2018; Haltuch 
et  al. 2019). Adding ecosystem processes in 
assessment models potentially increases esti-
mation uncertainty, which should be offset by 
decreased process uncertainty.

Currently, there are two common ways through 
which ecosystem knowledge and stock assessment 
models can be effectively linked: natural mortality 
and spatial dynamics. Scaling the natural mortality 
parameter (e.g., based on output from an ecosystem 
model; Plagányi et al. 2022) to account for predation, 
multispecies interactions, or environmental drivers 
(e.g., increased mortality due to red tide; Sagarese 
and Harford 2022) is the most common method. Mul-
tispecies interactions can also be addressed implic-
itly by adjusting target harvest levels to account 
for the needs of other species (e.g., using multispe-
cies reference points from MICE; Essington and 
Plagányi 2013; Free et al. 2021). Similarly, dynamic 
B0 approaches, which calculate non-stationary refer-
ence points in the absence of fishing, can be utilized 
to implicitly account for changes in the relative abun-
dances of predators and prey (Haltuch et  al. 2009; 
Pecl et al. 2014; Maunder and Thorson 2019). Multi-
species assessment approaches (e.g., multispecies vir-
tual population analysis, MSVPA) can also be imple-
mented, using fish stomach-content data, to explicitly 
estimate mortality due to predation within an assess-
ment framework (Whipple et al. 2000; Jurado-Molina 
and Livingston 2002; Holsman et al. 2016). However, 
predation modeling requires intricate knowledge of 
food web dynamics along with large quantities of reli-
able spatiotemporally resolved diet data (Marshall 
et  al. 2019), though, in coming years, data demands 
may be addressed with high throughput genetic 
sequencing to analyze stomach contents. Account-
ing for spatial dynamics also represents a potential 
intersection between single-species and ecosystem 
models, given the shared importance of accounting 
for spatial processes. Future research should focus on 
interdisciplinary collaborations to aid hybridization 

across assessment and MICE frameworks, with a 
focus on spatial dynamics.

Can MICE be systematically reviewed 
for operationalization?

Many ecosystem models such as MICE are for-
mally fitted to data in an analogous manner to stock 
assessment models. However, there is little guid-
ance on how to address ecosystem model robust-
ness and adequacy for management decision-mak-
ing (Kaplan and Marshall 2016). Building on the 
guidelines recommended by Plaganyi et al. (2022), 
development of tactical ecosystem models should 
begin with consideration of stakeholder inputs and 
LEK and be built in a stepwise manner starting with 
well-understood or proven dynamics. Focus should 
be placed on the main system drivers and additional 
complexity should only be added if it is supported 
by the data. As complexity increases, multiple 
model structures should be maintained to enable 
thorough exploration of sensitivity to key assump-
tions, especially where limited data or information 
exist to inform plausible trophic or environmental 
relationships, or to allow development of ensemble 
approaches (Spence et al. 2018; Reum et al. 2021). 
Systematic review should follow best practices (e.g., 
analysis of fits to observed data and exploration of 
model sensitivities), but it should also include in-
person review panels (e.g., typical of stock assess-
ments) that are more in-depth (Rose and Cowan 
2003; Kaplan and Marshall 2016). Future emphasis 
on developing common guidelines for reviewing the 
goodness of fit, adequacy, and robustness of eco-
system models would help aid the acceptance and 
adoption of MICE within management frameworks.

A key future direction: modeling ecosystem regime 
transitions

Identifying and incorporating regime shifts or drifts 
into management frameworks remains a critical 
challenge, because ignorance of changing biologi-
cal, ecosystem, or climatic conditions can lead to 
unsustainable harvest recommendations. Develop-
ing consensus regarding the timing and impact of 
a regime transition is extremely difficult, especially 
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considering that environmental changes are likely to 
differentially influence (i.e., in terms of degree of 
impact, population processes impacted, and timing 
of impact) each species in the ecosystem. Similarly, 
fishing and associated management measures also 
play a role in regime changes and the potential con-
tribution of anthropogenic activities must also be 
considered (Bakun and Weeks 2006; Litzow et  al. 
2014). Moreover, attempting to address non-station-
arity for individual species in isolation (e.g., within 
single-species assessment models) may lead to spu-
rious correlations or result in mismatched regimes 
across species. Thus, unified approaches for identi-
fying and accounting for climatic regime transitions 
across all species within an ecosystem is required 
(e.g., Perretti et  al. 2017). We envision increasing 
use of MICE to identify ecosystem regime changes 
and associated drivers, while allowing simultaneous 
accounting of impacts on sustainable catch for all 
modeled species (e.g., through the use of ecosystem 
reference points). Development of regionally stand-
ardized ocean and climate model projections would 
further help determine impacts of regime transi-
tions, which could then be incorporated into MICE 
for more realistic projections of short-term manage-
ment advice.

Management strategy evaluation

MSE uses a simulated biological-fishery system to 
determine management strategies that are likely to be 
robust to real-world data, model, management, and 
ecosystem uncertainty (Punt et al. 2016; ICES 2020). 
The operating model simulates the implementation of 
the management advice (including feedback between 
the management strategy and the operating model), 
the biology of the underlying resource(s) dynamics, 
how the fisheries harvest those resources, and data 
sampling. MSE has led to a paradigm shift in quan-
titative fisheries management advice by moving fish-
eries modeling into the realm of policy formation. 
There are an array of potential applications for MSE 
across fisheries modeling and management (e.g., data 
collection optimization, model robustness testing, and 
exploration of management strategy performance), 
which has been demonstrated by the extensive ref-
erence to its use in each of the preceding sections. 
Despite many successful applications of MSE for 
operational fisheries management, broad adoption 

within management frameworks has only been under-
taken in a few regions globally due to a handful of 
critical challenges.

Lack of standardized MSE methodology

One barrier to wider implementation and adoption 
of MSE has been the proliferation of disparate MSE 
approaches, which creates confusion among manag-
ers and stakeholders as to the potential benefits of 
adopting or engaging in MSE initiatives. While many 
MSEs are used to develop and implement a man-
agement strategy for a specific fishery (e.g. Gero-
mont et al. 1999; Plaganyi et al. 2007; Hillary et al. 
2016) or to identify generic management strategies 
that are applicable to an array of fisheries (e.g., for 
data-limited fisheries; Geromont and Butterworth 
2015; Fischer et  al. 2020), ‘desktop MSEs’ can also 
be used to explore research questions (e.g., the value 
of information and the relative economic return under 
different classes of a management regime; McGarvey 
et al. 2015). Similarly, the development of short-cuts 
to MSE, which simplify aspects of the simulated sys-
tem or management strategy (e.g., by replacing a full 
stock assessment with random error around the true 
population status), leads to a framework that differs 
from the standard definition of MSE (ICES 2020). 
The result is often confusion regarding the distinction 
between MSE and the ‘best assessment’ paradigm as 
well as the role of a stock assessment when a model-
based management strategy is implemented. The 
adoption of a standardized terminology (e.g., Rade-
meyer et al. 2007; Miller et al. 2019) and further work 
to clearly define MSE (and associated methodology) 
would help reduce confusion regarding the goals and 
capabilities of different MSE initiatives.

Overlooking meta-rules for long-term MSE 
implementation

A common impediment to successful implementa-
tion of MSE for the provision of management advice 
is a lack of well-defined rules that define: the timing 
and conditions for a review of the management strat-
egy; the review frequency of potential exceptional 
circumstances (i.e., realized system states that are 
outside the bounds of simulated conditions; Carru-
thers and Hordyk 2019); and the specification of the 
process that follows if exceptional circumstances are 
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identified (de Moor et  al. 2022). Collectively, such 
directives are referred to as ‘meta-rules’ (Butterworth 
2008; Rademeyer et  al. 2008; Preece et  al. 2021). 
Meta-rules can additionally specify the frequency for 
implementing the management strategy along with 
the distinct role and timing of a full stock assess-
ment (Preece et al. 2022; CCSBT, 2020). Despite the 
importance of meta-rules, they are often overlooked 
when management strategies are being developed. 
Thus, increased emphasis on meta-rules should be 
undertaken early on in MSEs.

No best practices on adequate levels of robustness 
testing

There is no general consensus regarding the breadth 
of testing required to identify a robust management 
strategy within an MSE. Robustness tests are used 
to evaluate performance of the management strategy 
for meeting the primary management objectives or 
goals under alternate plausible, but less likely, states 
of nature (e.g., regime shifts) or sampling conditions 
(e.g., loss of data sources or reduced sampling inten-
sity). Even if performance under a robustness test 
is not optimal, a management strategy could still be 
adequate if it demonstrates a sufficiently rapid feed-
back response to the changed conditions. Conversely, 
if robustness tests are too broad or speculative, all 
candidate management strategies will fail (Butter-
worth 2008). General best practices for determining 
adequate and sufficient levels of robustness testing are 
needed, though these will be difficult to generically 
define due to the context-dependent nature of MSE 
applications (de Moor et al. 2022). In particular, guid-
ance is needed regarding operating model complexity 
(e.g., the biological processes to include, such as spa-
tial and ecosystem dynamics) and adequate levels of 
measurement error to simulate.

A key future direction: optimizing data collection

A primary goal in developing evidence-informed 
advice for natural resource management is how to 
best use and cost-effectively collect data to support 
robust management strategies. MSE can be utilized to 
identify whether data collection experimental designs 
can provide feedback responsiveness within a given 

management strategy. Thus, it is expected that MSE 
will increasingly be implemented to simulate the 
tradeoffs between the benefits of collecting various 
data, in terms of management improvements, com-
pared with associated data collection costs. Concomi-
tantly, there will likely be an increase in the explora-
tion (through MSE) of empirical and hybrid (i.e., with 
both empirical and model-based components, such as 
using CKMR absolute abundance estimates) manage-
ment strategies (e.g., Carruthers et al. 2016a; Hillary 
et al. 2019). Moreover, as the breadth of bio-socioec-
onomic performance measures increases, more com-
plex operating models will be required. In particular, 
it is expected that advances in spatial modeling and 
application of MICE will enable conditioning spa-
tially explicit ecosystem operating models, thereby 
enhancing robustness testing and leading to tangible 
steps towards implementing EBFM. As generic MSE 
software packages are refined and become more user-
friendly, the ability to efficiently apply MSE should 
improve, thereby increasing the worldwide utilization 
of MSE.

Translating scientific advice into management action

Although there are many challenges encountered 
when developing evidence-informed management 
advice, an oft-overlooked impediment lies in ensur-
ing that scientific outputs are adequately interpreted 
and utilized to make informed management deci-
sions. In modern fisheries management, crossing of 
the science-policy interface often takes the form of 
an HCR. The HCR is the technical basis for translat-
ing evidence-based scientific advice (i.e., estimates of 
stock status, whether based on empirical evaluations 
or model-based outputs) into management responses 
(i.e., catch advice) based on a pre-determined rela-
tionship that is designed to achieve specific perfor-
mance measures (Punt 2010). The HCR is the algo-
rithm in a management strategy that prescribes the 
final management action to be taken and is often 
the critical component being tested for robustness 
in applied MSEs. Although HCRs are now com-
mon (Hilborn 2012), the transition from scientific 
advice to management action is often impeded by 
scientific uncertainty and imperfect management 
implementation.
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Scientific and management inertia

There are many benefits to a stable approach to pro-
viding management advice, but institutional inertia 
can lead to the ‘curse of the status-quo’. Inertia in 
fisheries management can take many forms starting 
with stagnating scientific advice when scientists lack 
the time or motivation to learn new skills or adopt 
new methodology. Similarly, management and review 
bodies tend to prefer assessments based on exist-
ing, commonly utilized data and methods, and novel 
approaches are often only adopted if resulting advice 
is consistent with previous methods (i.e., the ‘anchor-
ing’ effect where previous results or information is 
overemphasized in decision-making; Schuch and 
Richter 2022). Thus, there is hesitancy to move away 
from the traditional ‘best assessment’ (or ‘no assess-
ment’, in the case of data-limited fisheries) framework 
(i.e., utilizing a single assessment model upon which 
catch advice is based, as opposed to MSE) or to 
explore alternate (e.g., empirical) management strate-
gies. Despite stock assessment science relying on con-
tinued development of new approaches that challenge 
existing paradigms, the burden of proof for demon-
strating that a new method improves management 
advice can be onerous. For instance, institutional 
inertia can prevent the adoption of new assessment 
approaches due to time constraints, lack of motiva-
tion by scientists to apply new methods, costs associ-
ated with adapting to a new assessment-management 
framework, poor communication, and difficulty com-
prehending multidimensional outputs of more com-
plex models (Berger et al. 2017). Similarly, although 
recommended guidelines for implementing EBFM 
exist (e.g., Garcia and Cochrane 2005; Cowan et  al. 
2012; Link et al. 2020), most countries and jurisdic-
tions still lack a formal process for converting ecosys-
tem model outputs into management advice. Incor-
porating new assessment or ecosystem approaches 
within management frameworks benefits from para-
digms accepting iterative, incremental improvements 
and valuing scientific innovation. For instance, data 
conditioned spatial or ecosystem models can form the 
basis of operating models in MSE, which for jurisdic-
tions where MSE is widely used, will allow seamless 
merging into the management framework. Eventu-
ally, management advice will become more flexible 
and adaptive, once there is increased exposure to 
new modeling approaches or management strategies, 

wider dissemination of best practices, and improved 
access to training opportunities.

Poorly defined scientific advice and management 
goals

All fisheries management interventions require spe-
cific, measurable, and time-bound objectives to ena-
ble evaluation of performance, as well as to inform 
the  design of monitoring programs (Bjerke and 
Renger 2017; Gilman et  al. 2020). However, many 
management actions are reactive, ad hoc approaches, 
which often preclude direct model-based advice or 
quantitative performance assessments (Gilman et  al. 
2019a). For example, in the case of area-based man-
agement tools (ABMTs; e.g., marine protected areas), 
site selection can be opportunistic and not based on 
ecological or quantitative criteria. Analytical tools 
can be developed to retrospectively analyze and infer 
the actual impacts and performance of management 
measures, such as the counterfactual prediction-based 
synthetic control modeling approach used to under-
stand the impacts of ABMTs (Gilman et  al. 2020; 
see Hilborn et al. 2021 for a comprehensive review). 
However, there is a need to explicitly define manage-
ment objectives prior to policy implementation to 
support prospective evaluation of the possible per-
formance of a proposed action (e.g., through MSE-
type frameworks). Moreover, even if management 
objectives are clear, scientific advice may be poorly 
communicated, imprecise, or inadequately con-
sider uncertainty. Thus, decision-makers may make 
risk-prone decisions, despite believing that result-
ing policy will be sustainable and in line with the 
scientific advice (Galland et al. 2018). The onus lies 
with scientists to ensure there is no ambiguity when 
drafting advice and that uncertainty is thoroughly 
explored  and resulting implications adequately  con-
veyed to managers and stakeholders. Improved com-
munication training for scientists along with generic 
graphical outputs, which are readily understandable 
by non-scientists, would help improve the clarity 
of model results when conveying scientific advice. 
Similarly, as fisheries management moves towards 
EBFM and tries to develop climate-ready policies, it 
is increasingly imperative that clear communication 
occurs amongst scientists, managers, and stakehold-
ers. New ecosystem-based management objectives 
need to be clearly defined and methods to measure 
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and operationalize their use must be feasible, given 
the current state of the science, to ensure they can be 
adequately incorporated into the scientific advice.

Confusion regarding uncertainty

Fisheries management decisions strive to be as 
robust as possible given scientific understand-
ing of the human-ecological system. Yet, the tra-
ditional treatment of scientific uncertainty in the 
‘best assessment paradigm’ (i.e., equivalence to the 
statistical error around model outputs) limits the 
ability of management bodies to adequately incor-
porate risk in decision-making, because model and 
system structural uncertainty is typically ignored 
in stock assessment advice. Moreover, myriad 
approaches exist  for conveying uncertainty, which 
may impact managers’ understanding of risk levels, 
and acknowledgement of reasonable levels of uncer-
tainty is often inconsistent among scientists (Privit-
era-Johnson and Punt 2020). Increased emphasis on 
consistent and adequate characterizations of uncer-
tainty by scientists is needed to ensure evaluations 
of management strategy robustness are adequate, 
which should include a broader consideration of 
socioeconomic and ecosystem tradeoffs. However, 
increased acknowledgement of uncertainty should 
not be used to question the validity of the associated 
advice.

Communication barriers and limited operational 
capacity

Poor understanding of scientific products by stake-
holders and managers is a significant barrier to 
achieving sustainable outcomes. For instance, stake-
holder hesitancy to pursue pre-agreed science-based 
decision rules for managing fisheries is often due to 
poor understanding of MSE and the benefits of the 
process. The knowledge gap is partly due to scientists 
lacking adequate communication training, which can 
hinder the ability to convey complex technical topics 
to stakeholders. The inclusion of trained facilitators 
and boundary organizations can improve commu-
nication and help develop knowledge sharing path-
ways (Goethel et  al. 2019), whereas dedicated pro-
fessional development for scientists to improve their 

communication skills is also warranted. Similarly, 
capacity building through improved training oppor-
tunities can help bridge the knowledge gap between 
scientists, managers, and stakeholders. However, tra-
ditional capacity building usually relies on in-person 
training, which can be difficult in some regions and 
has been exacerbated by the COVID-19 pandemic. 
Online training platforms and digital decision-support 
tools have proliferated rapidly and can help expand 
access to learning opportunities for oft-overlooked or 
isolated stakeholder groups. Ultimately, resource lim-
itations often drive capacity limitations and neither 
are likely to improve in many regions, which empha-
sizes the need for pragmatic and novel solutions in 
the future.

A key future direction: synergism in management 
advice through interdisciplinary collaborations

Robust fisheries management advice requires inter-
disciplinary knowledge that spans and integrates a 
diversity of fishery fields, including biology, ecology, 
social science, and economics (Phillipson and Symes 
2013). Historically, fisheries disciplines have been 
siloed and segregated. Increasingly, though, research 
teams are becoming interdisciplinary, including data 
collectors, biologists, assessment scientists, ecosys-
tem modelers, social scientists, and often stakehold-
ers. Increased collaboration across disciplines leads 
to important parallel and synergistic developments, 
and the EBFM paradigm explicitly acknowledges 
the importance of interdisciplinary research (Mar-
asco et al. 2007). In moving towards increasing use of 
interdisciplinary scientific outputs in the provision of 
quantitative management advice (see Table 3), a first 
practical step is the collation of qualitative metrics 
and quantitative indices (when feasible) of ecosystem 
health and socioeconomic performance. Simultane-
ous consideration of these factors in the form of a risk 
table aids dialogue amongst disciplines, while allow-
ing managers to understand ecosystem impacts and 
anthropogenic factors that may affect management 
performance and warrant consideration for adjust-
ing harvest recommendations (e.g., as is done in the 
North Pacific region of the United States to adjust 
catch quotas; Dorn and Zador 2020). A next step is 
participatory modeling initiatives to develop concep-
tual network models (i.e., the Integrated Ecosystem 
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Approach, IEA), which describe functional relation-
ships across the entire marine system (i.e., biological, 
human, and ecosystem components; Rosellon-Druker 
et  al. 2019; Spooner et  al. 2021). Conceptual net-
work models can then be translated into ecosystem 
models, the outputs of which can be used to inform 
assessment model parameters (e.g., natural mortal-
ity; Marshall et al. 2019; Plagányi et al. 2022) or for 
adjusting target fishing mortality to account for eco-
logical processes (Bentley et  al. 2020; Howell et  al. 
2021). The simultaneous development of assessment 
and bio-socioeconomic ecosystem models, within the 
context of the science advisory process, can then help 
managers to better understand ecosystem interac-
tions and system uncertainty (e.g., Drew et al. 2021). 
Eventually MICE can form the basis of management 
advice or MSEs can be implemented where realistic 
accounting of system uncertainty can be achieved 
through bio-socioeconomic operating models (e.g., 
Plagányi et  al. 2013). Bio-socioeconomic ecosystem 
models that are able to be conditioned on observed 
data with fine spatial granularity, can account for 
climate-driven dynamics, and are able to address a 
range of system complexities (and associated model 
assumptions), such as SEAPODYM (Lehodey et  al. 
2008, 2014), will be ideal candidates for MSE operat-
ing models, and currently represent the upper rung of 
the interdisciplinary scientific advice ladder. Despite 
stepwise progression, incomplete understanding and 
inability to directly model many aspects of marine 
systems emphasizes the importance of iterative pro-
gress and feedback, where the results of IEA-type ini-
tiatives can be progressively incorporated into MSEs 
as data, knowledge, and modeling advances allow. 
To ensure cross-discipline collaborations do not 
stagnate, wider access to professional development 
opportunities (e.g., ICES training courses) can aid 
understanding of interdisciplinary concepts, whereas 
workshops, such as those developed by the Center for 
the Advancement of Population Assessment Method-
ology (CAPAM), can bring together scientists across 
disciplines to develop good practices. Additionally, 
collaboration across regions and disciplines should 
aid in sharing of expertise and developing a com-
mon lexicon (e.g., developing common definitions for 
widely used, but ambiguous, terminology), scientific 
currency (e.g., model diagnostics and visualization 
techniques), and generic modular modeling platforms 
(Punt et al. 2020b).

Recommended refinements to the science advisory 
framework

For stakeholders and communities directly impacted 
by scientific and management failures, thorough 
reevaluation of management approaches is critical for 
economic and social well-being. Thus, aspects of the 
current science advisory and fisheries management 
paradigm require iterative refinements.

A strategic guide for improving fisheries management 
advice

Given the multipronged challenges, but also rapid 
advancements, in the scientific advice that forms the 
basis of fisheries management decisions, several per-
tinent questions arise about the future of the science 
advisory process, including:

1. What aspects of these recent advances in fisheries 
modeling will become critical to the development 
of fisheries management advice in the future?

2. How will fisheries management processes evolve 
to utilize new sources of scientific information?

3. Aside from better data and improved models, 
how can fisheries management frameworks be 
revised to become more transparent, inclusive, 
and flexible?

To address these questions, we envision and 
describe an integrated fisheries management frame-
work, which can be viewed as a strategic guide for 
developing iterative, participatory fisheries manage-
ment advice (Fig. 1).

Engagement, communication, and capacity building

The development of traditional fisheries management 
advice using the ‘best assessment’ paradigm has fol-
lowed a three-step loop involving data collection, 
assessment of population status and projection of rec-
ommended catch, and translation of scientific advice 
into management actions. However, management 
agencies recognize the need for more interactive, iter-
ative, and transparent processes (Lynch et  al. 2018; 
ICES 2021). Thus, the management advice frame-
work needs to be reenvisioned as a spoked wheel, 
where well-defined stakeholder engagement activi-
ties, clear communication by trained facilitators, and 
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progressive capacity building initiatives are key com-
ponents of the central hub that interact with each step 
of advice development (Fig. 1). Similarly, each stage 
should be iterative with ingrained feedback loops 
along the spokes as well as with other stages across 
the larger loop. Moreover, interdisciplinary, mutual 
knowledge exchange among all participants (i.e., data 
collectors, scientists, managers, and stakeholders) is 
emphasized at each stage.

Under the post-normal science paradigm, stake-
holder engagement at each step will become a for-
mal aspect of the management process, which will 
help move management systems away from a client-
oriented bureaucratic approach towards a co-manage-
ment paradigm (Bax et al. 2021; Haas et al. 2022). As 
participatory modeling initiatives are adopted, stake-
holder LEK will help elucidate important biological 
processes, whereas input on desired socioeconomic 
outcomes will help determine adequacy and tradeoffs 
in management performance. Increased usage and 
improvements in virtual meeting platforms (i.e., due 
to the COVID-19 pandemic) can support increased 
participation in the management process, but vir-
tual forums cannot fully replace in-person meetings 
(e.g., for conveying and discussing technical details) 
and meeting fatigue must be carefully monitored. By 
ensuring engagement throughout the management 
process, stakeholder input will be ingrained and help 
to foster a sense of ownership in resulting scientific 
and management products. Thereby, a sense of inclu-
sion, transparency, and legitimacy will be established.

We envision that trained facilitators and bound-
ary organizations (i.e., institutions that act as inter-
mediaries) will become key participants within the 
management process to aid dialogue, develop clear 
communication pathways, and encourage knowledge 
sharing (Feeney et  al. 2019; Goethel et  al. 2019), 
thereby infusing trust, credibility, saliency, and legiti-
macy in the resulting scientific advice (Cash et  al. 
2003; Heink et  al. 2015; Galland et  al. 2018). The 
communication gap between scientists and stakehold-
ers, though, is bidirectional, because stakeholders 
must also learn to communicate their knowledge base 
and management preferences in a way that scientists 
can understand and translate into quantitative met-
rics. Thus, increased stakeholder training opportuni-
ties (e.g., the Marine Resource Education Program 
in the United States and the FarFish project funded 
by the EU) are warranted to aid understanding of the 

science-management process and how stakeholder 
expertise and time can be maximized within it (Goe-
thel et al. 2019; Miller et al. 2019).

Digital decision-support tools can be another aid 
to capacity building and communication, while sup-
porting participatory processes when resources are 
limited. This new generation of apps (e.g., FishPath, 
https:// www. fishp ath. org/, and MERA, https:// www. 
merafi sh. org/) is aimed at making fishery analytics 
and management science more easily understood, 
interactive, automated, and accessible through a user-
friendly, cost-effective approach. The dynamic visu-
alizations utilized help convey modeling concepts by 
illustrating them ‘live’, providing a shared experience 
that improves understanding and supports stakeholder 
buy-in (Miller et  al. 2019). However, digital tools 
do not replace the need for critical review of input 
choices or hidden assumptions nor careful interpreta-
tion and vetting of results. Use of digital tools dur-
ing initial phases of policy development will improve 
management capacity by aiding quick exploration of 
alternate management options. Implementation of 
final management advice, though, must utilize care-
fully tailored application of digital tools with the help 
of trained regional experts, while thoroughly incorpo-
rating stakeholder input.

Data collection

Advanced data collection technology will result in 
dedicated, consistent, and novel sampling for a wider 
array of species, enabling increased implementation 
of basic assessments (e.g., DLMs) along with higher 
resolution and better conditioned spatial and ecosys-
tem models (Table 1). Though, given the breadth of 
dimensions that must be addressed in management 
advice, sampling efforts will need to be more care-
fully targeted to maximize resources. Feedback from 
subsequent steps (i.e., fisheries modeling and MSE) 
will help improve sampling experimental designs by 
highlighting the data sources with the highest value 
of information or that most effectively support man-
agement strategies. Yet, the limits of any modeling 
initiative must be acknowledged, as no model can 
incorporate the entire suite of complexities of the real 
world system being emulated. Thus, when using MSE 
or other fisheries models to guide data collection, it is 
important that recommendations are not too narrowly 
focused as to become overly restrictive (i.e., do not 

https://www.fishpath.org/
https://www.merafish.org/
https://www.merafish.org/
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preclude collection of data that might be of impor-
tance to research initiatives not directly associated 
with developing management advice). Overall, the 
data collection enterprise is expected to become more 
cost effective, synergistic, and better able to support 
management objectives.

Fisheries modeling

Diverse, interdisciplinary research teams will help 
ensure consistent knowledge exchange across dis-
parate disciplines, allow better incorporation of a 

systems view for modeling the marine environment, 
and improve the ability to more broadly acknowledge 
system uncertainty (Phillipson and Symes 2013). 
With increasing, often georeferenced, data avail-
ability, there will be a continued trend away from 
spatially aggregated single-species modeling efforts 
towards spatially explicit assessment approaches 
and data-conditioned MICE, where random effects 
act as a unifying statistical tool utilized across disci-
plines. Ensemble and multi-model approaches will 
become more commonplace, allowing an improved 
recognition of ecosystem functioning and associated 

Fig. 1  A strategic guide for implementing  an integrated, 
evidence-informed fisheries management framework. The 
management process is reformulated as a spoked wheel that 
emphasizes the importance of engagement, communication, 
and capacity building at its central hub. Additionally, the 
development of management advice, which in regions with 
strong governance has historically involved three primary 
stages (i.e., data collection, assessment of population abun-

dance through fisheries models, and translation of scientific 
advice into management actions), is expanded to more thor-
oughly institutionalize management strategy evaluation (MSE). 
The entire management advice process is envisioned as itera-
tive and interactive, emphasizing feedback within and among 
components to ensure continual improvement and optimization 
of scientific tools and resulting advice
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uncertainty in model recommendations (e.g., Drew 
et  al. 2021; Howell et  al. 2021; Reum et  al. 2021). 
Bio-socioeconomic modeling initiatives will also 
continue to advance, helping to elucidate the pro-
cesses driving harvest patterns and technical inter-
actions in multispecies fisheries (e.g., Russo et  al. 
2019).

MSE

The wider incorporation of MSE as a tool for devel-
oping operational scientific advice within manage-
ment frameworks will be one of the more impactful 
refinements. MSE can improve management legiti-
macy, enhance communication, and spur inventive 
management solutions through consultative devel-
opment (Punt et al. 2016; Goethel et al. 2019; Deith 
et  al. 2021). Additionally, MSE provides a unifying 
paradigm to mesh interdisciplinary fisheries mod-
eling through development of maximally complex, 
spatially explicit, bio-socioeconomic ecosystem oper-
ating models conditioned on real world data that are 
then used to identify robust, minimally complex man-
agement strategies. Therefore, it is envisioned that 
MSE applications will help pioneer tangible steps 
towards implementation of EBFM and more thorough 
evaluation of the ability of management strategies to 
achieve socioeconomic objectives (Table 3). Moreo-
ver, there is likely to be an increasing trend towards 
simultaneous evaluation of empirical and model-
based (i.e., assessment-based) management strategies 
(Rademeyer et al. 2007; Hillary et al. 2016) as well as 
hybrid management strategies (e.g., that incorporate 
absolute abundance estimates from CKMR; Hillary 
et  al. 2019; Trenkel et  al. 2022), through MSE. As 
generic MSE software packages and associated digi-
tal tools continue to become more sophisticated, 
development of MSE applications will gain efficiency 
enabling increased usage worldwide.

Pragmatic, adaptive, and proactive management

Integrating MSE, more formally adopting co-manage-
ment approaches that thoroughly assimilate all stake-
holders (i.e., through appropriate representation), and 
developing pre-agreed management strategies (via 
the MSE process) should help to reduce stakeholder 
disputes, eliminate TAC negotiations, and gener-
ally result in science-based management advice that 

is pragmatic and proactive. Thus, there will be fewer 
surprises, and the process will inherently gain legiti-
macy, assuming that adopted management strategies 
that have been evaluated via MSE are strictly adhered 
to, stakeholders have been adequately incorporated in 
the process, and no exceptional circumstances (e.g., 
unanticipated stock distribution shifts driven by cli-
mate change) invalidate the implementation of the 
management strategy as defined in the meta-rules. 
Additionally, utilization of bio-socioeconomic oper-
ating models will enable quantitatively addressing 
ecosystem and socioeconomic (i.e., including non-
harvest use associated with emerging blue economy 
sectors) objectives and tradeoffs.

Adapting to climate change will require further 
flexibility, as species redistribute across management 
areas. Thus, cross-boundary and cross-institution (i.e., 
intra- and inter-national) coordination and communi-
cation will be critical. However, ecosystem dynam-
ics are ever-changing and management advice and 
decision-making will always be subject to unforeseen 
perturbations. Thus, the distinction between proactive 
and reactive management remains subtle, where the 
former relies on management framework flexibility to 
allow quick adaptation to changing ecosystem knowl-
edge and conditions. For example, progressive incor-
poration of spatiotemporal models will enable imple-
mentation of near real-time, high resolution dynamic 
and adaptive ABMTs (Maxwell et  al. 2015), which 
allow nimble management measures that can rapidly 
adjust to changing species distributions. By more 
thoroughly adopting and utilizing technical tools such 
as MSE and spatiotemporal models and ensuring 
clear communication and stakeholder engagement, 
we foresee that refined management frameworks will 
eventually lead to fisheries policy that is more prag-
matic, adaptive, and, ultimately, proactive instead of 
reactive.

Our outlook, though, is inherently prejudiced 
towards regions that invest heavily in fisheries man-
agement, and will be harder to implement in areas 
where funding is limited and governance is weak. 
Thus, despite ever advancing data collection technol-
ogy, it needs to be emphasized that basic data (e.g., 
life history or even reliable catch data) have yet to be 
collected in many data-limited situations. Of course, 
focusing on moving species out of the data-limited 
category is often less glamorous than developing 
more complex modeling approaches for data-rich 
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species. Therefore, an emphasis on pragmatism is 
needed for management in capacity-limited situations 
with a focus on collecting data (Haas et  al. 2022). 
Moreover, social learning initiatives with commu-
nity stakeholders and scientists should be integrated 
to promote local stewardship, help elucidate available 
data, and instigate the collection of voluntary fish-
ery-dependent data that can be used as a baseline for 
assessing future trends (e.g., Prince 2010; Berkström 
et al. 2019).

Conclusions

We have attempted to portray a broad spectrum of 
quantitative tools to guide the management of fishery 
removals. The suite of tools designed for data-limited 
situations provide a starting place for a quantitative 
conversation about fishery management by provid-
ing first estimates of basic stock trends. When data 
allow, age- and length-structured integrated analysis 
models can then be implemented to track long-term 
trends, evaluate stock status, and project sustainable 
catch levels. Stock assessment models are becoming 
adept at incorporating random effects to track envi-
ronmentally driven perturbations and avoid bias due 
to inadequate model flexibility. However, assessment 
models remain essentially empirical, describing his-
torical and recent patterns due almost solely to fishing 
effects. A more holistic understanding of the causal 
and mechanistic relationships that beget population 
trends can only be achieved through multispecies 
ecosystem models, integrating spatial structure, and 
directly accounting for climate and socio-economic 
drivers of the biological and fishing processes. Inter-
disciplinary fisheries modeling research teams are 
now bringing these pieces together through MSEs 
within co-management settings. Thus, it is becoming 
increasingly feasible to provide quantitative advice 
that incorporates the probability of myriad potential 
outcomes and associated tradeoffs when implement-
ing a management strategy, given improving knowl-
edge of marine systems.

Although fisheries management is a ‘wicked’ 
problem, because there is no terminal solution that 
satisfies all competing interests (Jentoft and Chuen-
pagdee 2009; Jentoft and Knoll 2014), incremental 
improvements to the current management paradigm 
are likely to lead to more robust fisheries policy and 

progressively more sustainable harvest. However, 
given the rapid expansion of the blue economy, exist-
ing fisheries management and ocean governance 
frameworks are likely to be taxed in unforeseen ways 
(Collie et al. 2013). As the demand for marine ‘real 
estate’ expands in the blue economy, managers will 
be increasingly tasked with weighing the desires of 
fisheries stakeholders against shifts or expansion in 
the needs of non-fishery interest groups (e.g., wind 
energy, oil extraction, and marine tourism; Cohen 
et al. 2019; Lombard et al. 2021). Even if an optimal, 
scientifically informed fisheries management process 
could be identified and implemented, the overall bio-
logical, social, and economic objectives are unlikely 
to be met if the system is not adequately embedded in 
a holistic marine spatial plan.

Fisheries management will never be perfect, yet 
we believe that the trend towards evidence-informed 
management advice will continue. However, recom-
mended refinements based on our idealized integrated 
fisheries management framework (Fig.  1) are likely 
to filter into management processes at variable rates 
across jurisdictions. It is meant as a strategic guide 
from which individual management needs and aspi-
rations can be linked to support synergism within 
and among components of evolving management 
processes based on available budgets and capacity. 
Despite new challenges and the pessimistic predic-
tions of Quinn (2003), we are cautiously optimistic 
that novel data sources will continue to spur devel-
opments across progressively more interdisciplinary 
fisheries modeling initiatives, and that the fisher-
ies management paradigm will become increasingly 
robust. Thus, we believe that the production of evi-
dence-informed management advice will continue 
to be an ‘ocean of plenty’, despite enduring pit-
falls associated with the ‘wicked’ problem of ocean 
governance.
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