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SSF are rare, as they are expensive and pose logis-
tical constraints. A mobile App was used to assess 
whether self-reporting by fishers could provide reli-
able fine-scale information on fishing effort and dis-
cards over time in an illegal shrimp trawling fishery 
in northern Peru. Maps depicting the spatial distribu-
tion of trawling effort and the proportion of discards 
from observers and fishers were compared using the 
Similarity in Means (SIM) Index, which ranges from 
0 when spatial patterns differ completely to 1 when 
spatial patterns are very similar. High levels of agree-
ment between spatio-temporal patterns of effort (SIM 
Index = 0.81) and discards (0.96) were found between 
fisher and observer maps. Moreover, far greater spa-
tial coverage was accomplished by fishers, suggest-
ing that self-reporting via an App represents a useful 
approach to collect reliable fisheries data as an ini-
tial step for effective monitoring and management of 
these fisheries.

Keywords Effort · Tracking · Bycatch; mobile 
Application · Blue agenda · Trawling

Introduction

Bottom trawling, where fishing gear such as beam, 
otter trawls or dredges are towed over the seafloor, is 
the most widespread human source of physical dis-
turbance affecting seabed habitats (Amoroso et  al. 
2018). Among the main impacts associated with 

Abstract About a third of all marine fish in the 
world are caught in Small-Scale Fisheries (SSF). SSF 
are increasingly recognised as essential for food secu-
rity and livelihoods for vulnerable and economically 
fragile communities globally. Although individual 
SSF vessels are usually perceived as having little 
impact on the ecosystem, the cumulative impact of 
gear type and number of vessels may be substantial. 
Bottom trawling is a common fishing method that can 
greatly influence the marine ecosystem by damaging 
the seafloor and generating high levels of discards. 
However, appropriate sampling coverage using on-
board observer programmes to collect these data from 
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bottom trawling are the alteration of habitat structure, 
reduction of faunal biomass, productivity and spe-
cies richness (Collie et al. 2017; Sciberras et al. 2018) 
which can lead to changes in the trophic structure and 
function of ecosystems (Thrush and Dayton 2002; 
Tillin et al. 2006; Pusceddu et al. 2014). In addition, 
high discard rates (where species or sizes of spe-
cies that are not targeted are thrown overboard usu-
ally dead or dying) are attributed to bottom trawls. It 
is estimated that bottom trawl fisheries contribute to 
45% of all discards (4.2 million tonnes) (Pérez Roda 
2019). Discarding practices are controversial result-
ing in waste, juveniles of other commercial species 
are overexploited (usually affecting co-occurring fish-
eries), and biodiversity and protected and endangered 
species are threatened (Dayton et al. 1995; D’Agrosa 
et  al. 2000; Lewison et  al. 2004; Harrington et  al. 
2005).

Most of what we know about the impacts of bot-
tom trawling come from studies of large scale fisher-
ies. Even though Small-Scale Fisheries (SSF) con-
tribute to about a third to half of all fish caught in 
the sea (Kelleher et al. 2012; Pauly and Zeller 2016), 
data on discards are limited (Lewison et  al. 2014; 
Suuronen and Gilman 2020). While in general, it is 
acknowledged that SSF contribute very little to global 
discarding (Zeller et  al. 2018) and have low discard 
rates (~ 4%) (Kelleher 2005), it is increasingly recog-
nised that the magnitude of their impact on the eco-
system is more likely related to the quantities of ves-
sels involved in the activity and the types of gear used 
(Shester and Micheli 2011; Belhabib et  al. 2018). 
Thus, shrimp trawling by SSF can have discard rates 
comparable to those observed in industrial fisheries 
(Pérez Roda 2019).

Several methods are used to monitor discards 
worldwide, including at-sea observer programmes, 
remote electronic monitoring (REM), logbook or 
smartphone reporting, fisheries collaborative sam-
pling schemes and interviews (Mangi et  al. 2015; 
Suuronen and Gilman 2020). Independent on-board 
observer programmes have generally been depicted 
as the most reliable means to assess discards (Pérez 
Roda 2019; Suuronen and Gilman 2020). This 
remains the most widely used method, and in the 
Food and Agriculture Organisation (FAO) third 
assessment of global marine fisheries discards, more 
than 78% of the discard rates were obtained from this 
source (Pérez Roda 2019). While on-board observers 

provide accurate and comprehensive information 
on discards and associated information (e.g. assess-
ment of probability of post-release survival, environ-
mental variables, vessel information) they remain an 
expensive method to monitor discards (Suuronen and 
Gilman 2020). In SSF, the large number of vessels, 
the remote and dispersed nature and vessel size con-
straints (i.e. sufficient deck space to host an observer) 
limit appropriate sampling coverage by this means. 
In recent years, REM which includes on-board cam-
eras, have been used as an alternative method to 
obtain reliable information on bycatch and discards 
(Kindt-Larsen et al. 2011; Glemarec et al. 2020). One 
of the advantages of REM is to provide spatial infor-
mation, from which main fishing grounds and effort 
can be estimated. While REM has been proven effec-
tive to assess bycatch in SSF (Bartholomew et  al. 
2018), their wide-scale deployment is hindered by 
the relatively high price of the equipment compared 
to SSF revenue, the number of vessels involved and 
the capacity of authorities to manage and utilise large 
quantities of image data in an operational context. 
For SSF, fisher-led reporting on discards may allow a 
wider, more cost-effective sampling coverage.

The use of logbooks and more recently smart-
phones has allowed fishers to self-record data on 
bycatch and discards which is sent to managers in 
real or near real-time (Merrifield et  al. 2019). How-
ever, some of the challenges faced by self-reporting 
are a lack of time, motivation and training by fishers 
to report accurate data (Lordan et al. 2011; Sampson 
2011; Mangi et al. 2015). As discards are considered 
bad practice, under-reporting may occur, especially 
if there is an economic or regulatory disincentive to 
report (Walsh et al. 2002; Hamer et al. 2008).

In Peru, only small-scale fisheries which are not 
considered to have a high impact on the ecosystem 
are allowed to operate within 5 miles of the coast 
(General Fisheries Law 2001, DS-012-2001-PE). 
Nevertheless, the small-scale shrimp fishery operates 
illegally within inshore areas in northern Peru with 
little and ineffectual policing and with high levels 
of conflict with other small-scale fisheries operating 
in the area (Mendo et  al. 2020). The illegal nature 
of this fishery has so far prevented management or 
monitoring of this fishery by regulatory authorities 
and therefore there is no detailed information on the 
magnitude of discards that, according to preliminary 
studies, range between 19 and 95% of the total catch 
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weight (Ordinola et  al. 2008; Salazar et  al. 2015). 
Preliminary research suggests that this fishery makes 
a significant contribution to the local economy and 
provides more than three times the minimum monthly 
wage (S./930, ~ US$225 in 2020) for crew members 
and more than 12 times for vessel owners in this 
area, suggesting a very strong economic incentive 
to continue to pursue these illegal activities (Mendo 
et al. 2020). Fishers in northern Peru have repeatedly 
requested that the Peruvian Marine Institute (IMA-
RPE) conduct research to reduce the level of impact 
of this fishery (pers. com. Alex Eche, head of the 
fisher’s organisation) and find sustainable measures 
that would allow the formal regulation and legitimisa-
tion of the fishery. In this context, fishers contacted 
members of the National Agrarian University, to 
identify ways to increase the sustainability of the fish-
ery. The DYNAMICOPERU project was established 
with three main objectives: (a) assess spatio-temporal 
variation in bycatch and discard rates to identify areas 
and periods of high risk to the environment, (b) mod-
ify the trawl net to reduce bycatch, and (c) evaluate 
the potential economic impact of management meas-
ures arising from the two previous objectives. Due 
to the illegality of the fishery, the implementation 
of a government-led on-board observer programme 
would be difficult, therefore the feasibility of using a 
self-reporting low-cost technology (cell phone appli-
cation) was assessed to monitor the impact of this 
small-scale shrimp fishery. We hypothesised that, due 
to the illegality of the activity and hence the strong 
incentive to under-report, discard rates and fishing 
activities reported by fishers would be lower than 
those reported by observers. We specifically assessed 
data from fishers against data recorded by on-board 
observers through comparison of (i) the spatial foot-
print of trawling activities, (ii) the proportion of 
discards (kg discarded with respect to total catch) 
reported over time, and (iii) spatio-temporal changes 
in discards. We then discuss the drivers that can lead 
to successful self-reporting by fishers.

Methods

The shrimp trawl fishery

In Peru, trawling is prohibited within 5NM from the 
coast (Fishing Law Decree Nº 25,977) but it occurs 

nevertheless, causing conflicts with other fishers. The 
small-scale shrimp trawling fleet do not have access 
to official jetties and distribution channels, a subset 
of buyers will meet them offshore and collect their 
catch. Between 49 and 313 tonnes per year of lango-
stino café (“coffee shrimp”) Penaeus californiensis 
were landed by this fleet operating in northern Peru 
during 2014–2018 (IMARPE 2019). The Fisheries 
Association (“Asociación de Pescadores Artesanales 
de la Caleta Constante, Sechura”), which involves 
about 100 shrimp trawling vessels operating in north-
ern Peru, approached researchers at the national 
Agrarian University (UNALM) seeking ways to adopt 
more sustainable trawl fishing practices as a way to 
legitimise the fishery. This association facilitated 
access to trawl vessels, fishing information, experien-
tial knowledge and contributed to co-development of 
recommendations to improve the sustainability of the 
trawl fishery (Mendo et al. 2020).

This study focuses on trawling vessels operating 
in the northern Talara province, between 4.4 and 4°S, 
which target coffee shrimp. There are around 30 ves-
sels operating in this area (Mendo et  al. 2020). The 
fleet is fairly uniform: vessels are < 10  m long, with 
a storage capacity of 7 tons and an engine power of 
120 HP on average (Fig.  1). Usually 1 skipper and 
3 crew members operate each vessel. This fishery 
operates mainly at night using otter trawls with nets 
18–24 m in length and 19–25 mm codend mesh size 
(Mendo et  al. 2020). On a typical day, fishers will 
begin steaming to fishing grounds after sunset, then 
deploy the net and trawl at 2–3 knots for 2–3 h in each 
location. Usually 3–5 trawls are conducted per fish-
ing trip. Once on board, the catch (Fig. 1) is separated 
into retained catch (including species such as coffee 
shrimp and other commercial species) and the rest 
(small fish, invertebrates and algae with no commer-
cial value) is thrown overboard as discards.

Data collection

A total of 12 vessels participated in this part of the 
project from October 2019 until March 2020. All 
skippers agreed to host an on-board observer, and 9 
skippers agreed to use the App (see below). To avoid 
an on-board observer effect on reporting, and also 
because fishers tended to ask observers for the weight 
of their catch to fill in fields in the App, we compared 
information submitted by fishers when there was 
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no on-board observer present, and evaluated if fish-
ers’ submissions could be used reliably to monitor 
the impact of a small-scale shrimp fishery. When an 
observer was on-board a vessel, we used only the data 
collected by the observer and data submitted by the 
fisher via the App were not incorporated in the analy-
ses to avoid inflation of the correlation between the 
two sources of information.

Fishers

The mobile application Pescar App (McCann and 
Mendo 2019), which runs on devices using the 
Android operating system was developed openly 
on GitHub under the terms of the open-source MIT 
License. It allows fishers to record their location at 3 
min intervals from when they turn the tracking feature 
on until they turn it off; the weight of catch for each 
haul and the weight of the main commercial species 
retained for each trip (See Supplementary Material 
1). The data was submitted to a server hosted at the 
University of St Andrews. It was recognised from the 
outset of the project and through conversations with 
fishers that the design of the App should minimise 
the time they would spend self-reporting. Therefore, 
only six main commercial species were included in 
the App after a first round of discussions with fishers: 
coffee shrimp; sand-perch Diplectrum conception; 
flounder Etropus ectenes; squid Lolliguncula sp.; 
white shrimp Litopenaeus vannamei and; guitarfish 
Pseudobatus planiceps.

As an incentive to participate in the project and 
submit data regularly, seven fishers were provided 
with a smartphone and the associated data costs 
for submitting the information was covered by the 

project. Phones cost ~ $US120 and data cost $8 per 
month, and a verbal agreement was made where 
the cost of data would be continuously supplied (by 
paying for the SIM card monthly cost) if they were 
reporting their trips adequately. These fishers were 
also allowed to keep the phones supplied after the 
conclusion of the research. Two additional fishers 
volunteered to use their own cell phones and covered 
their own data costs to participate in the trial. A nar-
rative of the ethical statements covering the collec-
tion, storage and use of the data provided by fishers 
was included as an opening on-screen introduction to 
the App which fishers were required to accept before 
being able to use the App.

Training of fishers was conducted in different 
stages. First, a one-hour workshop was conducted 
collectively in July 2019, where the objectives of the 
project and the App’s user interface were presented. 
A step-by-step explanation of how to use the App 
was presented via a Powerpoint presentation, fol-
lowed by a personalised one to one session where 
each fisher was shown how to use the App (by pro-
viding information for a hypothetical trip) by one of 
the four observers. In the following three weeks after 
this workshop, the on-board observers went on board 
participating fishing vessels to overview the fishers’ 
submission process and provide feedback and repeat 
training as needed. During this period, fishers com-
mented on the functionality of the App which helped 
identify errors in the software which were communi-
cated to the Applications development team. Once all 
programming issues were resolved and fishers knew 
how to submit the required fields of information, the 
data sent to the server was assessed every two weeks 
to evaluate the number of fishing trips conducted per 

Fig. 1  Left: Typical small-
scale shrimp trawl vessel 
in Peru. Doors visible on 
the side. Right: Example 
of catch including target 
species (coffee shrimp) and 
other commercial species 
such as sand-perch
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fisher, if the spatial information provided was suffi-
cient to characterise a trip, and if they provided asso-
ciated catch data. If we observed any anomalies with 
respect to the number of trips, or if information was 
missing, an on-board observer would call the fisher to 
inquire about the reason for this lack of reporting and 
to urge them to continue reporting.

As fishers do not have weighing scales on their 
vessels, the weight of catch for each haul had to be 
estimated. On-board observers asked fishers to esti-
mate the weight of the catch in 48 trips (with 162 
hauls) to assess how well fishers predicted the real 
weight of the catch. A linear regression between 
the measured weight by observers and the estima-
tion of weight by fishers showed that fishers were 
very good at predicting the weight of the catch 
(see Supplementary Material 2, Intercept = − 1.14, 
slope = 0.98, R2 = 0.898).

On‑board observers

Four observers (in teams of two for logistical and 
safety reasons, allocated randomly to vessels) col-
lected information on-board of 11 of the 12 partici-
pating shrimp trawling vessels from October 2019 
to March 2020. For each trip positional data were 
collected every three minutes, using a handheld 
Garmin Etrex 20. Observers also recorded the name 
of the vessel, departure time, start time and end 
time for each haul, and time at which the trip was 
finished. For each haul, total weight of the catch 
in the net was recorded on-board using a Kambor 
digital scale (1 tonne capacity and 0.5 kg precision). 
Whilst this was not a motion compensated weighing 
system the sea conditions in which this fishery oper-
ates are relatively benign and vessel roll and pitch is 
quite limited. Crew members sorted the catch and 
retained commercial species which included cof-
fee shrimp, sand-perch, and flounder. Observers 
weighed each commercial species weight using a 
Kambor scale (100 kg capacity and 20 g precision).

The proportion of discards for each trip was esti-
mated as follows:

where Dp = Discard proportion, Tc = total catch per 
trip, Cc = Commercial catch per trip.

(1)Dp = (Tc−Cc)∕Tc

Data cleaning and analyses

Positional data

Identifying trips from positional data reported by 
fishers requires a series of steps to deal with possible 
reporting errors (e.g. fishers turned on the tracking 
feature without being engaged in a trip). Following 
the approach of James et al. (2018), first, the latitudes 
and longitudes were examined to verify that positions 
were located in the study area. Duplicates and points 
on land (a 10  m buffer around the coastline was 
considered) were removed. The temporally ordered 
sequence of positional records (trajectory) was then 
created for each fishing trip (a unique trip identifier 
was assigned for each user-date combination) using 
the adeHabitatLT package in R (Calenge 2006). The 
shortest trip duration was 3.5 h (from observer data). 
Therefore, trajectories shorter than three hours were 
removed from the analysis. 95% of trips consisted 
of more than 75 positional records, so a conserva-
tive threshold of 50 points was considered as a mini-
mum to characterise a trip. Speeds greater than 6.5 
knots were removed, as no vessel operated at higher 
speeds. Where gaps in positional data exceeded 5 km 
and there was only one positional record at either 
side of this gap, this record was removed. A circular 
spatial buffer zone of 500 m was set around the first 
and last positional record to avoid incorporating loca-
tions with low speeds as a result of transiting anchor-
age zones or harbours. Trajectories were standardised 
by regularly sampling linearly interpolated locations 
every three minutes, as this rate was considered to 
convey sufficient temporal resolution to identify fish-
ing activities (usually lasting more than one hour).

Inferring trawling activities

For trips with on-board observers, overlaying the 
haul start and end time recorded by observers and 
the timestamp in the positional data allowed accu-
rate mapping the location of trawling activities. For 
fishers’ trips, Random Forests (RF, Breiman 2001) 
were used to infer when vessels were engaged in 
trawling activities based on positional data. RFs are 
a machine learning classification technique that com-
bines multiple decision trees for more accurate clas-
sification (Cutler et  al. 2007). Each tree assigns the 
most likely class by recursive binary partitioning (tree 
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branch-like structures) that increases the homogeneity 
within groups based on a range of observations about 
that item. The distance between observations, relative 
angle between positions, and the time of the day were 
used as predictors of trawling activities. The Random 
Forest model was fitted using the R package random-
Forest (Liaw and Wiener 2002). We used information 
from 333 observer trips conducted from June 2019 to 
March 2020 (which included vessels not participat-
ing in the App trial) to assess the performance of the 
model’s output to observers’ ground-truthed data on 
trawling activities. Fourteen vessels hosted on-board 
observers during this period; therefore, we randomly 
divided the 14 vessels into two sets of seven vessels 
for training and prediction, respectively, to test for 
out of sample accuracy of the model. Accuracy was 
defined as the number of correctly classified instances 
(for both trawling and not trawling) with respect to 
their total number of locations. The model predicted 
trawling activities with a 90% accuracy.

Comparing discard proportions over time

Discard proportions reported by observers and fishers 
via the App were compared over time using a Gen-
eralised Linear Square model. Differences in spread 
in the data provided by fishers and observers in each 
month were addressed by using the varIdent struc-
ture and an autoregressive moving average (ARMA) 
model was used to deal with temporal autocorrelation 
in the R package nlme (Pinheiro et  al. 2020). Sig-
nificant differences between months were compared 
using the R package multcomp (Hothorn et al. 2008).

Comparing spatial information

We estimated the spatial distribution of effort (time 
spent trawling) from spatial data collected by observ-
ers and fishers from October 2019 to March 2020. 
Trawling activities were portrayed in a 500 × 500  m2 
grid by adding each positional record in each grid 
cell using the R package raster (Hijmans 2020) and 
multiplying it times three minutes. The proportion of 
discards in each trip was assigned to each associated 
positional record and a weighted mean value (based 
on the number of points in each grid cell) estimated 
for each 500 × 500  m2 grid cell. This process resulted 
in a set of maps of trawling effort for observers and 

fishers, and a set of maps for the proportion of dis-
cards from observers and fishers.

To investigate the similarity between the maps 
for observers and fishers, metrics were used based 
on the Similarity in Means Index (SIM index, Jones 
et  al. 2016), which provides a measure of similarity 
in local spatial patterns between two maps (observ-
ers and fishers). As the observer and fisher maps 
were derived from tracking data, the resulting densi-
ties have underlying autocorrelation. The SIM index 
accounts for spatial dependencies between continu-
ous-valued cells, providing an unbiased comparison 
between the same cells in different maps and retaining 
locational information about similarities between the 
underlying maps being compared (Jones et al. 2016). 
The SIM index ranges from 0 to 1 when 0 denotes 
dissimilar means in the underlying maps (e.g. the two 
maps show different local abundances) and 1 denotes 
similarly high or low values in the underlying maps 
(e.g. the two maps have similar local abundances). To 
investigate similarities between fishers and observer 
maps, a neighbouring spatial unit of 3 × 3 adjacent 
grid cells was chosen. Due to the greater number of 
submissions by fishers, data on effort (time spent 
trawling) was normalised to values between 0 and 1 
for both observers and fishers, to allow for compari-
son in spatial patterns using the SIM index.

Results

Data reporting by fishers

Between October 2019 and March 2020, informa-
tion was available for 277 trips, although not all trips 
had enough data to identify trip location and dis-
card rates. Sufficient positional data were reported 
by 9 fishers using the App to identify 243 fishing 
trips. Individual fishers reported between 8 and 53 
trips for this period, with highest numbers reported 
Oct–Dec (62–65 trips per month), and lowest from 
Jan–Mar (26–27). It is important to point out that this 
decrease in the number of trips reported was at least 
partly because of changes in target species by the fleet 
(and therefore a change in fishing gear, for which no 
reporting was expected using the App). Furthermore, 
an increase in control and surveillance activities by 
the navy was observed during Jan–Mar (Gomez, I.; 
pers. obs). As these activities can result in gear and 
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catch confiscation, fishers stop trawling if they expect 
more patrolling activity in the area. Fishing activities 
stopped in Mid-March for safety reasons due to the 
outbreak of COVID-19.

The weight of the total catch was estimated by fish-
ers for 1158 hauls in 240 trips. For most trips, fish-
ers reported between 3 and 6 hauls, which matches 
the number of hauls usually reported by observers. 
Shrimp catch was reported for 239 trips, while other 
commercial species were reported for 212 trips. Of 
the 243 trips for which positional data were available, 
65 trips had no associated catch data. This suggests 
that fishers recorded the track but either forgot or 
neglected to provide associated bycatch information 
in ~ 25% of the trips, as the likelihood of having zero 
catch per haul is considered very low (based on on-
board observers data). Conversely, 37 additional trips 
provided information on discards, but had no asso-
ciated positional data. Closer examination of these 
trips showed that fishers either completely neglected 
to enable the tracking function in the App (14 trips) 
or stopped the tracking function, as not enough posi-
tional data was collected to identify a trip (23 trips). 
There were sufficient data to calculate the proportion 
of discards for 210 trips.

Data reporting by observers

From October 2019 to March 2020, observers went 
on board 11 different vessels for a total of 35 fishing 
trips (3–9 trips per month. 173 hauls in total).

Spatial footprint of trawling activities

Spatial patterns of fishing effort (time spent trawling) 
were very similar between data reported by observers 
and fishers (Fig. 2). Most trawling activities occurred 
in the proximity of the fishing town “Los Órganos”. 
The SIM Index was very high across months (mini-
mum value in December 0.62 and maximum in 
March—0.90, Supplementary material 3, table  S1), 
with an overall index of 0.815 for the 6-month study 
period. The greatest similarity in spatial patterns 
occurred in the main fishing area located in front of 
the fishing town Los Órganos, while in smaller, less 
frequently fished areas, the spatial patterns were more 
dissimilar (Fig. 3, e.g. north of the study area where 
observers recorded relatively higher levels of effort). 
These differences could be due to the relatively 
smaller number of trips conducted in these areas by 
fishers and observers (Supplementary material 3, Fig. 
S3). While the spatial footprint was very similar, a 
greater spatial footprint was revealed by fishers, due 
to the greater amount of data available from their sub-
missions via the App.

Temporal changes in discards

There was no significant difference in the propor-
tion of discards reported by fishers and observers 
(F = 2.47, df = 1230, p = 0.11). The main discarded 
groups were algae, fish and crabs and a discussion 
in temporal trends is available (Mendo et  al 2020). 
Trends in the proportion of discards over time were 

Fig. 2  Spatial distribution 
of trawling activities (effort 
in hours trawling) from a 
data collected by observers, 
b fishers self-reporting via 
App from October 2019 to 
March 2020
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consistent between observers and fishers and showed 
significant variations between months (F = 10.18, 
df = 5230, p < 0.001). The mean proportion of dis-
cards was higher Oct-Dec 2019 and significantly 
lower from Jan–Mar 2020 (Fig.  4). In December, 
there was a discrepancy in the proportion of discards 
reported between fishers and observers, with fish-
ers reporting about 20% more discards than observ-
ers. This might be due to the small number of trips 

conducted by observers in December (n = 3), which 
may not have been a representative sample of fleet 
activity.

Spatial patterns in proportion of discards

Spatial patterns of discards were very similar between 
data reported by observers and fishers (Fig. 5). Over-
all, the highest proportion of discards were reported 
south of the study area. In the main fishing area 
around Los Órganos, a reduction in the proportion 
of catch discarded was observed at greater distances 
from the coast (Fig. 5). The SIM Index was very high 
across months (0.87–0.98, Supplementary material 4, 
Table S2), with an overall index of 0.96 for the study 
period, which shows that there was broad agreement 
between the areas where fishers and observers both 
recorded lower or higher proportions of discards. A 
greater coverage on the spatial pattern of discards was 
achieved with fishers’ submissions.

Discussion

The present study demonstrates that low-cost, fisher-
led reporting technologies such as mobile Apps can 
be used successfully to improve the assessment of the 
impact of shrimp trawl small-scale fisheries. Finely 
resolved spatio-temporal data on fishing effort (time 
spent trawling) and discards were available for the 
first time from a fishery in northern Peru operating 
illegally within inshore areas (5NM). Self-reporting 
by fishers identified the same areas subjected to high 
fishing pressure and similar spatio-temporal trends 
in discards as data collected by on-board observers. 
Moreover, use of self-reporting allowed far greater 
spatial coverage than was possible with the lower 
numbers of observer trips, as is usually the case for 
SSF, where on-board observer programs are rare. In 
fact, in Peru, there is no on-board observer program 
for any SSF. Given the very limited information on 
trawling activities and discards in small-scale fisher-
ies worldwide (Pérez Roda 2019; Suuronen and Gil-
man 2020), this represents a useful approach to col-
lecting reliable fisheries data.

About a quarter of fishers’ submissions with spa-
tial information did not provide associated catch 
(total weight and weight of main commercial spe-
cies) data. This was observed for eight fishers and 

Fig. 3  Map comparison between fishing effort in small-scale 
shrimp trawl vessels reported by observers and fishers using 
the Similarity of Means Index

Fig. 4  Proportion of discards reported by fishers and observ-
ers in small-scale shrimp trawl fisheries from October 2019 
to March 2020 in northern Peru. Interquartile range (boxes), 
median (bold lines), 95% CI (bars), outliers (points)
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seemed to happen at random during the study period. 
This shows that even though fishers used the track-
ing feature in the App, they sometimes neglected to 
add complementary catch information. There were 
high inter-individual variations in reporting practices, 
with some fishers reporting quite often and others 
less frequently. It would be useful in the future to use 
behavioural sciences to understand what drives these 
motivations (e.g. Clary and Snyder 1999) and how 
to increase fisher participation. For 37 trips, discard 
data were available with no associated spatial data. 
This could be either because fishers neglected to start 
tracking or stopped the tracking function in the App.

It is widely recognised that self-reporting offers an 
opportunity to cover a larger proportion of the fleet 
with lower costs compared to observer programmes 
(Starr 2010). Moreover, high quality data, compara-
ble to those collected by observer sampling has been 
achieved in several fisheries (Starr and Vignaux 1997; 
Hoare et al. 2011; Mion et al. 2015; Campbell et al. 
2021; Marshall et al. 2021; Tilley et al. 2020). How-
ever, self-reporting has also been criticised; specifi-
cally, the lack of time, motivation and training of fish-
ers which may lead to inaccurate reporting (Lordan 
et  al. 2011; Sampson 2011; Mangi et  al. 2015). We 
addressed these constraints by adhering to principles 
of innovations that increase their rate of adoption, 
such as relative advantage, complexity, and trial-
ability (Rogers 2003). The relative advantage is the 

degree to which an innovation is perceived as advan-
tageous. The motivation of fishers was clear as col-
lectively they had already agreed that finding ways 
to reduce bycatch and discards and to adopt more 
sustainable fishing practices was potentially a way to 
legitimise the fishery. A more tangible advantage was 
obtaining a cell phone and associated monthly data 
costs. Several self-reporting trials have used incen-
tives to increase fisher participation, for example, 
allowing fishers to access cod fishing grounds they 
would not have been otherwise been able to access in 
Germany (BLE 2018), reducing bycatch in order to 
maximise yields in the US scallop fishery (O’Keefe 
and DeCelles 2013), or in the form of direct pay-
ment for reporting (Ticheler et al. 1998). Complexity 
refers to the difficulty of understanding and using the 
App. We developed a mobile application with a sim-
ple design where only essential data were required to 
be filled in by fishers. Trialability, which refers to the 
degree to which an innovation may be experimented 
on before a full trial, was followed by inviting fish-
ers to comment on the design of the App and on early 
iterations of the functionality of the App. While not 
fully developing a process of co-design with users as 
suggested in Nthane et al. (2020), this process helped 
to engage fishers, and increased the likelihood that 
the App would accommodate the operational con-
straints of using the App whilst fishing.

Fig. 5  Spatial distribution 
of discards (as a proportion 
of total catch) from a data 
collected by observers, b 
fishers self-reporting via 
App in small-scale shrimp 
trawl fisheries from October 
2019 to March 2020 in 
northern Peru
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Unfortunately, this project was of a short duration 
and affected by COVID-19 in March 2020. There-
fore, evaluation of declines in reporting over extended 
periods (Lordan et  al. 2011) was not possible. Data 
on changes in target species by fishers was also only 
collected anecdotally by observers and could have 
affected the trends in submissions per fishers over 
time. For example, increased catches of shrimp dur-
ing the summer months (Jan-Mar) led to a decrease 
in the price, to the point where some fishers chose to 
change target species to force buyers to increase the 
price again. Likewise, the number of interventions 
(confiscating catch and gear) by the Peruvian Navy 
increased from January onwards, which prevented 
fishers from going out fishing (Gomez, pers. obs.).

Low-cost self-reporting approaches have the 
potential to improve or even initiate data collection 
programmes to monitor small-scale fisheries discards, 
which remain widely unstudied globally (Suuronen 
and Gilman 2020). However, it is important to rec-
ognise that the utility of these approaches is context 
specific and establishing the appropriate framework 
and conditions for self-reporting approaches to work 
successfully is more important than the underpin-
ning technology. While we suspect that the levels of 
engagement were initially relatively high due to the 
high level of fishers’ support (in order to generate 
information on their impact as means to start discus-
sions with government towards legitimisation of the 
fishery), we believe that constant review of their sub-
mission data and frequent communication with them 
might have improved fisher engagement in reporting. 
Communicating effectively, transparently, and con-
sistently with fishers can help to build trust. Helping 
to facilitate collective understanding of the challenges 
and potential solutions can provide the necessary 
motivation for fishers to participate in self-reporting 
approaches. Subject to achieving these conditions, 
combining spatial data with catch data can provide 
a powerful tool to identify fishing grounds, areas of 
high discard risk and other important information 
for fisheries management and conservation. These 
approaches also provide an opportunity to represent 
SSF activities in the context of competing demands 
on marine resources and spatial management related 
to the blue growth agenda (Cohen et al. 2019).
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