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cultivation are presented. The latter is grouped on 
the basis of measurement methods used as software 
sensor inputs, employing either optical or non-optical 
techniques, or a combination of both. Some examples 
of software sensor design using simulated process 
data are also given, grouped according to their design, 
either as model-driven or data-driven estimators.

Keywords Microalgae cultivation monitoring · 
Software sensors · Data-driven estimators · Model-
driven estimators · Optical methods · Non-optical 
methods

1 Introduction

Algae comprise a diverse group of photosynthetic 
organisms, unicellular (microalgae) and multicellular 
(macroalgae), commonly inhabiting terrestrial (e.g., 
deserts, stones, animals, plants) and aquatic environ-
ments (e.g., ponds, seawater), but also at sites where 
high concentrations of salts, long, persistent snow, 
and volcanic materials conform the environment 
(Bold and Wynne 1985; Avagyan 2018). Microalgae 
comprise an important group of microscopic photo-
synthetic eukaryotes and photosynthetic bacteria, e.g., 
cyanobacteria (formerly known as blue-green algae) 
(Andersen 2013; García et  al. 2017). The capacity 
of microalgae to adapt and live under wide-ranging 
environmental conditions also offers interesting 
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biotechnological alternatives for the energy, food, and 
pharmaceutical sectors.

Photosynthesis implies an attractive process for the 
development of biotechnological processes: there is 
an inexhaustible supply of energy (light) with which 
 CO2 capture, production of different biomolecules 
and biomass are performed (Masojídek et  al. 2013). 
Unlike plants, microalgae have higher photosynthetic 
rates, do not require land used for agriculture, con-
sume less water for growth, grow fast and are meta-
bolically more flexible (Benedetti et al. 2018; Vecchi 
et  al. 2020). Microalgae are well-known photosyn-
thetic microbes used as cell factories for the produc-
tion of relevant biotechnological compounds (e.g., 
pigments, lipids, carbohydrates, proteins, and vita-
mins) (Jacob-Lopes et al. 2020), as food sources (e.g., 
Chlorella sp. and Arthrospira sp.) or in environmen-
tal applications, e.g., wastewater treatment (Martínez-
Roldán and Cañizares-Villanueva 2020; Tan et  al. 
2020). Traditionally, microalgae cultivation involves 
two major production systems: open (e.g., raceway 
ponds, circular ponds) and closed systems (e.g., 
tubular, flat panel, bubble column photobioreactors), 
however, recent research has also focused on biofilm-
based cultivation (Fabris et al. 2020). The description 
of these systems is not the subject of this article; how-
ever, available scientific literature can be reviewed 
elsewhere (Borowitzka and Moheimani 2013; Zittelli 
et al. 2013; Tan et al. 2020; Chanquia et al. 2021).

In a bioprocess, the molecules to be produced 
(e.g., biomass in the form of pure cultures or co-cul-
tures, enzymes, secondary metabolites, recombinant 
products), the production strategy.

(e.g., batch, fed-batch, continuous system), as well 
as the type of organism employed (e.g., mammalian 
cells, yeast, bacteria, microalgae) define the param-
eters or variables to be monitored. These process 
parameters to monitor can be classified into three 
groups: physical, chemical and biological (Biechele 
et al. 2015).

In microalgae cultivations physical variables 
include temperature, light intensity, mixing inten-
sity and light frequency within the culture. Chemi-
cal variables include pH, dissolved  CO2 and oxygen, 
extracellular products, intracellular products (e.g., 
lipids, carbohydrates, pigments, proteins, and vita-
mins), nitrogen, and phosphorus concentration (e.g., 
 NO3

−,  NH4
+,  PO4

3−). Biological variables involve 
biomass concentration, cell morphology and viability, 

photosynthetic efficiency or the presence of contami-
nants (Havlik et al. 2013a, 2022; Claßen et al. 2017). 
It is evident that, unlike other cell cultures, some of 
the parameters to be monitored in microalgae cul-
tures are particularly distinctive (e.g., light monitor-
ing given the autotrophic capacity of microalgae 
(Masojídek et  al. 2009), the monitoring of intracel-
lular products, or the presence of contaminants, e.g., 
rotifers or undesirable algae strains (Deore et  al. 
2020; Sauer et  al. 2021)). Physical and chemical 
variables and light intensity can be easily measured 
using classical physicochemical sensors employed 
in chemical processes. On the other hand, biological 
variables can usually be measured only by applying 
sampling and tedious offline methods. Indirect online 
measuring techniques called software sensors, which 
are reviewed here, offer an alternative.

There are different terms related to process moni-
toring that are based on the way the sampling is 
done and the location of the sensor within the pro-
cess (Havlik et al. 2022). It is common to find terms 
such as offline, online, inline, atline and in  situ in 
the literature (Claßen et al. 2017; Reyes et al. 2022). 
It should be noted that there are slight differences 
between online and offline definitions found in the lit-
erature. Nevertheless, a broader classification is based 
on the terms offline, online and atline (see Fig.  1). 
When a sample is measured offline, it means that it 
is completely removed from the production system 
for further analysis in a separate laboratory. Offline 
measurements are laborious, not immediate, require 
qualified manpower, and are prone to an increased 
risk of contamination (Claßen et  al. 2017; Noll and 
Henkel 2020; Rösner et al. 2022). On the other hand, 
online measurements refer to those measurements 
made by a sensor that are either in direct contact with 
the contents inside the reactor (invasive), the sen-
sor is separated by the reactor walls (non-invasive), 
or in a bypass arrangement where the reactor con-
tents are diverted, measured in a flow-through mode, 
and returned to the cultivation stream (Rösner et  al. 
2022). Online measurements are performed continu-
ously (Reyes et  al. 2022) and imply that the data is 
taken in real time or almost real time. In atline meas-
urements, samples are continuously removed from the 
process through some device and analyzed in an anal-
ysis system (e.g., HPLC, GC, biochemical analyzer, 
MS) spatially close to the process site. Measurements 
are performed at defined time intervals, and a time 
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gap occurs between the time of sampling and sample 
analysis (Claßen et al. 2017).

Microalgae cultivation systems require advanced 
and efficient methods to assure improvements in pro-
ductivity, control and automation processes. Industry 
4.0, also known as the "Fourth Industrial Revolution" 
or the "Industry Internet of Things" (Turcu and Turcu 
2018; Richter et al. 2023), i.e., an advanced manufac-
turing approach based on inter-machine communica-
tion technologies in which automation, sensors and 
machine learning converge to create self-adaptive 
manufacturing processes that adjust in real time to 
changes in the process itself, offers possibilities to 
pursue in microalgae cultures or biorefineries (Fabris 
et  al. 2020). In this context, the application of soft-
ware sensors, i.e., estimators based on mathematical 
and/or data-driven process models, using physical 
signal inputs from multiple sensors could comple-
ment the online sensors as it allows the estimation 
of the desired biological process variables in real or 

almost real time, which are often hidden in the meas-
ured data and are only indirectly accessible.

In this review, an overview of those microalgae 
components derived from their cultivation that have 
a real or potential application is presented: biomass 
and its various biochemical components (e.g., lipids, 
pigments, vitamins, proteins, and carbohydrates). In 
addition, in some cases, their spectroscopic charac-
teristics, i.e., maximum absorptions and fluorescence 
excitation/emission regions, used in conventional 
analytical methods or in the implementation of soft-
ware sensors for their monitoring, are mentioned. 
Subsequently, the three different approaches used 
(model-driven, data-driven or hybrid model) in soft-
ware modeling-assisted monitoring and control, i.e., 
software sensors, are described, as well as the main 
tools within each of these categories. The fourth sec-
tion includes a list of the latest publications describ-
ing the design and use of different types of software 
sensors for the measurement of biological parameters 

Fig. 1  Types of sensor systems: Online, atline and offline. 
The online sensors can be arranged in different configura-
tions: invasive (inside the vessel and in contact with the con-
tents), non-invasive (outside the vessel but close to the vessel 

surface), and bypass (the sample is routed, measured in a flow-
through mode, and returned to the main stream). Partially cre-
ated in Biorender.com
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in microalgae cultures. These were grouped accord-
ing to physical measurement methods employing 
optical techniques, non-optical techniques, or a com-
bination of both. Another category comprises soft-
ware sensors designed with the help of simulated 
input data, grouped on the basis of whether they are 
using model-driven or data-driven estimators.

The aim of this review is to present an overview of 
recent applications of the indirect measurement tech-
nique, usually called "software sensors", to microal-
gae cultivation. This technique, or tool, provides us 
with the possibility to estimate in almost real-time the 
values of process variables, as a rule biological ones, 
that are not accessible for sensors based on physico-
chemical principles. Application of software sensors 
to microalgal processes is now in the early stages and 
is being investigated under laboratory conditions, and 
applications are, up to this day, relatively few com-
pared to the number of applications in other engineer-
ing branches (Perera et  al. 2023). This review seeks 
to summarize the current state of affairs in the field 
of software sensor applications to microalgae cultiva-
tion, concentrating not on the development of general 
software sensor algorithms or their application in 
process control but on the application of these algo-
rithms in the estimation of process parameters, thus 
supplementing the existing physicochemical sensors.

2  Biochemical process variables in microalgae 
cultivation

2.1  Biomass as a key parameter in microalgae 
cultivation

Biomass is the most relevant variable estimated in 
microalgae cultivation because almost all products 
obtained by microalgae cultivation are of intracel-
lular nature and thus procured by biomass process-
ing (Jacob-Lopes et al. 2020). Microalgal biomass is 
known to be a rich source of lipids, pigments, vita-
mins, amino acids, proteins, carbohydrates, e.g., poly-
saccharides and oligosaccharides, and essential min-
erals (Caporgno and Mathys 2018; Jacob-Lopes et al. 
2020). Currently, the U.S. Food and Drug Adminis-
tration (FDA) designates the microalgae Arthrospira 
platensis, Auxenochlorella protothecoides, Chlorella 
vulgaris, Chlamydomonas reinhardtii, Dunaliella 
bardawil, Euglena gracilis, Haematococcus 

pluvialis, Schizochytrium, Porphyridium cruentum, 
and Crypthecodinium cohnii with a Generally Recog-
nized as Safe (GRAS) status (García et al. 2017; Diaz 
et al. 2023). It is nowadays common to find commer-
cial presentations of microalgal biomass marketed as 
powders, pills and capsules.

The growth of microalgae cultures can be deter-
mined directly by measuring the abundance of the 
cells using cell counting by various methods and/or 
the increase in biomass, either by dry weight (DW), 
ash-free dry weight or chlorophyll a concentration. 
Methods using optical properties (e.g., turbidity 
or absorbance) are also used as a measure of algae 
abundance, however, precise correlations with direct 
methods (e.g., cell count, DW) should be considered 
for proper interpretation (Borowitzka and Moheimani 
2013). The possibility of measuring cell count online 
together with statistics on cell size has been investi-
gated by employing an in-situ, flow-through micro-
scope installed in a microalgae cultivation bypass 
(Havlik et  al. 2013b). Biomass measurement is not 
only important for its association with valuable com-
pounds but also for estimating culture metabolic state 
variables (e.g., specific growth rate) necessary in fed-
batch strategies (Wechselberger et al. 2013). Moreo-
ver, industrial processes using microalgae require 
the biomass as a variable for the estimation of pro-
cess productivity (e.g., g DW/L, ton DW/ha), yields, 
and economics, e.g., €/kg DW (Norsker et al. 2011). 
Therefore, the use of devices to monitor this variable 
has been of interest to researchers, given its relevance 
in commercial applications.

The most common technique used in laboratory 
and industrial environments to determine microal-
gae growth involves the use of optical density (OD). 
Traditionally, the wavelengths at 750 nm  (OD750) and 
550 nm  (OD550) have been employed for this purpose 
due to minimal interference with the cellular pig-
ments that are present, e.g., chlorophyll and carote-
noids (Borowitzka and Moheimani 2013; Wang et al. 
2019).

On the other hand, authors have described the use 
of other wavelengths for cell growth estimation. In a 
short study, four different wavelengths comprised in a 
range between 677 and 688 nm (within the maximum 
chlorophyll absorption), using four different microal-
gae species, were employed for the purpose of cor-
relating absorbance and cell concentration (Santos-
Ballardo et  al. 2015). In another study, the authors 
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employed several wavelengths, 480, 510, 630, 647, 
647, 650, 664 and 750 nm, to correlate them with cell 
concentration, but also to compare OD measurements 
and wavelengths employed. The authors used seven 
microalgae strains in this task. Their results showed 
consistency between OD measurements regardless of 
the wavelength used (Pearson coefficient = 0.92–0.97) 
which suggests that the wavelength selected is not a 
determining factor (Chirivella-Martorell et al. 2018).

2.2  Lipids

Microalgae are an interesting source for different 
types of lipids. In general, the lipid profile of micro-
algae consists of neutral lipids (or non-polar lipids) 
such as triacylglycerols (TGA), free fatty acids (FFA) 
and carotenoids, i.e., lipidic pigments, and polar 
lipids mainly represented by glycolipids and phos-
pholipids (Sarpal et  al. 2015). The fatty acid profile 
in microalgae is characterized by a mixture of C16 
and C18 saturated and unsaturated fatty acids, as well 
as long-chain (C20-C22) polyunsaturated fatty acids 
(PUFAS), e.g., eicosapentaenoic acid (EPA), doco-
sahexaenoic acid (DHA), and docosapentaeonoic 
acid (DPA) (Gouveia and Oliveira 2009; Barkia et al. 
2019; Yang et al. 2020).

The type and amount of fatty acids present in 
microalgae can vary considerably among different 
phylogenetic groups, and even differ at the species 
level. Environmental conditions and growth condi-
tions (e.g., pH, light intensity, nutrient limitation, 
and oxidative stress) are other factors that shape the 
lipid profile in microalgae (Andersen 2013; Borowit-
zka et al. 2016; Bi and He 2020; Morales et al. 2021). 
An extensive study of the long-chain fatty acid profile 
(C14-C24) in 2076 microalgae strains that investi-
gate cyanobacteria and different phyla and classes of 
eukaryotic algae has been reported (Lang et al. 2011). 
Other studies on lipid characterization employing dif-
ferent microalgae can be found elsewhere (Yao et al. 
2015; Shen et al. 2016).

Research with microalgae lipids started with the 
aim of biodiesel production (Barkia et  al. 2019). 
However, this application has encountered several 
limitations in its step toward commercialization 
(Chisti 2013). The high costs of producing biofuels 
from microalgal biomass, both in open and closed 
systems, limit the economic success of the sector; 
however, scenarios that integrate biofuel production 

processes with "next generation cultivation systems 
and processes" could favor the profitability of this 
activity (Richardson et  al. 2014; Bi and He 2020). 
For this reason, biotechnological applications have 
currently been directed towards lipid products not for 
biofuels but products with higher added value within 
the pharmaceutical and food sectors due to their 
beneficial properties for human health, e.g., PUFAs, 
phytosterols, food supplements and infant formulas 
(Barkia et al. 2019; Fabris et al. 2020; Fernandes and 
Cordeiro 2021).

2.3  Pigments

As in plants, chlorophyll a (Chl a) constitutes the 
main pigment for photosynthesis in phytoplankton. 
However, these photosynthetic organisms also con-
tain different accessory pigments (e.g., Chl b and c), 
carotenoids, and phycobiliproteins to carry out funda-
mental cellular processes, e.g., enhancement of light 
uptake and photoprotection (Andersen 2005). The 
pigments present in microalgae can vary between 
taxonomic groups and therefore be used to differen-
tiate between them. For example, cyanobacteria, in 
general, produce Chl a, d and f, as well as the phyco-
biliproteins (e.g., phycocyanin, allophycocyanin, and 
phycoerythrin). An interesting exception within the 
cyanobacteria is the group of prochlorophytes, i.e., 
Prochloron, Prochlorothrix, and Prochlorococcus, 
which, in addition to Chl a, contains Chl b and lacks 
phycobiliproteins (Roche et  al. 1996). Meanwhile, 
Chlorophyta, a group to which the genera Chlorella, 
Dunaliella, and Haematococcus belong, contains Chl 
a and b in addition to various types of carotenoids 
(e.g., β-carotene) and various xanthophylls, e.g., 
astaxanthin, canthaxanthin, lutein, and zeaxanthin 
(Barkia et al. 2019).

There are three main classes of pigments present in 
microalgae and whose commercialization is of great 
interest: chlorophyll, carotenoids and phycobilipro-
teins (Silva et al. 2020).

2.3.1  Chlorophyll

Chlorophylls are responsible for the photosynthesis 
process as well as light energy harvesting in oxygenic 
photosynthetic organisms, i.e., plants, algae, and 
cyanobacteria. Currently, five types of chlorophyll 
have been described: Chl a, b, c, d, and f, obtained 
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from oxygenic photosynthetic organisms (Li and 
Chen 2015).

Chlorophylls exhibit variations in their side 
chains and/or reduced states. These structural varia-
tions in the rings and/or side chains give each chlo-
rophyll distinctive characteristics in its absorption 
spectra. In general, chlorophylls present two main 
light absorption bands where their correspond-
ing absorption maxima (λ max) are found; the short 
wavelength absorption band, i.e., the Soret band (in 
vitro and in vivo ∼400–470 nm) and the long wave-
length absorption band, i.e., the  Qy band (in vitro 
∼620–710 nm and in vivo ∼640–710 nm) (Papageor-
giou and Govindjee 2004; Chen 2014). Chl a in meth-
anol exhibits a λ max of 436 and 665 nm. However, 
under in vivo conditions, Chl a, found in photosystem 
II, shows a λ max ∼680 nm and λ max ∼700 nm in 
photosystem I mainly attributed to the protein envi-
ronment surrounding these molecules. On the other 
hand, Chl b under in vivo conditions presents values 
of λ max of ∼650 nm (Chen 2014). It should be noted 
that different types of Chl c, present in golden-brown 
eukaryotic algae but absent in plants, present an addi-
tional λ max at ∼580  nm under in  vitro conditions 
(Zapata et al. 2006).

Interestingly, the Chl a is also almost the only chlo-
rophyll performing fluorescence under in vivo condi-
tions at ordinary temperatures. At room temperature, 
Chl a shows a heterogeneous behavior, however, a 
fluorescence band at 683–685 nm, which originates in 
PSII, and a small amount in the 710–760 nm region 
from the PSI antenna are observed (Papageorgiou and 
Govindjee 2004).

Despite being light- and oxygen-sensitive mol-
ecules, the biotechnological uses of chlorophylls are 
varied. For example, their use is common as dyes in 
the food, cosmetic and pharmaceutical sectors (Silva 
et  al. 2020). In  vivo evaluations of plant-derived 
chlorophyll extracts have demonstrated their protec-
tive capacity as antioxidants (Suparmi et  al. 2016). 
A more recent work describes the process for stabi-
lizing chlorophyll extracts with Cu(NO3)2 in paints 
(Sulaiman et al. 2019).

2.3.2  Carotenoids

Carotenoids are lipid-soluble accessory pigments 
made up of isoprene units whose coloration mainly 
spans the visible light spectrum between yellow and 

red, i.e., 400–600 nm (Langi et al. 2018; Silva et al. 
2020). In addition to their role in light harvesting, 
carotenoids present a photoprotective function against 
oxidative stress and adverse environmental conditions 
(Barkia et al. 2019). According to their function, there 
are two major groups of carotenoids: carotenes (e.g., 
α-carotene, β-carotene, lycopene) and xanthophylls 
(e.g., astaxanthin, zeaxanthin, lutein, violaxanthin, 
canthaxanthin). Based on their chemical structure, 
carotenes are considered oxygen-deprived hydrocar-
bon compounds (C40 polyenes), whereas xantho-
phylls present oxygenated groups, i.e., hydroxyl and 
keto groups, toward the end rings. This feature con-
fers a relative hydrophilic character to xanthophylls 
(Langi et al. 2018).

The properties and functions of carotenoids 
depend on their molecular structure. For example, 
carotenoids can present different isomeric configu-
rations (trans and cis), resulting in variations in the 
melting point, solubility and stability of the molecule. 
In addition, the conjugated polyene chromophore, 
present in carotenoids, defines the properties of light 
absorption and light harvesting (Langi et al. 2018).

Among their biological activities, carotenoids have 
been associated with antioxidant, anti-inflammatory, 
and anticarcinogenic properties. The effects of differ-
ent types of carotenoids on human health (e.g., car-
diovascular protection, prevention of liver fibrosis, 
prevention against different types of cancer) can be 
widely consulted in the literature (Park et  al. 2010; 
Yoshida et  al. 2010; Milani et  al. 2017; Langi et  al. 
2018; Barkia et al. 2019). In addition, the carotenoids 
are used in the food sector as a food coloring additive 
and nutraceutical, in the animal feed industry, and in 
cosmetology (Silva et al. 2020).

2.3.3  Phycobiliproteins

Phycobiliproteins are photosynthetic light-harvesting 
protein pigments naturally found in cyanobacteria, 
red algae, cryptomonads, and glaucophytes (Silva 
et  al. 2020). These proteins are hydrophilic and are 
found in superstructures called phycobilisomes in 
the chloroplast stroma. A classification of the phyco-
biliproteins includes three main groups: allophycocy-
anin, phycocyanins, and phycoerythrins (Stadnichuk 
et al. 2015). Covalently attached to their polypeptide 
structure through cysteine residues, chromophore 
molecules called phycobilins are found (Kovaleski 
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et al. 2022). There are four types of phycobilins: phy-
cocyanobilin (PCB, blue), phycoviolobilin (PVB, vio-
let), phycoerythrobilin (PEB, red) and phycourobilin 
(PUB, yellow) (Dagnino-Leone et  al. 2022). Other 
authors report only three types of phycobilins: PEB, 
PCB, and PVB (Kovaleski et al. 2022).

The amino acid sequence, the number of chromo-
phores per monomer, and the type of chromo-
phores present are criteria used to differentiate 
between phycobiliproteins. Based primarily on 
structural features and their absorption spectra, 
phycobiliproteins are divided into four groups: 
phycoerythrin (λmax = 490–570  nm), phyco-
cyanin (λmax = 610–620  nm), phycoerythrocya-
nin (λmax = 560–600  nm), and allophycocyanin 
(λmax = 650–655 nm) (Kovaleski et al. 2022).

The online monitoring of phycocyanins using 
fluorescence spectrophotometry in the marine cyano-
bacterium Synechoccocus sp. has demonstrated the 
feasibility of this approach to obtain direct informa-
tion from cell cultures (Sode et al. 1991). Moreover, 
the offline methods of extraction and purification of 
phycobiliproteins are relatively simple and widely 
known, a fundamental step in the training and vali-
dation of a software sensor (Kovaleski, 2022). There-
fore, all these elements raise the possibility of using 
methods based on fluorescence spectrophotometry 
for online monitoring and software sensor develop-
ment for estimating phycobiliproteins. Considering 
that the range of fluorescence spectra of phycobilipro-
teins is between 585 and 665  nm (Stadnichuk and 
Tropin 2017), selective online monitoring of different 
types of phycobiliproteins, e.g., phycocyanin or phy-
coerythrin, in microalgae cultivation systems poses 
interesting challenges.

Cyanobacteria of the genus Arthrospira sp. and 
Porphyridium sp. are the most relevant microalgae 
in the industrial production of phycobiliproteins, spe-
cifically phycocyanin (blue) and phycoerythrin (red), 
respectively (Silva et  al. 2020). Commercial interest 
in phycobiliproteins is associated with their bioac-
tive properties, such as antioxidant, anti-inflamma-
tory, anti-metabolic diseases, anti-cancer, anti-neu-
rodegenerative, and antibiotic (Dagnino-Leone et  al. 
2022). Other applications related to the use of these 
molecules are related to protein markers, cell sort-
ing, and phycobiliprotein-derived conjugates that take 
advantage of their properties as fluorescent probes 
(Tounsi et al. 2023). Recent applications employ the 

fluorescent properties of phycoerythrin and phycocy-
anin to sense different analytes as part of nanoprobes 
or complexed with other molecules like DNA (You 
et al. 2020; Ghosh et al. 2020). Finally, the differen-
tial quenching effect of heavy metals such as silver 
and copper on phycocyanin fluorescence has demon-
strated their potential use in selective monitoring for 
the presence of heavy metals (Bellamy-Carter et  al. 
2022).

Silva et  al. (2020) determined, in a bibliomet-
ric study, that between 2009 and 2019, research was 
mainly focused on the study of the pigments phyco-
cyanin, chlorophylls, β-carotene, and astaxanthin 
obtained from A. platensis, C. vulgaris, D. salina, and 
H. pluvialis, respectively. At present, there are reports 
where the use of software sensors has been employed 
for the estimation of chlorophyll and carotenoids (Sá 
et al. 2020b, a). However, the monitoring and estima-
tion of phycobiliproteins in microalgae cultivation 
through the use of software sensors represents an 
interesting challenge to be explored.

2.4  Vitamins

Vitamins are organic compounds commonly required 
in low concentrations by organisms and indispensa-
ble in many vital cell processes. Vitamins are classi-
fied into two categories: fat-soluble molecules (e.g., 
vitamins A, D, E and K) and water-soluble molecules 
(e.g., B-complex vitamins and vitamin C) (Udayan 
et al. 2017).

Microalgae constitute a diverse source of differ-
ent types of vitamins, e.g., vitamins A, D, E, K and 
several B vitamins, i.e.,  B1 (thiamine),  B2 (riboflavin), 
 B3 (niacin),  B5 (pantothenic acid),  B6 (pyridoxine), 
 B7 (biotin),  B9 (folic acid), and  B12 (cyanocobalamin) 
(Del Mondo et al. 2020). For example, in A. platensis 
(formerly Spirulina platensis) (http:// www. algae base. 
org/) the presence of vitamins  B1,  B2,  B3,  B6,  B9,  B12, 
vitamin C, vitamin D and vitamin E has been reported 
(Jung et  al. 2019). C. vulgaris constitutes another 
source of multiple vitamins, e.g.,  B2,  B3,  B9, and  B12 
(Edelmann et al. 2019). Dunaliella sp. is rich in fat-
soluble vitamins and moreover, interesting concentra-
tions of vitamin  B2, vitamin  B12, folic acid, vitamin 
C, vitamin  B3 and vitamin E have been reported in 
D. tertiolecta (Udayan et  al. 2017). More details 
on the production of different types of vitamins by 

http://www.algaebase.org/
http://www.algaebase.org/
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some microalgae genera can be found elsewhere (Del 
Mondo et al. 2020).

There are some intrinsic characteristics in the flu-
orescence of some vitamins of the B complex that 
could be useful for monitoring microalgae cultures 
with software sensors using optical measurement 
methods. To make use of these characteristics, the 
knowledge of the excitation and emission spectra of 
these molecules is essential. For example, vitamin 
 B1 in water presents a fluorescence region at λex/
λem = 370/460  nm (Yang et  al. 2016). Vitamin  B6, 
 B2 and  B9, in aqueous solution, exhibit a fluores-
cence region at λex/λem = 330/380–390  nm, λex/
λem = 445/520  nm, and λex/λem = 330/450  nm, 
respectively (Parri et  al. 2020). Vitamin  B2 also has 
a second fluorescence region that comprises λex/
λem = 365/520 nm (Faassen and Hitzmann 2015).

2.5  Other relevant microalgal compounds

Another component present in microalgal biomass is 
the protein fraction. Several microalgae species report 
high protein concentrations ranging from 42 to 70% 
in some cyanobacteria and up to 58% in C. vulgaris 
on a dry cell basis (Becker 2007; Barkia et al. 2019). 
Other species such as D. salina, H. pluvialis, Nanno‑
chloropsis sp., A. platensis and A. maxima show pro-
tein amounts of 49–57%, 29–45%, 50–55%, 46–63%, 
and 60–71% on a dry cell basis, respectively (Timira 
et  al. 2022). A recent work shows a protein content 
of 51% and 64% (w/w) in two Galdieria sulphuraria 
extremophile strains (Canelli et al. 2023). The essen-
tial and non-essential amino acid profiles present are 
comparable with those of other protein sources, i.e., 
egg albumin, soybean and milk lactoglobulin (Wil-
liams and Laurens 2010).

Carbohydrates comprise between 12 and 64% 
of microalgal biomass (Becker 2007; Markou et  al. 
2012). These, present as mono-, oligo-, and polysac-
charides, can be used directly in cellular metabolic 
activities, stored in internal structures called plastids, 
or be cellular structural components (e.g., the cell 
wall). Different types of polysaccharides produced 
may vary according to the microalgae group. For 
example, starch, floridean starch, and chrysolamina-
rin are usually found in green algae (Chlorophyta), 
red algae and diatoms, respectively (Barkia et  al. 
2019). Glycogen and paramylon constitute other 

storage polysaccharides present in microalgae (Gouda 
et al. 2022).

Applications of different microalgal polysaccha-
rides are targeted towards the cosmetology industry 
either as hygroscopic agents or topical antioxidants 
(Barkia et  al. 2019). Applications of exopolysaccha-
rides in the food sector include their use as thickeners 
and gelling additives (García et al. 2017). Moreover, 
some microalgal polysaccharides and oligosaccha-
rides reveal potential uses in the food sector as prebi-
otics. Xylooligosaccharides (XOS), galacto-oligosac-
charides (GOS), alginate oligosaccharides (ALGOS), 
neoagaro-oligosaccharides (NAOS), galactans, ara-
binoxylans, and β-glucans are interesting molecules 
aimed at this type of application (Gouda et al. 2022).

3  Software sensors

A software sensor is a combination of process data 
(sensor input), measured by hardware sensors, and a 
model that analyzes these input data in order to obtain 
new process information (sensor output), in order to 
deliver information about the process similar to that 
delivered by hardware sensors (see Fig. 2) (Luttmann 
et al. 2012). Hence, a software sensor implies an indi-
rect measurement of the desired variable (Brunner 
et al. 2021). Software sensors are commonly applied 
in all the engineering disciplines (automotive and air-
craft control, wastewater treatment, industrial-scale 
chemical processes such as distillation), including 
bioprocess engineering (Luttmann et al. 2012). Gen-
erally, all software sensors are observers in the broad 
sense of the word in control theory (Luttmann et al. 
2012; Aguilar-Garnica and García-Sandoval 2015).

The advantages of software sensors seem obvious: 
they enable the process operator to estimate values 
of process variables that either cannot be measured 
directly online in real time or can be measured only 
by sampling and an atline or offline analysis, which 
complicates things. There are, naturally, shortcom-
ings as well: designers of software sensors used in 
bioprocesses have to cope with variable process 
lengths, multiple process phases and especially faults 
of physical sensors used as inputs. These and other 
challenges for software sensor developers are dis-
cussed in (Brunner et al. 2021) and (Luttmann et al. 
2012).
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In general, the development of software sensors 
can be carried out using two different types of meth-
odologies: model-driven estimators and data-driven 
estimators, which are terms generally accepted in the 
literature (Kadlec et al. 2009; Luttmann et al. 2012). 
In a model-driven estimator, also referred to as mech-
anistic, white-box, parametric or knowledge-based 
models, there is a defined structure originating from 
previous mathematical transformations (e.g., par-
tial or ordinary differential equations) that describes 
a causal relationship in complex systems (e.g., bio-
logical systems) based on parameters that can be 
measured or inferred (Solle et  al. 2017). These esti-
mators use mass and energy balance models as well 
as kinetic models (Randek and Mandenius 2018). 
Under this approach, a prior knowledge of the sys-
tem/process is essential to describe the variables of 
interest; nevertheless, detailed knowledge of the pro-
cess mechanisms is not always available, or its use 
becomes challenging due to the intrinsic complexity 
of living cells (Wechselberger et al. 2013). Generally, 
these models have a wider range of application than 
data-driven estimators because of their greater extrap-
olation power (Solle et al. 2017).

Data-driven estimators, on the other hand, com-
prise the use of mathematical representations (e.g., 
artificial neural network(ANN)) and chemometric 
tools (e.g., principal component analysis (PCA), par-
tial least squares (PLS), and principal component 
regression(PCR)) in order to obtain values of rel-
evant process variables obtained from the data (Solle 
et al. 2017). Basically, these estimators are based on 
empirical observations of the process (Randek and 

Mandenius 2018). The models in these estimators 
correspond to correlations between the measured 
variables and the unknown variables to be estimated 
(Havlik et  al. 2022). This approach does not require 
prior knowledge of the process and is useful in con-
texts where process conditions do not vary considera-
bly (Wechselberger et al. 2013). Unlike model-driven 
estimators, data-driven estimators do not require as 
much time for implementation as long as the data is 
available (Solle et al. 2017). The data-driven estima-
tors could also be referred to as "black box" or empir-
ical models. Generally, the ability of data-driven esti-
mators to extrapolate outside the region of available 
data is poor.

A third methodology suggested in the literature 
for software sensor development concerns the use of 
hybrid models (Brunner et al. 2021). Essentially, this 
model is a combination of the model-driven and data-
driven approaches (Simutis et al. 1992; Noll and Hen-
kel 2020). A drawback of these models may be the 
difficulty in understanding and validating the param-
eters (Mandenius and Gustavsson 2015). The hybrid 
model approach could also be known as the "grey 
box" model.

When developing a software sensor, different 
techniques could be employed individually or in 
combination, in parallel or in sequence (Randek and 
Mandenius 2018; Rathore et al. 2021). For example, 
software sensors could employ individual approaches 
like ANN, deep neural network, adaptive inter-
val observer, Luenberger observer, Kalman filter, 
and PLS regression model, but also multiple linear 
regression (data-driven model) in combination with a 

Fig. 2  General overview of a software sensor for microalgae 
cultivation. Measurable sensor inputs obtained from hardware 
components are processed by complex mathematical models 

(software-based) to indirectly predict relevant microalgae culti-
vation variables. Partially created in Biorender.com
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mechanistic model, support vector regression (SVR) 
together with random forest regression (RFR), both 
data-driven approaches, among others (Rathore et al. 
2021; Havlik et al. 2022). In general, the techniques 
described here are part of the two wider categories 
mentioned previously.

3.1  Model-driven estimators

3.1.1  Observers

In a linear system, in order to estimate a state variable 
(e.g., biomass concentration, substrate concentration, 
and product concentration), a state vector (observer) 
is constructed based on the available outputs and 
inputs of the original system. The main task of an 
observer is the online state estimation of variables 
that cannot be measured directly (Flores et al. 2020). 
The simplest observer described is the Luenberger 
observer (Luenberger 1966). Several types of observ-
ers are described in the literature, including the inte-
gral proportional observer, adaptive observer, interval 
observer, high gain observer, and asymptotic observer 
(AO) (Gauthier et al. 1992; Ploix et al. 1997; Noll and 
Henkel 2020; Flores et  al. 2020). High-gain observ-
ers, whose structure does not depend primarily on the 
input, have demonstrated satisfactory performance 
in nonlinear systems, especially in systems with bio-
logical and environmental processes, when estimating 
variables and disturbances with uncertainties. On the 
other hand, integral proportional observers have dem-
onstrated in multiple applications a higher robustness 
to system input disturbances compared to high-gain 
and adaptive observers (Flores et al. 2020).

Examples of interval observers applied to micro-
algae cultivation can be found in literature (Goffaux 
et  al. 2009; Mairet et  al. 2014a). Adaptive interval 
observer have also been reported in microalgae cul-
tivation (Mairet et  al. 2014a, b). The Luenberger 
observer and high gain observers have also been 
applied to microalgae cultivation (Benavides et  al. 
2015; Flores et al. 2020).

3.1.2  Kalman‑Bucy filters (Kalman filters)

The Kalman filter, originally developed in the 1960s, 
is a model-driven estimator used to improve the reli-
ability of estimated data and noise filtering (Kalman 
1960; Kalman and Bucy 1961; Noll and Henkel 

2020). The Kalman filters are useful and powerful 
estimators when a process is linear and a model is 
available (Rehm and Reed, 1991). Although this algo-
rithm was originally used for the estimation of linear 
systems, subsequent improvements and extensions of 
the model facilitated the development of the so-called 
extended Kalman filter (EKF), which attempts to esti-
mate system behavior based on nonlinear models and 
prior knowledge of the mean and covariance associ-
ated with the measurement error (de Assis and Filho 
2000).

Other types of Kalman filters used for nonlinear 
systems are the unscented Kalman filter (UKF), the 
ensemble Kalman filter, and the cubature Kalman 
filter. However, the two most relevant algorithms for 
state estimation of nonlinear systems are the EKF 
and the UKF. It is worth mentioning that the different 
variants of Kalman filters differ in the way the error is 
calculated (Yousefi-Darani et al. 2021).

The Kalman filters have been used for the estima-
tion of different biological parameters in microalgae 
cultures, e.g., biomass concentration, extracellular 
and intracellular sulfur concentration, and lipid con-
centration (Daboussy et  al. 2014; Yoo et  al. 2015; 
García-Mañas et al. 2019).

3.2  Data-driven estimators

3.2.1  Artificial neural network

The ANNs were first introduced in 1943 by Warren 
McCulloch and Walter Pitts (Gerón 2019). Further 
theoretical principles behind ANN were described 
in the 1950s; however, its application in the context 
of bioprocesses became relevant in the early 1990s 
(Thibault et al. 1990). The ANN is a machine learn-
ing technique, i.e., an algorithm, inspired by the neu-
ral structure of the brain system in humans. A typical 
ANN is composed of three layers of interconnected 
nodes: an inner layer, a hidden layer, and an outer 
layer (Ning et  al. 2022). Essentially, this technique 
allows the estimation of process variables without 
the requirement of a process model (Noll and Henkel 
2020). ANNs are used to provide approximations to 
nonlinear systems (de Assis and Filho 2000). Briefly, 
the network must receive an input from a set of data 
(e.g., pH, nitrate concentration), which is then propa-
gated by one or more hidden or intermediate layers to 
an outer layer, which finally predicts the variable of 
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interest, e.g., biomass concentration (Mowbray et al. 
2021).

The ANNs are considered highly flexible, power-
ful, and scalable models since they provide the pos-
sibility to handle large amounts of parameters and 
demonstrably approximate any function (Cybenko 
1989; Gerón 2019). Interestingly, the parameters of 
the ANN could be modified in an iterative manner 
using the model itself and a set of input and output 
data (commonly referred to as “training data”). In 
this way, the inputs correspond to the correct outputs, 
but this method also ensures that the estimates are 
approximations to the training data. Additionally, the 
network has the ability to "learn" in the presence of a 
newly supplied set of input data and predict an unob-
served output. This is achieved based on the previous 
knowledge generated from the training data supplied 
in the network (Mowbray et al. 2021).

Several types and structures of ANN have been 
described in biological and engineering applications, 
e.g., feed-forward neural network, convolutional neu-
ral network (CNN), recurrent neural network (RNN), 
and deep neural network (DNN), among others (Bei-
roti et  al. 2019; Mowbray et  al. 2021; Ning et  al. 
2022; Xu et al. 2022).

The use of ANNs as software sensors in microal-
gae cultivation has been reported for the estimation 
of cell counts, contamination in monoalgal cultures, 
or biomass concentration using fluorescence spec-
tra, multispectral absorption, and reflectance through 
offline monitoring (López Expósito et  al. 2017; 
Franco et al. 2019; Liu et al. 2020a).

3.2.2  Chemometric models

Chemometrics, a concept initially introduced by 
Svante Wolf in 1971, is the method of extracting 
information from chemical systems by data-driven 
methods (Sarker and Nahar 2015; Biechele et  al. 
2015). The information from the data is extracted 
using multivariate statistics, applied mathematics, 
and computer science. When using chemometrics-
based approaches, the data must be pretreated/trans-
formed to ensure homogeneity and ensure that the 
model can improve its prediction capability (Biechele 
et al. 2015; Solle et al. 2017). For this purpose, sev-
eral pre-processing methods are described, including 
filtration, centering, normalization, standardization, 
deviation, and weighing (Biechele et al. 2015).

After the application of multivariate data analy-
sis, qualitative and quantitative information can be 
obtained from the data provided. Some of the most 
commonly employed linear algorithms in a multivari-
ate data analysis include PCA, PLS, PCR, and multi-
ple linear regression (MLR) (Faassen and Hitzmann 
2015; Mowbray et  al. 2021). A brief explanation of 
PCA and PLS, two commonly used chemometric 
tools, is given below:

The PCA is a mathematical algorithm that reduces 
the dimensionality of the data while retaining most 
of the variation in the data set (Ringnér 2008). The 
model achieves this reduction by identifying direc-
tions or uncorrelated variables, i.e., latent variables, 
called principal components, in which the variation 
of the data is maximal (Ringnér 2008; Mowbray 
et  al. 2021). Therefore, it is assumed that the vari-
ance of latent variables can represent the ‘hidden’ 
pattern within the original datasets and hence is the 
best way to distinguish different datasets (Mowbray 
et al. 2021). Briefly, a PCA allows plotting the data, 
visually assessing similarities and differences, and 
determining whether the data can be grouped (Rin-
gnér 2008). PCA is a qualitative method commonly 
used to analyze the structure, variance, or distribution 
of data sets and to identify outliers (Biechele et  al. 
2015).

PLS regression is a quantitative method using a 
linear multivariate algorithm, that relates and mod-
els two data matrices, X and Y (Wold et  al. 2001). 
Therefore, it is used when the goal of the analysis is 
to predict a set of variables (denoted Y) from a set of 
predictors (called X) (Kumar 2021). The PLS model 
not only captures the maximum variances linked to 
the predictor (e.g., spectroscopic data) and prediction 
(e.g., concentration data), but also ensures the maxi-
mum correlation between them (Abdi and Williams 
2013). A favorable aspect of PLS is the ability to 
analyze data with many noisy, collinear (correlated), 
and incomplete variables in both matrices (Wold et al. 
2001).

4  Measurement methods used as software sensor 
inputs in microalgae cultivation.

In the following section, a detailed set of recent litera-
ture comprising measurement methods used in micro-
algae software sensors is described. Measurement 
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methods are divided into optical and non-optical 
techniques, a combination of both, and those based 
on simulated data (see Fig. 3). Model-driven or data-
driven estimators are commented on regardless of the 
previous classification according to the measurement 
method. References described in this section are sum-
marized in Table 1, characterized by software sensor 
input, type of software sensor, and process variables 
estimated by the sensor (i.e., software sensor output).

4.1  Optical methods

4.1.1  UV–VIS spectroscopy

In biotechnology, UV–VIS spectroscopy uses the 
interaction of ultraviolet and visible light, i.e., wave-
lengths from 200 to 780  nm, with molecules in a 
biological sample to gather information from them 
(Roberts et  al. 2018). In general, the interaction of 
electromagnetic radiation with the molecule could 
result in two different phenomena called absorb-
ance and scattering. Fluorescence, in particular, is an 
emission phenomenon different from any of the two 
previously mentioned. Other physical interactions 
of light with matter include absorption, reflectance, 

refraction, dispersion, and diffraction (Barsanti, 
2014). These different processes are used as the meas-
uring principle when referring to optical sensors.

Optical density, reflectance, and turbidity (a type 
of scattering) have been used in the development 
of software sensors using microalgae cultivation. 
In a work using flat-panel photobioreactors with 
D.tertiolecta, Benavides et  al. 2015 reported the 
development of two software sensors using extended 
Luenberger observers. The first observer allowed the 
estimation of extracellular nitrate and intracellular 
nitrate content considering only biomass online moni-
toring (input), while the second observer benefited 
from biomass and extracellular nitrate (inputs) to 
estimate intracellular nitrate concentration. Biomass 
online monitoring was tracked with optical density. 
Nitrate online measurements were obtained through 
an immersed probe and a spectrometer.

Flores et  al. (2020) used a turbidity sensor that 
allowed them to estimate biomass and substrate 
(glucose) after using a high-gain, robust nonlinear 
observer in mixotrophic cultures with the cyano-
bacterium A. platensis. The turbidity sensor was 
designed to be non-invasive and capable of moni-
toring microalgae flowing inside a borosilicate tube. 

Fig. 3  Measurement methods and measured variables for the development of software sensors in microalgae cultivation
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Table 1  Software sensors used for the estimation of relevant process parameters in microalgae cultivations

Software sensor inputs Type of software sensor Estimated variables Reference

OD (biomass)
OD (biomass), extracellular 

 NO3
−

Extended Luenberger observer Extracellular and intracellular 
 NO3

− quota
Intracellular  NO3

− quota

Benavides et al. (2015)

Turbidity Robust nonlinear observer Biomass (g/L)
Glucose

Flores et al. (2020)

Turbidity (biomass)
Glucose

EKF
UKF
PF

Total lipids Yoo et al. (2015)

Turbidity (biomass)
Glucose

UKF Total lipids Yoo et al. (2016)

Multispectral absorption ANN Contamination Franco et al. (2019)
2D fluorescence spectra Chemometrics Biomass (cell/mL), pigment 

content (chlorophyll),
lipids content (saturated, unsatu-

rated, and total fatty acids)

Sá et al. (2020a)

2D fluorescence spectra Chemometrics Biomass (cell/mL) and viability Sá et al. (2017)
2D fluorescence spectra Clima-

tologic metadata
Chemometrics Pigment content (chlorophyll 

and carotenoids)
Sá et al. (2020b)

2D fluorescence spectra Chemometrics Biomass (g/L)
Fucoxanthin content

Gao et al. (2021)

Fluorescence spectra ANN Biomass (cell/mL) Liu et al. (2020a, b)
Laser reflectance SVR

RFR
Biomass (g/L) López Expósito et al. (2017)

Laser reflectance ANN Biomass (g/L) López Expósito et al. (2016)
IR spectra (ATR-FTIR) Chemometrics Proteins, lipids, carbohydrates Ferro et al. (2019)
Raman spectral signatures Chemometrics Physiological cell state Lieutaud et al. (2019)
Image-based Linear regression, RFR, 

XGBoost
MobileNetV3Small (Deep 

Learning)
MobileNetV3Large (Deep 

Learning)

Microalgae identification Kaya et al. (2023)

Particle counter
Image-based

ANN Microalgae identification Otálora et al. (2021)

Image-based Chemometrics Biomass (cell/mL) Nguyen et al. (2023)
Wastewater flow rate
Dilution flow rate
Temperature

Linear polynomial, nonlinear 
polynomial model, Hammer-
stein-Wiener model (data-
driven models)

Hybrid model (data-
driven + kinetic model)

pH
Biomass (g/L) using pH com-

puted by 1

Paladino et al. (2022)

CO2 and  O2 concentrations EKF Biomass (g/L)
Extracellular and intracellular 

sulphur quota

Daboussy et al. (2014)

Solar radiation
Medium level
CO2 supply

ANN pH Otálora et al. (2023)

Dissolved  O2
pH
Gas injection (air flow and  CO2 

flow)
Solar radiation

EKF Biomass (g/L) García-Mañas et al. (2019)
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Cultures were performed with a flat-panel PHB. 
Measurements of the device, which operated at 
 OD560, were calibrated by an external determina-
tion of dry biomass weight. External glucose meas-
urements were carried out with the DNS assay, a 
standard method for the determination of reducing 
sugars.

The evaluation of various estimators employing 
different observers, i.e., EKF, UKF, and particle fil-
ter (PF), was carried out for the determination of total 
lipids in C. protothecoides photobioreactor cultures. 
The authors used a turbidity sensor that allowed 
online estimation of biomass concentration (exter-
nally calibrated with DW) as well as offline HPLC 
analysis to measure glucose concentration. These two 
variables were the basis for the development of the 
lipid estimators in the cultures. The external determi-
nation of total lipids was carried out using the Red 
Nile stain test in order to compare the total lipid pre-
dictions generated by the models and the microalgae 
cultures. The comparison of the applicability of these 
three algorithms yielded favorable results for the use 
of UKF and PF compared to EKF (Yoo et al. 2015).

In a continuation of the previous research, the 
same authors used only UKF to estimate total lipids 
through turbidity and glucose measurements and used 
this data to perform model predictive control (MPC). 
MPC, based on successive linearization, was applied 
both in simulations and experimental validations for 
the purpose of optimizing biomass and lipid produc-
tivity in microalgal systems with photobioreactors. 
It was pointed out that significant improvements in 
biomass and lipid productivity were achieved when 
MPC calculation was applied, however, inaccuracies 

as “lag phase” were observed due to the introduction 
of large amounts of inputs (Yoo et al. 2016).

Franco et al. (2019) reported the use of color spec-
trophotometry measurements (range of 400–700 nm), 
i.e., light absorption spectra, in combination with 
ANN to identify and distinguish among different 
microalgae species in monoalgal and mixed cultures. 
The research was carried out under laboratory condi-
tions with the microalgae Nostoc sp., Scenedesmus 
almeriensis, A. platensis and C. vulgaris using contin-
uous cultures in bubble-column photobioreactors. The 
research takes advantage of the personalized spectral 
fingerprint of each microalgae species to identify 
them in a monoculture and differentiate among them 
in a mixed culture in order to detect microalgae con-
taminants in commercial-scale production.

4.1.2  Fluorescence spectroscopy

The phenomenon of fluorescence in a molecule 
occurs when the absorption of light energy promotes 
electrons into a temporary excited state (fluores-
cence lifetime), followed by a return to a basal state 
in which the excess energy is dissipated through the 
emission of photons, i.e., energy whose wavelength is 
larger than that which generated the excited state, due 
to energy loss by, e.g., vibration (Ishikawa-Ankerhold 
et al. 2012). Fluorescence offers a number of advan-
tages in the monitoring of biological variables, such 
as its high sensitivity to monitor sub-nanomolar con-
centrations or even at the level of a single molecule, 
simplicity and speed, low background due to the 
differences between excitation and emission wave-
lengths, selectivity due to the ability to recognize 

Table 1  (continued)

Software sensor inputs Type of software sensor Estimated variables Reference

NO3
− and  NO2

− concentrations
Particle counter

Adaptive interval observer Lipids
Carbohydrate quota

Mairet et al. (2014a)
Mairet et al. (2014b)

Simulated dissolved  O2 EKF, AO, EKF + AO Biomass (kg/m3) Arango Restrepo et al. (2022)
Simulated biomass and extracel-

lular substrate concentrations
STO and AO Substrate uptake rate, biomass 

growth rate, and internal 
substrate quota

Coutinho et al. (2019)

Simulated light intensity High gain observer Biomass (mg/L)
Dissolved  CO2

Farza et al. (2019)

EKF extended Kalman filter, UKF unscented Kalman filter, PF particle filter, ANN artificial neural network, ATR−FTIR attenuated 
total reflection−Fourier transform infrared spectroscopy, SVR support vector regression, RFR random forest regression, STO super 
twisting observers, AO asymptotic observer
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specific fluorophores within a mixture with non-
fluorescent molecules, and its applicability to living 
organisms in a non-invasive and non-destructive way 
(Elson 2011; Sá et al. 2020a).

In biotechnology, fluorescence measurements are 
commonly used for the detection of biological mol-
ecules such as proteins, amino acids (e.g., tryptophan, 
tyrosine, and phenylalanine), vitamins, and cofac-
tors, e.g., FAD and NADH (Faassen and Hitzmann 
2015). In the case of microalgae cultivation, chloro-
phyll should also be considered a fluorophore used 
in the monitoring and control of these microorgan-
isms. Their application, together with software sensor 
approaches using microalgae cultures, is described in 
further detail in the following paragraphs.

Offline fluorescent spectra based on Excitation-
Emission Matrix (EEMs) together with chemomet-
ric models (PLS regression and N-PLS) was used to 
determine five biological parameters, i.e., the biomass 
as cell concentration, pigment content (chlorophyll), 
and lipid content (saturated, unsaturated, and total 
fatty acids) in Nannochloropsis oceanica cultivation. 
The determination coefficient  (R2) of the predicted 
models developed was reported for cell concentration 
 (R2 = 0.66), chlorophyll content  (R2 = 0.78), total fatty 
acids  (R2 = 0.78), saturated  (R2 = 0.81), unsaturated 
 (R2 = 0.74) (Sá et al. 2020a).

Cultivation using D. salina, 2D fluorescence spec-
troscopy, and chemometric models was employed 
for the monitoring of cell viability and cell number 
during the “green” growing phase and cell damage/
disruption in the “orange” harvesting phase. The 
EEMs and mathematical modeling, i.e., PCA and 
PLS, allowed the development of model predictions 
for the desired process parameters. Models that pre-
dicted cell number and viability with green D. salina 
showed values of  R2 = 0.8 and  R2 = 0.9, respectively, 
for training and validation. Also, the model predic-
tion of cell damage for orange D. salina was achieved 
with an  R2 = 0.95 for training and  R2 = 0.87 for vali-
dation (Sá et al. 2017).

In another interesting approach, the content of 
total pigments, total chlorophyll, total carotenoids 
and specific pigments (e.g., chlorophyll a-b, zeax-
anthin, α-carotene, all-trans-β-carotene, and 9-cis-
β-carotene) was estimated using 2D fluorescence 
spectroscopy, climatic metadata (temperature, total 
precipitation, sunlight, clouds, fraction of photo-
synthetically active radiation-FPAR and irradiance) 

and chemometric tools with outdoors and indoors 
cultures of D. salina. To do this, predictive mod-
els were developed with PCA and PLS to correlate 
EEMs and climatological data with the pigments 
present using two offline calibration methodologies: 
spectrophotometry and HPLC analysis. Predictive 
models for chlorophyll content (total, a-b) showed 
 R2 values between 0.6 and 0.9 for trained and vali-
dated data. Models for total carotenoids and spe-
cific carotenoids showed  R2 values between 0.7 and 
0.9 and 0.6 and 0.9 for trained and validated data, 
respectively (Sá et al. 2020b).

In an experimental set-up using pilot-scale out-
door flat-panel photobioreactors and a semicontinu-
ous cultivation of the brown microalgae Tisochrysis 
lutea and Phaeodactylum tricornutum, the biomass 
concentration and the carotenoid fucoxanthin were 
predicted using 2D fluorescence spectroscopy and 
chemometric modeling. The preprocessed EEMs, 
done by removal of the Rayleigh scatter and inner 
filter effect, were correlated with cell concentra-
tion (DW) and fucoxanthin content using PLS and 
N-PLS. Interestingly, this study presents the esti-
mation of both biological variables based on each 
microalgal species and on both combined. While 
the validation models for estimating the biomass 
concentration from each microalgae showed, in 
both cases, an  R2 = 0.96, those with T. lutea and P. 
tricornutum presented an  R2 = 0.93. On the other 
hand, the individual models in the validation of the 
estimation of the fucoxanthin content showed an 
 R2 = 0.63 (T. lutea) and 0.64 (P. tricornutum), while 
the results of both showed an  R2 = 0.77 (Gao et al. 
2021).

Cell counts of C. reinhardtii were estimated in 
the range between 2 ×  105 and 6.4 ×  106 cells/mL 
using offline fluorescence measurements and ANN-
based models. The wavelength used for excitation 
was 470  nm, while the defined emission spectrum 
was in the range between 660 and 760 nm. The fluo-
rescence spectra were analyzed by ANN and opti-
mized with Genetic algorithms (GA) given the non-
linear relationship between the input (fluorescence 
spectra) and the output (cell count) variables. The 
application of GA produced a slight improvement 
in model prediction compared to the application of 
ANN alone, showing values of  R2 = 0.99 and 0.98, 
respectively (Liu et al. 2020a).
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4.1.3  Reflectance measurements

Offline laser reflectance data, analyzed as cord length 
spectra (input), was used for biomass estimation of C. 
sorokiniana cultures using wastewater treatment in 
5.5 L photobioreactors. In this case, the cord length 
spectra were analyzed together with two machine 
learning techniques: SVR and RFR. The models gen-
erated with SVR and RFR showed good accuracy in 
biomass estimation (dry biomass concentration—g/L) 
after presenting values of  R2 = 0.87 and 0.81, respec-
tively (López Expósito et al. 2017).

In a similar approach, the biomass concentration 
(flocculated and raw cultivation) of C. reinhardtii was 
estimated by means of a focused beam reflectance 
probe (FBRM) using software sensors. The authors 
used the chord length distribution data and a feed-
forward multilayer perceptron, i.e., ANN, to develop 
great biomass concentration estimators showing 
 R2 = 0.96 and 0.92 for training and validation, respec-
tively (López Expósito et al. 2016).

4.1.4  Infrared spectrum

Infrared spectroscopic techniques use the electro-
magnetic radiation wavelengths from about 700 to 
4000  nm to obtain relevant information from culti-
vated cells (Barsanti, 2014). Especially the near infra-
red (NIR) and the mid infrared (MIR) regions are 
used in the development of methods for bioprocess-
ing cell monitoring, whereas the far infrared region 
(above 15  µm) is rarely used for these applications 
(Rösner et al. 2022).

Attenuated total reflection Fourier transform 
infrared (ATR-FTIR) spectroscopy was used for the 
quantification of species-specific banding patterns 
of proteins, lipids and carbohydrates in seven differ-
ent strains (C. vulgaris, Coelastrella sp., Coelastrum 
astroideum, Desmodesmus sp., Scenedesmus sp., 
Desmodesmus sp. and S. obliquus UTEX 417). These 
strains were cultivated in flat-panel photobioreactors 
under nitrogen-limiting conditions. The spectral data 
were analyzed with three chemometric methods: uni-
variate linear regression analysis (ULRA), orthogonal 
partial least squares (OPLS), and multivariate curve 
resolution—alternating least squares (MCR-ALS). 
After analysis with the OPLS method, the correla-
tions between the experimental values and the model 
obtained for proteins and lipids were excellent  (R2 

Y ≥ 0.90), while those for carbohydrates showed 
moderate correlations  (R2 Y = 0.77). The analysis 
with OPLS presented the best results compared to 
the other two methods for the prediction of proteins, 
lipids and carbohydrates (Ferro et al. 2019).

4.1.5  Raman spectroscopy

Raman spectrometry is employed for the estimation 
of the physiological state of C. reinhardtii cultures 
grown in batch mode using an airlift photobioreactor 
(Lieutaud et al. 2019). The physiological stages of the 
culture were determined by offline measurements of 
cell concentration (cell/mL), optical density  (OD750), 
ammonia and pigment (Chl a and β-carotene) con-
centrations, as well as Raman spectroscopic analy-
sis. Raman spectral signatures were coupled to three 
physiological phases of the culture (i.e., exponential, 
deceleration and stationary phases) by means of a 
PCA and a factorial discriminant analysis. On aver-
age, physiological state predictions reached 81.4%, 
84% and 95.3% for the exponential, deceleration and 
stationary stages, respectively. The 16-day prediction 
rate for the three physiological stages reached 89.2% 
on average. All Raman measurements are carried 
out in an offline mode by using cell deposits on gold 
surfaces, but a potential implementation of a Raman 
probe inside a PBR and continuous monitoring is 
suggested for future improvements.

4.1.6  Image‑based methods

Image-based analysis using machine learning 
approaches is useful for the monitoring of algae abun-
dance, classification and identification in aquatic 
environments. There are several previous works 
where these tools have been used for this purpose. 
In (Li et  al. 2017), morphologically similar algae 
were classified by several types of convolutional neu-
ral networks (CNN) trained on a dataset of Mueller 
matrices containing the shapes of eight species of 
microalgae and one species of cyanobacteria. A 97% 
classification accuracy was achieved. In comparison, 
the classification CNN outperforms the conventional 
PCA (principal component analysis) plus SVM (sup-
port vector machine) method by 19%. In (Mary et al. 
2018), images of three genera of cyanobacteria and 
three genera of green microalgae were employed to 
extract shape features, reduce them by using PCA, 
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and use them for training an ANN. Microalgae 
of these genera could then be recognized with an 
accuracy of 92 to 100%. In (Salido et al. 2020), dia-
toms serving as a bioindicator of water quality were 
detected and classified by using an automated sys-
tem consisting of a microcomputer-controlled optical 
microscope scanning the manually fed slides and a 
PC processing the acquired images. A database (now 
publicly available) of annotated images of 80 diatom 
species was built for training purposes for three types 
of deep learning networks of the fully convolutional 
network type. A maximum precision of 86% for dia-
tom detection and 99.5% for diatom classification was 
achieved.

In another recent study (Kaya et  al. 2023), a sys-
tem for the classification of microalgae based on 
deep learning techniques was designed. Images of 12 
microalgae species were classified using 8 different 
neural network models, comprising logistic regres-
sion, RFR, XGBoost, five different deep learning 
networks, and combinations of these methods. 6,300 
images of the 12 species were preprocessed and con-
verted into a training dataset. The authors highlighted 
the improvement obtained in their results after the 
hybrid application of the models over their individual 
use, however, the best accuracy results were obtained 
with the deep learning models that incorporated aux-
iliary layers. With the best model, the success rate of 
classifying algae cells was 92%.

Additionally, image analysis coupled with machine 
learning techniques could also be employed in appli-
cations involving microalgae cell monitoring during 
their cultivation and could potentially be applied to 
the detection of contaminants in microalgae bio-
processes. Some works in these directions are listed 
below:

In (Otálora et al. 2021), two neural network-based 
models were developed and validated capable of 
distinguishing two microalgae species, C.vulgaris 
and S.almeriensis, in a mixed sample and calculat-
ing the proportion of each species in the sample. 
As input data, images acquired with a flow cytom-
etry FlowCAM device and the image features pro-
vided by FlowCAM for each of the detected parti-
cles (e.g., particle diameter, area, edge gradient, red, 
green, blue RGB intensity, shape parameters, etc.) 
were employed. The first ANN was trained using the 
numerical values of these image features, the second 
ANN was trained using the images themselves, after 

appropriate image processing. After training, neural 
network models could determine the fraction of each 
species in the mixture with  R2 = 0.99 and a maximum 
error of 6.5%.

By using the chemometrical approach and employ-
ing the least absolute shrinkage and selection opera-
tor (LASSO) regression method, (Nguyen et al. 2023) 
developed a monitoring system with a software-based 
human–machine interface to effectively monitor 
the microalgae density (cell/mL). Color images of 
microalgae suspensions of C. vulgaris in a transpar-
ent vessel are acquired by means of a camera, average 
pixel brightness values and their confidence intervals 
are obtained, and further power spectra and entropy 
as a measure of the image texture in all three color 
channels (RGB) are extracted. These data are then 
employed, together with the measured microalgae 
density, as training data for the LASSO regression. 
The resulting model is then used for microalgae den-
sity monitoring. The root mean square error (RMSE) 
results of this study were compared, in which the 
LASSO approach presented a RMSE value of 1.54 
against 2.16 and 3.68 of the other reported methods. 
It is important to point out that the strategy adopted 
employed the texture features of the images which 
provide information on the spatial distribution of the 
pixels.

A simple and non-invasive image-based approach 
using RGB analysis was used to quantitatively esti-
mate the biofilm growth thickness of Ettlia sp. and 
its 3D topographic features (Asgharnejad et al. 2021). 
The presented method showed a preliminary investi-
gation of a possible approach that could be converted 
into a software sensor for automated online monitor-
ing of biofilm growth.

Online monitoring of cell count and cell mor-
phology that could be used for online estimation of 
cultivation productivity was carried out by using the 
in situ microscope (Havlik et al. 2013b; Marba-Arde-
bol et al. 2019).

4.2  Non-optical methods

Other alternatives using software sensors for the 
determination of process parameters in microalgae 
cultivation include non-optical measurement methods 
as model inputs.

A recent report (Paladino et  al. 2022) indicates 
the use of data-driven model approaches for pH 
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prediction employing linear polynomial, nonlinear 
polynomial, and Hammerstein-Wiener models in 
fed-batch cultures of C. vulgaris grown mixotrophi-
cally. For the model development, measured values of 
wastewater flow rate, dilution flow rate, and tempera-
ture were used as the model inputs. Measured values 
of pH, dissolved oxygen and electrical conductiv-
ity were used as the model outputs. The best model 
obtained for pH prediction, i.e. nonlinear polyno-
mial model, presented a relative RMSE = 1.29% and 
 R2 = 0.975 for both training and test data. In a second 
objective, the concentration of microalgae was esti-
mated with two-step "grey-box" models using the pH 
estimation produced by the data-driven model as an 
input to a kinetic model predicting the biomass con-
centration. Both models were applied to process con-
trol operations.

A software sensor using EKF was used for online 
estimations of biomass and sulfur content (intracel-
lular quota and extracellular sulfur concentration) in 
experiments aimed at producing hydrogen in C. rein‑
hardtii under light attenuation and limited sulfur con-
ditions. The inputs feeding the observer, i.e.,  CO2 and 
 O2 concentrations, were quantified at the outlet of the 
system and in an online fashion using a mass spec-
trometer (Daboussy et al. 2014).

4.3  Combined methods (non-optical and optical 
methods)

The pH dynamics over 12 h were estimated using a 
data-driven approach in two raceway ponds using 
freshwater and wastewater cultures (Otálora et  al. 
2023). The input variables incorporated into both 
ANN models (called nonlinear autoregressive with 
exogenous inputs, NARX) were based on measure-
ments of solar radiation (optic method), medium 
level, and  CO2 injection, all relevant for the pH 
response. The models using fresh water and wastewa-
ter cultures showed a fit of 71.3% and 73.75%, as well 
as an MSE of 0.02 and 0.01. The authors highlight 
the applicability of the study not only for production 
operations with microalgae but also for general use 
in the description of dynamic biological models in 
biotechnology.

Also using an EKF, the biomass of S. almeriensis, 
cultivated in an industrial raceway photobioreactor, 
was estimated for real-time measurements. In this 
research, the experimental measurements of dissolved 

oxygen, pH, gas injection (air flow and  CO2 flow), 
and solar radiation were used as state estimator inputs 
(García-Mañas et al. 2019).

The lipid content was estimated using an adaptive 
interval observer approach in cultures of Isochrysis 
galbana (Mairet et al. 2014b). Also using an adaptive 
interval observer, the same authors estimated neutral 
lipids and the carbohydrate quota in I. galbana culti-
vation (Mairet et al. 2014a). In both cases, the nitrate 
 (NO3

−) and nitrite  (NO2
−) concentrations were meas-

ured with a Technicon Auto-analyzer coupled to an 
automated data acquisition system and the biomass 
(cell/mL) with an optical particle counter using the 
principle of light blockage (Mairet et al. 2011). These 
two inputs were used by the observer to monitor the 
variables already mentioned.

4.4  Simulated software sensors

In an approach with simulated data, the online meas-
urements of dissolved oxygen (inputs) were used to 
predict the biomass concentration of C. reinhardtii in 
a closed photobioreactor under autotrophic and con-
tinuous cultivation (Arango Restrepo et al. 2022). An 
EKF, an AO, and a hybrid observer (a combination of 
both) were tested. The hybrid model showed the best 
performance and accuracy when referring to biomass 
estimation. Prospective work will be directed to the 
evaluation of the model under real experimental con-
ditions in the laboratory, as well as its possible use in 
the estimation of the concentration of mineral nutri-
ents for the monitoring and control of the bioprocess.

The internal substrate quota q, required in the 
Droop model, was predicted using super twisting 
observers (STO) and an AO in microalgae cultivation 
(Coutinho et  al. 2019). The STOs were developed 
for the estimation of the substrate uptake rate and 
the biomass growth rate based on simulated biomass 
and extracellular substrate concentration measure-
ments. The AO estimated q by fusing the results from 
STOs predictions. This approach shows the design of 
an observer before the use of real measurement data. 
The authors highlight the robustness of the developed 
software sensor and the advantage of not requiring a 
complete knowledge of the model parameters.

A study reported the use of a new high-gain 
observer to predict the microalgae biomass con-
centration and the dissolved carbon dioxide (Farza 
et al. 2019). The simulated input data consists of the 
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average light intensity irradiated over the reactor. A 
second observer, i.e., a standard high gain observer, 
was constructed and compared against the high-gain 
observer, in which the latter showed superior results.

5  Challenges and perspectives of software sensors 
in monitoring microalgae cultivation

In 2012, a report on soft sensors in bioprocessing 
was issued by the European Federation of Biotech-
nology, which identified critical needs and issues for 
the successful development of soft sensor methods in 
bioprocess research and industry and concluded with 
a set of eight recommendations highlighting areas 
requiring development (Luttmann et al. 2012). These 
recommendations are fairly comprehensive, and the 
last ten years could not add anything substantial to 
them.

The general challenges (or needs, as called in the 
above reference) in the construction and implemen-
tation of software sensors in bioprocessing that are 
summarized in the above reference do not essentially 
differ from what a process engineer expects of every 
hardware sensor. These challenges concern mainly 
the operational performance of the soft sensor (long-
term stability, short-term response, easy recalibration, 
highly reliable operation, highly automated, multi-
analyte capacity) and the process economics (produc-
tivity monitoring, low maintenance and operational 
cost, moderate capital investment). There are addi-
tional benefits of software sensors stemming from 
their computational nature (i.e., they are programs 
running on digital computers that can be adjusted and 
extended at will) that hardware sensors cannot easily 
fulfill: they could monitor seed and raw material qual-
ity, monitor the variability of products and other ana-
lytes, and monitor deviations from expected process 
behavior. They could also be used for process optimi-
zations, either in process parts or overall.

The specific challenges and perspectives for soft 
sensors in microalgal bioprocesses include several 
groups of needs. The most important is the identifi-
cation of process variables or characteristics whose 
measurement is currently carried out by sampling 
and manual processing, such as lipid and pigment 
concentration, identification of contamination, cell 
morphology, cell viability, and cell count of unusu-
ally shaped microalgae (e.g., Spirulina). Automated 

online estimation of these process variables by a soft 
sensor would enable the assessing of process state 
(e.g., process phase, onset of product formation, onset 
of microorganism stress) or impending dangers (con-
tamination, loss of viability, unusual morphology or 
cell clogging). For some of these process variables, 
e.g., viability, online spectroscopic methods using 
software sensors for signal processing are already 
being developed (Rösner et  al. 2022). The second 
group of needs is the selection of hardware measure-
ment methods whose signals can be processed by a 
software sensor to yield an estimation of the desired 
process variable. Here, preferred are optical methods 
that can be constructed as noninvasive, e.g., spectros-
copy as Raman, terahertz, FTIR, fluorescence, fur-
ther derivative spectroscopy, color measurement and 
hyperspectral imaging (Méléder et al. 2013; Podevin 
et al. 2018; Liu et al. 2020b; Havlik et al. 2022). The 
third group includes issues partially specific to micro-
algae cultivation due to the properties of microalgae 
cells (e.g., biofilm formation) as well as questions 
of sensor cleaning that occur in other bioprocesses 
(Vanrolleghem and Lee 2003). On the computing 
side, algorithms used as state observers, or in other 
words, software sensors, are already well-developed, 
be they model-driven algorithms such as Luenberger 
observer and Kalman filter in their many variants 
and refinements, or data-driven algorithms starting 
from simple correlations over chemometric models 
to artificial neural networks (ANN), again in many 
variants and refinements. This is due to the universal 
nature of these algorithms, which can be employed 
in different engineering fields. The main problem in 
the implementation of software sensors lies in the 
selection of process outputs, which have to deliver 
information about process variables of interest in the 
sense of observability, and the selection of appropri-
ate physical sensors measuring these outputs. If there 
are no such sensors available, the challenge lies in the 
development of such sensors, preferably noninvasive 
and therefore measuring mostly optical or electrical 
properties.

An interesting approach is the method of Digital 
Twins (Richter et al. 2023). A Digital Twin is a vir-
tual copy of the bioprocess consisting of digital mod-
els of its individual functional components as sensors, 
upstream processing units (media and culture prepa-
ration, bioreactor with growth kinetics and product 
generation, harvesting), downstream processing units 



86 Rev Environ Sci Biotechnol (2024) 23:67–92

1 3
Vol:. (1234567890)

(cell disruption, product extraction, purification and 
concentration, etc.), and process control components 
as controllers and actuators. With the help of this vir-
tual process copy, rapid and cost-effective develop-
ment of various process strategies can be carried out, 
e.g., for sensor selection, process control optimiza-
tion, automation, the implementation of conventional 
or advanced controllers, etc. The selected process 
setup developed in a Digital Twin can then be real-
ized physically. Digital Twins can also be employed 
as an effective training and educational tool (Appl 
et al. 2021).

Software sensors that include data-driven process 
models are closely connected to machine learning. 
In this respect, the FAIR concept (Findable, Acces-
sible, Interoperable, Reusable) for archiving suitably 
structured scholarly data on (bio)processes in order 
to facilitate data access by data mining and learning 
tools should be mentioned (Wilkinson et al. 2016). It 
is suggested that all process data be archived in FAIR 
compliant form so that data-driven software sensors 
can be more easily trained.

In summary, the main drivers of future develop-
ment of microalgal process monitoring are opti-
cal measurement methods such as light absorption, 
reflection and scattering in connection with software 
sensors and machine learning. These methods can 
monitor biomass, microorganism stress and lipid 
and pigment accumulation (Podevin et  al. 2018; 
Liu et  al. 2020b; Solovchenko 2023; Thiviyanathan 
et al. 2024). It is to be hoped that in the perspective 
of a few years (or decades?) the reliability level of 
software sensors in bioprocessing including micro-
algae will reach the level now enjoyed in chemical 
industries, even when the challenges due to the mul-
tiphase conditions of bioprocesses are a lot higher. 
The basic uncertainty factor, as usual, is the amount 
of money and effort invested into the software sensor 
development.

6  Concluding remarks

Microalgae offer a set of characteristics in line with 
sustainable production systems. In addition, they offer 
a plethora of products in the energy, food, and phar-
maceutical sectors. However, microalgae cultivation 
poses interesting challenges to improving the eco-
nomically viable support of sustainable large-scale 

production at the present state of technology. Cur-
rently, the monitoring of biological variables in 
microalgae cultivation employs labor-intensive, time-
consuming, non-immediate offline analytical meth-
ods. In some cases, online spectroscopic methods are 
used, mainly for biomass estimation, however, their 
use is not necessarily widespread. At the present time, 
the use of software sensors, either model-driven or 
data-driven estimators, in microalgae cultivation has 
been developed mainly with spectroscopic measure-
ment techniques as input data and only a small part 
with non-optical methods. There also lies the per-
spective for further development of software sensors 
to include in the array of possible hardware inputs 
other than spectroscopic or optical sensors. Generally, 
it is not too difficult to add a hardware sensor input to 
a software sensor. Rapidly progressing miniaturiza-
tion of computers, together with their ever-increasing 
computing power, will increase the number of one-
task software sensors, be it only for complex online 
signal processing with noise filtering. Software sen-
sors possess, with suitable design, the property of 
providing not only estimates of the current state of 
the measured process variables but also a near-future 
prediction of their values. In microalgae cultivation, 
a suitable time point for harvesting or other action 
could thus be predicted. Therefore, online sensors 
together with software sensors represent a promising 
future alternative for the improvement of microalgae 
monitoring, especially in monitoring those intracel-
lular products for which no hardware online sensors 
presently exist, e.g., lipids or proteins. Software sen-
sor development and in  situ implementation could 
lead to substantial improvements in the develop-
ment of sustainable processes based on microalgae 
cultivation.

It is noteworthy that the use of hybrid models 
for the development of software sensors as well as 
the monitoring of microalgae biofilm growth cou-
pled with soft sensing represent interesting areas to 
be explored in microalgae cultivation. Likewise, the 
spectroscopic qualities of other microalgal biomole-
cules, apart from those reported in this review, repre-
sent appealing potential targets for the future develop-
ment of software sensors. In general, developing and 
using advanced monitoring tools, such as software 
sensors, gives the process controller a better overview 
of how the process is performing and helps him or her 
decide on suitable actions.
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