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Zn and Ni, followed by Cd and Cu, then Pb and Cr. 
Sludge application to land will lead to elevated metal 
concentrations, and potentially to short-term changes 
to the dominant metal species in soils. However, the 
speciation of sludge-associated metals will change 
over time due to interactions with plant roots and 
soil minerals and as organic matter is mineralised by 
rhizo-microbiome.
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1  Introduction

Sewage sludge (SS) is the by-product of industrial 
and/or municipal wastewater treatment, and can 
be generally divided into primary sludge (PS) and 
secondary sludge (SES) depending on its produc-
tion process (Kumar et  al. 2017; Woo et  al. 2022; 
Zoghlami et al. 2020). The sludge is generally com-
posed of water, organic matter (OM) and inorganic 
components that are often referred to as biosolids 
(Fijalkowski et  al. 2017; Usman et  al. 2012; Yuan 
and Dai 2016). The total amount of SS produced in 
the world is increasing year-on-year due to popula-
tion growth, increased urbanization (which tends to 
increase the proportion of wastewater treated cen-
trally), and continuous improvements in the level of 
wastewater treatment (Nahar and Hossen 2021; Turek 
et al. 2019).

Abstract  Based on the most recently published 
data, we definitively estimated that the annual global 
production of sewage sludge may rise from ~ 53 mil-
lion tons dry solids currently to ~  160  million tons 
if global wastewater were to be treated to a similar 
level as in the 27 European Union countries/UK. It is 
widely accepted that the agricultural application is a 
beneficial way to recycle the abundant organic matter 
and plant nutrients in sewage sludge. However, land 
application may need to be limited due to the pres-
ence of metals. This work presents a meticulous and 
systematic review of the sources, concentrations, par-
titioning, and speciation of metals in sewage sludge in 
order to determine the impacts of sludge application 
on metal behavior in soils. It identifies that industrial 
wastewater, domestic wastewater and urban runoff 
are main sources of metals in sludge. It shows con-
ventional treatment processes generally result in the 
partitioning of over 70% of metals from wastewater 
into primary and secondary sludge. Typically, the 
order of metal concentrations in sewage sludge is 
Zn > Cu > Cr ≈ Pb ≈ Ni > Cd. The proportion of 
these metals that are easily mobilised is highest for 
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Currently, there is no agreement in the literature 
on the total global production of SS, therefore this 
must be estimated from the most recently published 
statistics. As shown in Fig. 1, the total annual produc-
tion of SS (reported as dry solids; Mt: million tons) 
is 4.96 Mt in the US, 0.11 Mt in Mexico, 0.15 Mt in 
Colombia, 2.5 Mt in Brazil, 4.36 Mt in India, 0.41 Mt 
in Australia, 2.2 Mt in Japan, 11.2 Mt in China, and 
1.25  Mt in the UK. The annual cumulative produc-
tion of dry SS in the 27 European Union Countries 
(EU-27) is 9.25  Mt. In addition, the amount of SS 
produced per capita (kg/year, dry solids) can be cal-
culated based on current populations: EU-27 (19 kg/
year), UK (17 kg/year), Japan (16 kg/year), Australia 
(15  kg/year), US (14  kg/year), Brazil (11  kg/year), 
China (7 kg/year), India (3 kg/year), Colombia (3 kg/
year) and Mexico (0.8  kg/year). By assuming that 
neighbouring regions have the same production rates, 
and using the United Nations (2022) world population 
statistics, we estimate that ~ 53 Mt/year of SS dry sol-
ids is currently produced globally (assumptions: Can-
ada = US; central America = Mexico; South Amer-
ica  =  the average of Colombia and Brazil; non-EU 
European countries = UK, other Asian countries = the 
average of China and India; sludge production in 
Africa is ignored). If the wastewater produced around 
the globe were, in future, to be treated to a similar 

level as in EU-27/UK (i.e. assuming an average per 
capita production rate of 18  kg/year for the current 
world population) then ~ 160 Mt/year SS dry solids 
would be generated globally. Furthermore, SS usu-
ally contains 0.4–7% dry solids suspended in water 
and typical combined PS and SES contains about 3% 
solids by weight (National Research Council 1996; 
Turovskiy and Mathai 2006; US Army 1987); so the 
current production has a volume of ~ 1.6 billion m3, 
and this could potentially increase to ~ 4.8 billion m3. 
Thus, globally, safe and effective disposal of SS is 
a major problem, which will become particularly 
problematic in Asian countries due to their large and 
growing populations, and potential improvements in 
wastewater treatment standards (Iticescu et  al. 2018; 
Seyedi et al. 2021; Teoh and Li 2020).

Numerous studies have shown that SS typically 
contains over 50% OM by dry weight (Carabassa 
et  al. 2018; DelİBacak et  al. 2020; Kominko et  al. 
2017; Zuo et  al. 2019); it also contains macronutri-
ents (N, P, K, Ca, Mg, etc.) and micronutrients (Zn, 
Mn, Cu, Fe, etc.) that are important for plant growth 
(Eid et  al. 2017; Kolodziej et  al. 2023; Latare et  al. 
2014; Zoghlami et al. 2018). Thus, where local regu-
lations permit, SS is frequently applied to the agricul-
tural soil as an organic fertiliser (Hechmi et al. 2021; 
Lamastra et  al. 2018; Nogueira et  al. 2013). One 
advantage of agricultural use is the avoidance of the 
cost of fully dewatering SS, as treated SS is typically 
applied either as a liquid suspension at 3–6% dry sol-
ids by injection or as dewatered cake at 15–35% dry 
solids on the surface (Department for Environment 
Food and Rural Affairs 2018; Environmental Protec-
tion Agency 2000; Saxlund 2022; US Army 1987).

Unfortunately, SS, particularly that from primary 
settlement, also contains organic contaminants, path-
ogens, and contaminant metals such as Cd, Cr, Cu, 
Ni, Pb and Zn (Barraoui et al. 2021; Camargo et al. 
2016; Centofanti et al. 2016; Nahar and Hossen 2021; 
Neumann et  al. 2016). Therefore, regulators often 
require further treatment of SS such as anaerobic 
digestion, composting, and thermal treatment (see 
Fig. 2) to improve sludge properties, degrade organic 
pollutants, and eliminate some pathogens before it 
is applied to agriculture (Buta et  al. 2021; Camargo 
et al. 2016; Romdhana et al. 2009; Wluka et al. 2021). 
However, it should be noted that these treatment pro-
cesses are designed to decrease the amount of organic 
substances and eliminate pathogenic microorganism, 

Fig. 1   Annual sewage sludge production and yearly sewage 
sludge production per capita in selected countries and regions 
(Australian Water Association 2020; Castellanos-Rozo et  al. 
2020; Environmental Protection Agency 2022a; Eurostat 2022; 
Leichman 2017; Liu et al. 2022; Shiota et al. 2015; Singh et al. 
2020; Spinosa 2007)
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and have minimal effect on the metals removal (Milik 
et al. 2017). Hence, SS will still contain the contami-
nant metals after treatment (Cantinho et al. 2015). As 
those metals are not biodegradable, SS application 
to agriculture can lead to a gradual accumulation of 
metals within the soil (Charlton et al. 2016; Hasnine 
et al. 2017). Potentially, these metals can be incorpo-
rated into the food chain or be washed into aquifers, 
which would cause serious environmental and health 
risks (Liang et al. 2011).

Over the past decades, the potential for secondary 
contamination of agricultural soil by metals in sludge 
has attracted global attention (Buta et al. 2021; Meng 
et  al. 2016; Saha et  al. 2017; Suanon et  al. 2016; 
Tytła and Widziewicz-Rzońca 2021). In order to 
ensure crop quality and safety, soil ecological health, 
groundwater safety and reduce the potential for met-
als toxicity, maximum levels of metals in agricultural 
soil have been set in some countries (Ahmad et  al. 
2021; Hasnine et  al. 2017; Ministry of the Environ-
ment 2007). For example, in the UK, maximum per-
missible metal concentrations in soil are regulated 
based on their toxicity (Table 1); for some elements 
(Cu, Ni and Zn), the maximum concentrations are 
also pH dependant. Thus, it is necessary to monitor 
the metal concentrations in soils that receive SS to 
ensure that they remain below prescribed limits after 
sludge application.

However, at a time when there is a pressing need 
to increase the sustainability of agriculture by reduc-
ing its dependence on mineral fertilisers and prevent-
ing the depletion of soil OM, these regulations will 

also eventually restrict the application of SS as ferti-
liser for agriculture. Moreover, prescribing regulatory 
limits on metals in agricultural soil is simplistic, as it 
does not recognise that the potential risks posed by 
metals to crops and wider environment are both con-
trolled by metal speciation (Jakubus 2020; Yan et al. 
2020). Therefore, there is a need for more compre-
hensive information on the chemical forms of various 
metals in SS and how that speciation evolves upon 
SS introduction to the soil. This knowledge is crucial 
in establishing appropriate safe thresholds for metal 
concentrations in SS that will be applied to agricul-
tural soil, as well as refining the safe limits for the 
accumulation of metals in the soil.

This review will, therefore, provide a comprehen-
sive overview of the current knowledge of contami-
nant metals in SS and the impacts of its application 
on metals behaviour in soil. It will also provide new 

Fig. 2   Overview of sewage sludge treatment developed from Tarpani et al. (2020) and Teoh and Li (2020)

Table 1   UK limits on potentially toxic metals in soil to be 
used for arable farming

Metals Maximum metals concentration in soil (mg/kg dry 
solids)

pH (5–5.5) pH (5.5–6) pH (6–7) pH (> 7)

Cd 3 3 3 3
Cr 400 400 400 400
Cu 80 100 135 200
Ni 50 60 75 110
Pb 300 300 300 300
Zn 200 200 200 300
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insights and perspectives arising from this synthesis 
of global data and published research. Specifically, 
(1) the current global amount of SS and the poten-
tial for future change in that quantity are definitively 
estimated; (2) the sources of metals and their parti-
tioning from wastewater, to PS and SES are presented 
by using a synthesis of published data; (3) the con-
centration and speciation of metals in PS and SES are 
reported; (4) the impacts of sludge application on the 
concentrations and chemical forms of metals in soil 
are discussed by collating and comparing the data for 
the operationally defined speciation of metals in agri-
cultural soil, SS and in sludge-treated soil; (5) future 
research priorities for better application of SS in agri-
culture are recommended.

2 � Sources of metals and their pathways to SS

2.1 � Sources

The main sources of metals in SS are domestic waste-
water, industrial wastewater, and urban runoff (see 
Fig. 3).

2.1.1 � Domestic wastewater

Domestic wastewater always contains metals, which 
contributes to metals content of SS (Drozdova et  al. 
2019; Razak et  al. 2016). These metals come from 
various sources such as food, tap water, faeces, 
detergents and cosmetics (Kalinowska et  al. 2020). 
Specifically, copper plumbing is a major source of 
Cu in domestic wastewater and older plumbing is a 
source of Pb, cleaning of stainless steel cookware is 

a source of Ni and Cr, human faeces are a source Zn, 
Cd and Ni, and household agents (such as medicated 
shampoos, washing powders) accounted for most of 
the Zn and a substantial proportion of Cd, Cr, and 
Pb (Aonghusa and Gray 2002; Comber and Gunn 
1996; Drozdova et  al. 2019; Kamerud et  al. 2013). 
In domestic wastewater, a high proportion of metals 
are in a freely dissolved, bioavailable form. For exam-
ple, Isozaki et  al. (2006) found that the fraction of 
Zn, Cu, and Ni in domestic wastewater that was dis-
solved ranged from 12–47%, 24–61%, and 16–60%, 
respectively.

It has been reported that UK domestic wastewater 
contains 42 mg Cu, 24 mg Zn, 1 mg Pb, 0.7 mg Ni, 
0.5 mg Cr and 0.1 mg Cd per person per day (Comber 
and Gunn 1996). These figures are comparable with 
more recent data (14 mg Cu, 13 mg Zn, 0.7 mg Ni, 
0.05 mg Cr, 0.03 mg Pb, 0.02 mg Cd per person per 
day) from Sweden (Sorme and Lagerkvist 2002). A 
2009 meta-study of European data (~ 50% from Ger-
many and ~ 33% from Sweden) also observed that Cu 
and Zn were the major metals in domestic wastewa-
ter (34  mg Zn, 7  mg Cu, 3  mg Pb, 2  mg Ni, 2  mg 
Cr and 0.1 mg Cd per person per day), but Zn load 
exceeded Cu load (Meinzinger and Oldenburg 2009); 
this pattern is also shown by data from Japan (Chino 
et  al. 1991). The figures above indicate that domes-
tic inputs of Zn and Cu are major contributors to the 
overall levels of metals reaching wastewater treatment 
plants (WWTPs). This is attributed to the extensive 
use of household agents (laundry detergents, sham-
poos, and skin care products, etc.), pigments and fun-
gicides, which contain high levels of Zn and/or Cu. 
Particularly, it should be stressed that these household 
products are still widely used in daily life, so it will 
be very difficult to reduce these metals derived from 
this source in the short-term.

2.1.2 � Industrial wastewater

Industry can discharge large volumes of wastewater 
to sewer; it can lead to high levels of metals being 
sent to WWTPs if the treatment prior to discharge is 
not mandated. Industrial activities such as metal plat-
ing, battery manufacture and recycling, mining, and 
leather tanning, are all noted for high metal content 
of untreated discharges (Barakat 2011; Iloms et  al. 
2020; Qasem et  al. 2021). In Lithuania (where pre-
sumably there is relatively consistent regulation of 

Main sources of metals in sewage sludge
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Fig. 3   Main sources of metals in sewage sludge (Cheng et al. 
2022; Chirila et al. 2014; Kesari et al. 2021)
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industrial discharges to sewer), the level of metals in 
SS increases with increased industrial development 
in the catchment area of the WWTP (Praspaliaus-
kas and Pedišius 2017). In industrial effluent, large 
amounts of metals are also soluble. For example, high 
concentrations of soluble Zn and Ni can be gener-
ated from the plating industry (Mokhter et  al. 2018; 
Water Technology 2018). Soluble metals are highly 
bioavailable and are thus more likely to cause harm. 
Therefore, industrial wastewaters discharged to sewer 
are often an important source of metals in SS (Chen 
2019; Qasem et al. 2021).

The metals content of industrial wastewater pro-
duced by different industrial activities varies greatly, 
leading to a large variation in the total concentration 
of various metals in SS (Islam et al. 2017). For exam-
ple, the sludge produced by tanneries usually contains 
high concentration of Cr because chromium sul-
phate is an important component of tanning powder 
(Genawi et  al. 2020; Islam et  al. 2017). High levels 
of Cr, Cu, Zn, and Ni can be detected in SS produced 
by metal-plating wastewater because these metals are 
frequently used as electroplated coating (Świnder and 
Lejwoda 2021). Venkateswaran et al. (2007) reported 
that 3566 mg/kg Cr, 5996 mg/kg Cu, 966 mg/kg Ni 
and 6865 mg/kg Zn are detected in SS produced from 
electroplating industries located in Chennai, India.

Fortunately, many countries have recognised 
the issues associated with industrial effluents, and 
have successively regulated to minimise discharge 
to sewer and prevent environmental release (Sylwan 
and Thorin 2021). Industry is also adopting a range 
of clean technologies to treat the wastewater prior to 
discharge to WWTPs; as a result, the levels of metals 
emitted to sewer by industry is declining (Cantinho 
et  al. 2015). Sorme and Lagerkvist (2002) observed 
that from 1973 to 1999 there has been a significant 
reduction in the concentrations of Cu and Pb in SS 
produced at three WWTPs in Stockholm, Sweden, 
which predominantly attributed to a drastic decrease 
in industrial discharges and various pre-treatments of 
wastewater.

2.1.3 � Urban runoff

The contribution of urban runoff to metals in SS 
has received far less attention in the literature than 
domestic and industrial wastewater. However, met-
als originating from vehicles, construction activities, 

residential activities and atmospheric deposition can 
accumulate on impervious surfaces during dry peri-
ods (Shajib et al. 2019). These metals can be washed 
off by rainfall and conveyed to sewer, contributing 
to metals content in SS (Wijeyawardana et al. 2022). 
Comber and Gunn (1994) reported that runoff sources 
account for an important proportion of metals in 
Bracknell sewage, UK (Cd, 28%; Cr, 13%; Cu, 2%; 
Ni, 5%; Pb, 44%; Zn, 9%). Of those contributors to 
metals in urban runoff, vehicular emissions are widely 
considered to be the largest contributor (Muller et al. 
2020). Traffic-related exhausts emissions are reported 
to account for 35% of metals in road dust in Beijing, 
China (Men et  al. 2018). However, unlike industrial 
and domestic wastewater, where metals are in soluble 
and colloidal forms, those in urban runoff are largely 
associated with particulates (Adedeji and Olayinka 
2013). In Beijing, 65–93% of metals in runoff from 
trafficked areas were associated with particulates and 
~ 50% of metals from roof runoff are in the form of 
particulates (Shajib et  al. 2019). Moreover, continu-
ous urban expansion is increasing the area where 
metal-rich dusts accumulate. Combined with climate 
change induced intensification of precipitation pat-
terns (i.e. more frequent long dry periods followed by 
high rainfall events), it is predictable that an increase 
in the impacts of urban runoff to wastewater would 
occur in future (Adedeji and Olayinka 2013).

2.2 � Wastewater treatment and metals partitioning 
from wastewater to SS

2.2.1 � Wastewater treatment

After preliminary treatment to remove large objects 
and grit, wastewater undergoes primary treatment 
in settling tanks to separate the majority (typi-
cally 50–70%) of the suspended solids from the liq-
uid phase (Jasim and Aziz 2020; Nemerow 2006; 
Pachpute 2022; Pescod 1992). Both heavy solids 
that settle to the bottom and lighter solids that float 
to the surface are removed (generating PS); and the 
remaining liquid is either discharged (where only pri-
mary treatment is undertaken) or passed to the sec-
ondary treatment (Britannica 2022; Das and Basu 
2010; Department of Environmental Protection 2018; 
Environmental Protection Agency 1998; National 
Research Council 1996; Zaharia 2017). Secondary 
treatment aims to digest and remove the soluble OM, 
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nutrients and organic pollutants from aqueous phases 
using either a suspended (e.g. activated sludge; most 
common method) or attached (e.g. trickling filters) 
growth processes (Roman et  al. 2022; Wang 2021). 
The resulting biological flocs or biofilms are then 
settled (generating SES), leaving the liquid substan-
tially free of solids and with greatly reduced pollut-
ant concentrations (Guo et  al. 2017; Mannina and 
Viviani 2009; Perez et  al. 2006; Zita and Hermans-
son 1994). Sometimes the liquid from secondary 
treatment requires further “polishing” (tertiary treat-
ment) to remove any remaining suspended solids and 
biochemical oxygen demand from the effluent, or to 
remove nutrients to meet discharge consents (Ameri-
can Water Chemicals 2022; Blair et al. 2019). How-
ever, the sludge volume produced by tertiary treat-
ment is small in comparison to the volume of PS and 
SES (Safe Drinking Water Foundation 2022).

2.2.2 � Partitioning of metals from sewage to SS

The proportion of metals in wastewater that are trans-
ferred to SS during wastewater treatment depends on 
several factors, such as whether metals are dissolved, 
or associated with colloidal organics, organics solids, 
or particulates, and on the number of stages of waste-
water treatment undertaken (Azizi et al. 2016; Benet-
tayeb et  al. 2023; Oliveira Ada et  al. 2007; Rodrigo 
Sanz et al. 2021). Generally, more than 70% of met-
als in wastewater can be transferred to sludges dur-
ing conventional wastewater treatment (Aganga et al. 
2005; Lake et al. 1984; Thornton et al. 2001). How-
ever, as early as the late 1970’s, removal of 89–96% 
of metals in the influent wastewater (89% for Cd; 92% 
for Pb; 94% for Zn; 96% for Cu) was being achieved 
by primary sedimentation and activated sludge treat-
ment at a then newly constructed WWTP in Oxford, 
UK (Lester et al. 1979; Stoveland et al. 1979). Addi-
tionally, in comparison with typical European domes-
tic wastewater (assuming 200  L/person/day water 
usage and the typical metal loads of domestic waste-
water), metal concentrations in the effluents from 
three WWTPs (primarily receiving domestic waste-
waters) in the Canary Islands, Spain would indicate 
more than 95% metal removal (Comber and Gunn 
1996; Meinzinger and Oldenburg 2009; Rodrigo Sanz 
et al. 2021). Therefore, it is possible that a far higher 
proportion of metals in wastewater can be transferred 

to SS when there is effective treatment than is gener-
ally reported.

The transfer of metals from raw sewage to PS is a 
physical process that mainly depends on the presence 
of metals in insoluble, settleable (associated with par-
ticulate matter) or possibly settleable forms (Collivi-
gnarelli et al. 2022; Poblete et al. 2022; Pöykiö et al. 
2019). Therefore, the metal species and the efficiency 
of suspended solids removal are the dominant factors 
controlling metals partitioning at this stage (Kempton 
et  al. 1987; Ziolko et  al. 2011). The characteristics 
of each metal (such as valence and chemical affinity) 
also play an important role in this process, leading to 
the variation of metal behaviour. For example, it is 
reported that 24% of Ni in raw sewage, 40% of Cd 
and Cr are transferred, and > 50% of Zn and Pb are 
transferred to PS (Thornton et  al. 2001; Zheng and 
Zhang 2011).

Metal transfer from primary effluent to SES is 
controlled by biological processes (Benettayeb 
et  al. 2022b; Iyare et  al. 2020; Pöykiö et  al. 2018). 
Although both activated sludge and trickling filter 
methods are used for SES, the mechanisms of met-
als transfer to sludge are similar (Gardner et al. 2013). 
During secondary treatment, most metals are either 
adsorbed to, or absorbed by the new biomass and 
eventually are collected in the biologically settled 
sludge (Chipasa 2003). Metals can sorb to biomass by 
several mechanisms (Benettayeb et  al. 2022a; Geng 
et al. 2020; Sylwan and Thorin 2021). These include 
entrapment of insoluble particles with the biomass, 
adsorption to bacterial walls and extracellular poly-
mers (by ion exchange, complexation, and inorganic 
micro-precipitation reactions), and uptake by bacteria 
(metabolic pathways that have evolved for other sub-
strates can transport contaminant metals into bacteria 
where they bio-accumulate). Obviously, metals par-
titioning to SES will be highly dependent upon the 
uptake of metals by the biomass and the separation of 
the biomass (Thornton et al. 2001).

3 � Concentrations and speciation of metals in SS

3.1 � Metal concentrations in SS

The metal concentrations in SS vary from country 
to country, which may be attributed to the wastewa-
ter source, the chosen treatment technologies and the 
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relevant national regulations on wastewater manage-
ment (An-nori et  al. 2022; Davis et  al. 2009; Duan 
and Feng 2022; Yakamercan and Aygün 2021). 
However, the average concentrations of metals in 
SS from each region generally decrease in the order 
Zn > Cu > Cr ≈ Pb ≈ Ni > Cd (see Table 2), a pat-
tern that has been reported in many other sources 
(Schiptsova et  al. 2020; Tytla et  al. 2016; Xu et  al. 
2012; Zorpas et  al. 2008). Metal concentrations in 
European and Japanese sludges are generally lower 
than those in sludges from other countries. However, 
despite regional differences, all the values reported in 
Table 2 are within the EU-27 and US guidelines for 

metals in SS to be applied to land. It may appear that 
the guideline values are high, but the sludge is typi-
cally applied to soil at low rates (about 0.5–2%, SS/
soil by dry weight), ensuring the sludge application 
will not cause a dramatic increase of metals in soils 
(Environmental Protection Agency 2022b; Farmers 
Weekly 2022; Hudcová et al. 2019; Petersen 2003).

Data from seven WWTPs (5 in Europe, 2 in China) 
show that individual contaminant metals have a simi-
lar concentration in PS and SES (see Table 3; in all 
cases the activated sludge method was used for sec-
ondary treatment). While these data necessarily come 
from a small sample of WWTPs, which potentially 

Table 2   Typical metal concentrations in SS from different countries and limits of these metals for sewage sludge use in agriculture 
of EU-27 and US (mg/kg dry solids)

a  Hundal et al. (2014), data from the US EPA’s targeted national sewage sludge survey; b Marchioretto (2003), data from a WWTP 
treating mixed influent from the Metropolitan Region of São Paulo, Barueri; c European Commision (2018), data for the UK and 17 
EU countries: Bulgaria, Croatia, Cyprus, Czechia, Estonia, Finland, France, Germany, Hungary, Italy, Lithuania, Luxembourg, Neth-
erlands, Portugal, Slovakia, Spain, Sweden; d Shamuyarira and Gumbo (2014), sludge from 5 WWTPs in Limpopo Province, South 
Africa; e Elqassas et al. (2022), sludge from Quesna WWTP in Menofyia Governorate, Egypt; f Saha et al. (2018), sludge from 9 dif-
ferent WWTPs in West Bengal, India; g Yang et al. (2014), sludge from 107 WWTPs in 48 cities across China; h Chen et al. (2021), 
120 sludge samples from 32 WWTPs in Japan; i The legislation limits are summarised from individual EU countries legislation. 
n.d. no data

Metals US a Brazil b EU c UK c South Africa d Egypt e India f China g Japan h EPA legislation EU-27
legislation i

Cd 2.7 40 1.1 1 1.6 3.1 5.7 3.9 1.0 85 0.7–40
Cr 83.6 542 44.4 46.2 76.9 30.2 n.d. 259 44.4 n.d. 70-1500
Cu 568.9 1180 239.6 175.6 418.3 288 325 499 356 4300 75-1750
Ni 53.1 288 26.3 19.4 39.8 112 225 166.9 44.2 420 25–400
Pb 79.8 313 41.9 77.1 76.6 46 470 112.2 19.8 840 45-1200
Zn 1014.3 1772 674.9 432.1 1291.8 1012 1812 2088 663 7500 200–4000

Table 3   Average metal concentrations in primary and secondary sludge by principal wastewater source (mg/kg dry solids)

a1, a2  Two different WWTPs (Gianico et  al. 2013); b Solís et  al. (2002); c Karvelas et  al. (2003); d Wang et  al. (2006); e Li et  al. 
(2015); f Tytla (2019); n.d. no data

Metal concentrations in PS and SES

Predominantly
domestic wastewater

Predominantly domestic and 
urban runoff wastewater

Domestic and
industrial wastewater

Predomi-
nantly 
industrial 
wastewater

Metals PS a1 SES a1 PS a2 SES a2 PS b SES b PS c SES c PS d SES d PS e SES e PS f SES f

Cd 0.5 0.5 0.5 0.4 1.58 1.04 1 1 n.d. n.d. n.d. n.d. 2.7 3.0
Cr 55.8 58.5 56.2 34.8 26.6 17.8 17 32 64.7 60 n.d. n.d. 57.3 54.8
Cu 143.7 150.7 248.8 301.4 151 143 100 91 58 67.5 408.8 497.7 123.6 138.3
Ni 20.7 20.6 16.9 16.9 18 13.9 37 31 52.6 49.9 n.d. n.d. 55.0 62.0
Pb 137.1 124.7 82.5 78.7 94.3 60.2 28 16 35.3 28.1 91.8 109.8 123.5 137.7
Zn 469.1 469 442.4 464.2 418 326 350 440 710.9 595.6 740.8 810.9 1429.5 1641
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increases the influence of specific local features, the 
relative concentrations of metals generally follow 
the same pattern as that in Table 2. Interestingly, this 
equal partitioning of metals between PS and SES was 
found with wastewater from a wide range of sources. 
However, other workers have reported a different par-
titioning of metals between PS and SES. For exam-
ple, Pöykiö et al. (2018) report that metal concentra-
tions in SES are all much higher than in PS. While 
Ribeiro et al. (2010) report that the metal concentra-
tions in SES are all lower than in PS. These different 
results strongly suggest that the partitioning of met-
als between PS and SES is controlled by how PS is 
effectively separated from the treated wastewater after 
primary treatment (the sludge settling conditions), 
and thus the amount of metals associated with the 
suspended solids that are transferred with the aqueous 
phase for secondary treatment (Chipasa 2003; Ziolko 
et al. 2011).

While the dataset report in Table 3 is small, it indi-
cates that co-treatment of industrial wastewater at a 
WWTP results in the higher concentrations of some 
contaminant metals in SS, than treating domestic 
wastewater alone or in combination with urban run-
off. Enhancement of the metal concentrations is not 
uniform at a particular WWTP, presumably because 
it will depend on the industries in the catchment area, 
but it should be noted that the mostly highly contami-
nated sludges in Table 3 came from a WWTP in the 
most industrialized region of Poland (Tytla 2019). 
In this dataset, the difference between metal con-
centrations in SS from WWTPs that co-treat domes-
tic wastewater with urban runoff and those that treat 
predominantly domestic wastewater, is small. This 
may indicate that the increase in SS metal concentra-
tion from urban run-off is small or may reflect under-
reporting of urban run-off in some studies.

Sometimes the primary/secondary/combined 
sludge(s) undergoes further treatment before agricul-
tural use. One of the most common methods is anaer-
obic digestion (Dauknys et  al. 2016; Hanum et  al. 
2019). Generally, the anaerobic digestion of sludge 
can increase metal concentrations in the final digested 
sludge. For example, Chipasa (2003) reported that 
the average concentration of metals (Cd, Cu, Pb and 
Zn) in digested sludges were 1.7-2.0 times those of 
undigested sludges. Although this seems to be the 
worse-case range, as linear regression analysis of 
Chipasa’s data (see Fig. 4) suggests the contaminant 

metal concentrations in anaerobically digested sludge 
are typically 1.4 times higher than in the undigested 
sludge. The increase in metal concentrations is prin-
cipally attributable to the decrease in the mass of 
volatile solids during digestion (Karvelas et al. 2003; 
Tytla 2019). Typically, there are 70–75% volatile 
solids in the feed sludge and 40–60% of them are 
digested, corresponding to 1.4–1.7 times increase in 
metal concentrations (Wisconsin 1992). Additionally, 
soluble metal complexes can be transferred to the 
digester in the water phase of the thickened sludge. 
These can then be reductively precipitated in the 
digester as metal sulphides, contributing further to 
the increase of metals content in the digested sludge.

3.2 � Metal speciation in SS

The European Community Bureau of Reference 
(BCR) sequential extraction is widely used to deter-
mine the operationally defined speciation of metals 
(Alan and Kara 2019; Li et  al. 2010; Sungur et  al. 
2014b). This extraction procedure was originally 
developed for soils and sediments (Nemati et  al. 
2009), but it has subsequently been adopted for a 
variety of matrices, including SS, due to the sim-
plicity of its operational procedures and the repeat-
ability of the metal species results (Jasińska 2018; 
Tong et  al. 2020). It initially divides metal specia-
tion into three fractions: exchangeable/acid-extract-
able, i.e. weakly adsorbed to mineral surfaces or 
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bound to carbonates; reducible, i.e. bound to Fe–Mn 
oxides; oxidizable, i.e. bound to OM and/or sulphides 
(Tokalioğlu et al. 2006; Tong et al. 2020). The resid-
ual fraction was added into the revised BCR scheme 
in 1999 (Rauret et al. 1999). There are potential draw-
backs with BCR extraction such as the incomplete 
selectivity of reagents, incomplete dissolution of tar-
get phases, re-adsorption and re-precipitation of met-
als (Jasińska 2018). However, this straight-forward 
chemical extraction can provide useful information 
about the associations of metals with particular geo-
chemical phases, and thus provide insight into pro-
cesses that may mobilise metals from a material, and 

the conditions under which a material may present an 
environmental risk (Dąbrowska 2016; Nevidomskaya 
et al. 2021).

Studies that have used BCR scheme on SS suggest 
that the proportion of most metals in each operation-
ally defined fraction is generally similar in PS and 
SES (see Fig. 5). Similar findings are also reported by 
Oake et al. (1984) and Mehrotra et al. (2008). How-
ever, the speciation pattern of each metal in sludges 
is different. In both PS and SES, Cu is principally 
in the oxidizable fraction, which is usually attrib-
uted to the affinity of OM for Cu and high stability 
of Cu–OM complexes (Gu et  al. 2019; Lasheen and 

Fig. 5   The speciation pat-
tern of metals in primary 
and secondary sludge. 
1 Data from Solís et al. 
(2002); 2 Data from Tytla 
(2019); 3a, 3b Data from two 
different WWTPs (Tytla 
et al. 2016); 4 Data from 
(Alvarez et al. 2002)
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Ammar 2009). Zn and Ni are distributed between 
exchangeable, reducible, oxidizable, and residual 
fractions. The presence of a proportion of these met-
als in the exchangeable fraction suggests that a pro-
portion of them may be readily solubilised, imply-
ing their higher mobility in SS (Katana et  al. 2013; 
Sowunmi et al. 2020). Cr and Pb in both PS and SES 
are predominantly distributed in between oxidizable 
and residual fractions, showing their strong ability 
to form complexes with OM or become incorporated 
into residual phases thereby reducing their mobility 
(Narwal et al. 2008). In general, Pb and Cr are less of 
a concern because of their lower mobility and lower 
concentrations in SS. Cd is primarily distributed in 
between reducible, oxidizable, and residual fractions, 
although a small proportion of Cd is often found in 
the exchangeable fraction. Despite a small amount of 
exchangeable Cd in SS, this may still be a concern 
due to its hazards to environment and human health 
even at lower concentrations (Burke et  al. 2016; 
Genchi et  al. 2020; Hocaoglu-Ozyigit and Genc 
2020).

4 � Impacts of SS application on metal content 
and speciation in soil

4.1 � Impacts of SS application on metal content in 
soil

The metal concentrations in SS are generally greater 
than the natural background, so its agricultural appli-
cation inevitably increases the metal levels in soil 
(Gibbs et  al. 2006; Liu and Sun 2013; Mcgrath and 
Cegarra 1992). Historically, there have been cases 
where long-term sludge application has resulted in 
metal accumulation in the soil becoming problematic 
(Alloway and Jackson 1991). For example, Chumbley 
and Unwin (1982) measured metal concentrations in 
UK agricultural soils with a history of sludge appli-
cation during a period when metals disposal to sewer 
was less regulated, and showed that Cd and Pb con-
centrations in that soil (26.2 and 496 mg/kg, respec-
tively) were much higher than the current regulatory 
limits in the UK. Also, the concentration ranges of 
Cd, Ni, and Cr in soils from Northeast Spain have 
increased by approximately 15–20% due to 10 years 
of sludge application (Jordán-Vidal et  al. 2020). 
Despite these reservations, metal concentrations in 

agricultural soils generally remain below statutory 
limits even after repeated sludge applications (Jordán-
Vidal et  al. 2020; Obbard 2001; Topcuoğlu 2014), 
although this situation cannot continue indefinitely 
without a mechanism for removing metals from the 
soil (Antonkiewicz et  al. 2022; Natal-da-Luz et  al. 
2012). Therefore, careful monitoring of metals con-
tent of the agricultural soil is a necessity if SS is to 
be applied without causing permanent damage to the 
land.

Most metals introduced by SS tend to be retained 
in surface soils (around 0–20  cm), especially in the 
short-term (Campos et  al. 2019). However, high-
mobility metals have the potential to be transported 
deeper into the soil after long-term SS application. 
For example, Legret et al. (1988) applied very heavily 
contaminated sludge to soil over an eight-year period 
and found that metals that persisted in the readily 
exchangeable fraction of the soil migrated to a depth 
of 60–80  cm, whereas metals associated primarily 
with the oxidizable fraction migrated to a depth of 
40–60 cm. Thus, the speciation of metals when they 
are introduced with SS, and any transformations in 
speciation that may occur ovr time in the soil will 
determine whether metal mobility is a potential long-
term issue.

4.2 � Impacts of SS application on metal speciation in 
soil

Studies have shown that SS application to soils can 
cause the redistribution of sludge-borne and soil-
borne metals in the sludge-soil mixtures to different 
operationally defined phases (Fadiran et  al. 2014; 
Rosazlin et al. 2007; Shrivastava and Banerjee 2004). 
This redistribution process of metals is controlled 
by many factors, such as the chemical forms of each 
metal in sludges and soils, the dosage of sludge 
application/the amount of metals introduced to soil 
via sludge (Garcia-Delgado et  al. 2002). It has been 
widely reported that the operationally defined specia-
tion of contaminant metals (determined by sequential 
extraction) is different in untreated soil and SS, and 
that metal speciation in SS-soil mixtures is interme-
diate between that of the two components (Fadiran 
et al. 2014; Rosazlin et al. 2007). However, according 
to the currently published literature, it is still unclear 
whether the resulting metal distribution between the 
operationally defined phases is simply the result of 
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mixing, or whether there are changes in metal spe-
ciation upon mixing. Furthermore, there is very lit-
tle information available on whether the operation-
ally defined speciation of metals in SS- amended 
soil evolves over time due to plant growth and rhizo-
microbiome respiration.

Logically, changes in the operationally defined 
speciation of Zn and Cu are easiest to discern in SS-
amended soil, because these contaminant metals have 
the highest concentration in SS. Therefore, studies 
where operational speciation of Zn and Cu has been 
determined using the sequential extraction scheme 
have been collated (see Fig.  6). In untreated agri-
cultural soil, more than 50% of Cu and Zn are in the 
residual fraction, suggesting that the majority of these 
metals in soils are not bioavailable for crops uptake 
(Kotoky et al. 2015). However, Cu in SS is predomi-
nantly associated with the oxidizable fraction, and Zn 
in SS is distributed in between exchangeable, reduc-
ible, and oxidizable fractions (note: data from soil 
treated with different types of SS, including PS, SES, 
and anaerobically digested SS, have been averaged 

in Fig.  6). Where soil is treated with an amount SS 
of typical agricultural use, the speciation pattern 
of Cu and Zn in the treated soil is similar to that in 
untreated soil, with most present in the residual frac-
tion (soils were analysed 1 month, 2 months, 1 year, 
and 2 years after treatment). This is not surprising, as 
the amount of the metals added with a typical agricul-
tural application of SS is relatively small compared 
with the background values in the agricultural soil 
(only minor increases in total concentrations of Cu 
and Zn were reported in these studies). In two heavily 
treated soils (where the Cu and Zn introduced by the 
addition of 20% SS accounted for ~ 70% of the metals 
in the final mixtures) the Zn and Cu speciation pat-
terns were intermediate between the untreated soil 
and the SS after 50 days, but more similar to that in 
SS (Brazauskiene et al. 2008). However, this study is 
insufficient to determine whether the final speciation 
patterns can be explained solely by mixing. Similarly, 
Garcia-Delgado et  al. (2002) applied SS at about 
10–20 times the typical agricultural rates, which pro-
duced a final Cu content that was 2–3 times greater 
than that in the untreated soil, and again found that 
the Cu speciation in the mixture was more similar 
to that in the SS than the untreated soil for up to a 
year after treatment. So, as would be anticipated, cur-
rent studies clearly show that the SS application can 
increase the amount of bioavailable metals in a soil 
(at least in the short-term), and long-term application 
can lead to the accumulation of metals in soils. There-
fore, it is essential to regularly monitor the bioavail-
able metals content when repeatedly applying sludge 
to agricultural soil to control those risks. However, 
current studies are insufficient to show the changes 
of metal speciation over time due to crop growth and 
microbial respiration in the rhizosphere (which will 
mineralise OM), and thus this topic needs further 
research (Shrivastava and Banerjee 2004; Zaragüeta 
et al. 2021).

5 � Problems and outlook on metal bioavailability 
in sludge‑soil system

Most studies to date have determined the contaminant 
metal speciation in a relatively short period after SS 
application, typically from a few days to a few months 
(Malinowska 2017; Parvin et  al. 2022; Wu et  al. 
2006). In essence, they address the question “what is 

Untreated soil

Sewage slu
dge

Typically treated soil

Heavily treated soil

Untreated soil

Sewage slu
dge

Typically treated soil

Heavily treated soil0

50

100

C
u 

an
d 

Z
n 

sp
ec

ia
tio

n 
(%

)

n=23 n=37 n=6 n=22 n=37 n=6 n=2n=2
Cu Zn

Fig. 6   Average Zn and Cu speciation in untreated soil, sewage 
sludge and sludge-treated soil based on BCR scheme. Data for 
untreated soil from Alan and Kara (2019), Brazauskiene et al. 
(2008), Doelsch et  al. (2006), Horváth et  al. (2010), Rahman 
and Schoenau (2022), Sahito et al. (2015), Sekhar et al. (2002), 
Sungur et  al. (2014a), Topcuoğlu (2014), Vollprecht et  al. 
(2020), Yang et al. (2013). Data for sewage sludge from Alva-
rez et al. (2002), Chen et al. (2008), Dąbrowska (2012, 2016), 
Fuentes et  al. (2004), Solís et  al. (2002), Tytla (2019, 2020), 
Tytła et al. (2023), Tytla et al. (2016), Zdeb et al. (2020). Data 
for typically treated soil from Doelsch et  al. (2006), Illeraa 
et  al. (2000), Jin et  al. (2017), Morera et  al. (2001). Data for 
heavily treated soil from Brazauskiene et al. (2008)



1048	 Rev Environ Sci Biotechnol (2023) 22:1037–1058

1 3
Vol:. (1234567890)

the immediate change in contaminant metal availabil-
ity in soils due to the application of SS”, but shed lit-
tle light on metal availability in the longer term. How-
ever, it is now becoming apparent that the chemical 
forms of metals in the environment is not constant, 
but instead evolves over time before achieving a new 
equilibrium (Garcia-Delgado et al. 2007; Prica et al. 
2010; Scheckel et al. 2010; Wang and Li 2012).

Soil composition, pH value, redox potential, and 
OM content will be the principal factors that deter-
mine the equilibrium of metal speciation that will be 
achieved in the long-term (Khadhar et al. 2020; Orhue 
and Frank 2011; Zhang 2015; Zhang et  al. 2017). 
Applying SS to agricultural land will potentially 
change the pH value, redox potential, and OM con-
tent of soil and create disequilibria in the speciation 
of the contaminant metals originally associated with 
the soil and of those introduced by the SS, and these 
may take time to reach a new equilibrium. Out of 
them, soil pH is widely recognised as the major fac-
tor governing metal speciation in soil (Gabler 1997; 
Kicińska et al. 2021; Oburger et al. 2020; Orhue and 
Frank 2011; Xu et  al. 2020). Generally, the propor-
tion of metals in the readily mobile fractions tends 
to increase at lower pH and reduce at higher pH val-
ues (Aigberua 2018; Kicińska et  al. 2021; Olaniran 
et  al. 2013; Sherene 2010). For example, Ullrich 
et al. (1999) observed that the average proportion of 
exchangeable metals (Cd, Pb and Zn) continuously 
reduced with the increasing soil pH. In addition, the 
OM in soil is relatively labile and is likely to be min-
eralised on longer timescales, potentially releasing 
any OM associated metals (Caracciolo and Terenzi 
2021; De Conti et al. 2018; Natal-da-Luz et al. 2012). 
Local climate, weather, farming practices and irriga-
tion conditions are further vector for longer geochem-
ical change (Kelderman and Osman 2007; Parvin 
et al. 2022; Rieuwerts et al. 2015; Škarpa et al. 2011), 
as will be crop growth as plants can exude organic 
chemicals that can complex metals (Caracciolo and 
Terenzi 2021; De Conti et al. 2018; Gan et al. 2020).

Therefore, over time geochemical and microbio-
logical processes in the soil may transform the metal 
speciation from that observed in short-term studies. 
At this stage, it is unclear whether these changes will 
increase the bioavailability of contaminant metals or 
sequestered them in unreactive minerals. Typical SS 
application rates are likely to have a small and tran-
sient impact on the soil geochemistry and cause only 

a small increase in contaminant metal concentrations, 
so there are no land-use changes. The speciation of 
contaminant metals within the soil before SS applica-
tion may be a guide to the long-term “equilibrium” 
speciation. If so, it may mean that the risks posed 
by metals introduced by SS application are overesti-
mated by short-term studies and could result in overly 
conservative restrictions on SS use in agriculture. 
Therefore, to better apply SS to agriculture and effi-
ciently control the associated risks, some research 
priorities in future studies are urgently required (see 
Table 4).

6 � Conclusions

This paper provides a synthesis of global data on 
current SS production rates, estimates future sewage 
sludge production rates, and comprehensively reviews 
the literature on contaminant metals in sewage sludge 
and the impacts of sewage sludge application on met-
als behaviour in soil. As a result, this review provides 
the following relevant new insights and perspec-
tives beyond those available in previously published 
reviews.

•	 It is definitively estimated that currently ~ 53 Mt/
year dry sewage sludge is produced globally by 
wastewater treatment plants. This would increase 
to ~  160  Mt/year if the wastewater produced 
around the globe were treated to a similar level as 
in EU-27/UK.

•	 The three sources of metals in sewage sludge are 
domestic wastewater, industrial wastewater, and 
urban runoff. Typically, co-treatment of industrial 
wastewater results in higher contaminant metal 
concentrations in sewage sludge, than treating pre-
dominantly domestic wastewater with or without 
urban runoff. A large proportion of the metals in 
domestic and industrial wastewater are present in 
the soluble forms while metals in urban runoff are 
largely associated with particulates.

•	 Generally, over 70% of metals in wastewater are 
transferred to primary and secondary sludges. 
The partitioning of metals from wastewater 
to primary sludge is a physical process that is 
highly dependent on the metals being in forms, 
or associated with inorganic or organic particles 
that are settleable. While the partitioning of met-
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als from primary effluent to secondary sludge is 
a biological process which strongly depends on 
the uptake of metals by the biomass and the sep-
aration of the biomass.

•	 Typically, the contaminant metal concentra-
tions in sewage sludge decrease in the order of 
Zn > Cu > Cr ≈ Pb ≈ Ni > Cd. Anaerobic diges-
tion of sewage sludge results in higher metal 
concentrations in the final sludge due to the loss 
of volatile solids and the reductive precipitation 
of soluble metal complexes transferred to the 
digester in water in the thickened sludge as metal 
sulphides.

•	 Zn and Ni are distributed in exchangeable, reduc-
ible, oxidizable, and residual fractions of sewage 
sludge, and are therefore relatively mobile. Cu is 
predominantly distributed in the oxidizable frac-
tion and Cd is principally distributed in between 
reducible, oxidizable, and residual fractions. Their 
mobility is moderate. The mobility of Pb and Cr is 
generally low because they are predominantly dis-

tributed between the oxidizable and residual frac-
tions of sewage sludge.

•	 The higher the metal content introduced via 
sludge, the more the pattern of metal speciation in 
the sludge-soil mixtures tends to be the pattern of 
metal speciation in the adopted sludge. Addition-
ally, the metals speciation in the sludge-soil sys-
tem will evolve with time due to the changes in 
soil properties and/or environmental conditions.
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Table 4   Summary of research priorities for improved application of sewage sludge

Knowledge gap/Research requirement Research outcome/Impact

Comparison of different techniques for determining metal 
speciation

· Combine spectroscopic methods (e.g. X-ray absorption spec-
troscopy, scanning electron microscopes, X-ray diffraction) 
and sequential extraction procedures to gain better understand-
ing of metal speciation.

· Obtain a more accurate determination of metal species in sewage 
sludge/soils.

· Provide invaluable information about the potential bioavailability 
of contaminant metals.

Plant uptake studies
· Understand the influence of different types of crops on metal 

speciation in soils.
· Determine the relationship between metals bioavailability and 

the amount of metals of uptake by different plants.

· Screen out groups of crop plants to reduce metal uptake to crops 
during growth.

Carefully controlled tests to investigate the impact of repeated 
crop cycles

· Identify the removal pattern of metals from soils and the accu-
mulation pattern of metals in crops.

· Understand the changes in bioavailability metal speciation 
under different crop cycles.

· Understanding the impact of multiple crop cycles on metals 
speciation in soils.

Impacts of long-term sewage sludge application
· Understand the evolution of metal species due to repeatedly 

long-term sludge application.

· Develop schemes for applying sewage sludge to farm soil 
determined according to metal accumulation rates, and rate of 
transformation of bioavailable metals into more stable phases.

More targeted regulation of sewage sludge application to agri-
cultural land

· Critical multi-scale analyses of factors (such as soil properties, 
environmental conditions) determining how land management 
decisions determine the long-term fate of contaminant metals 
in sewage sludge.

· Incorporation of contaminant metal speciation into regulations 
on sewage sludge use in agriculture.

· Better reuse of sewage sludge in agriculture.
· Less conservative restrictions on sludge application.
· Cost effective recovery of the valuable components of sewage 

sludge.
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