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Abstract
We investigate the performances of the ARFIMA, HAR, and EGARCH models in capturing 
the time-varying property of idiosyncratic volatility (IVOL). We find that the expected IVOL 
predictions by HAR are superior. In diverse portfolio scenarios, a greater degree of judgment 
is required to assess the pricing ability of expected IVOLs. For the lowest value-weighted 
quintiles and the expected IVOL estimated by the HAR model, the IVOL-return relationship 
is negative. Conversely, the IVOL-return relationship is positive for the expected IVOL esti-
mated by the EGARCH model. Further evidence suggests a complicated and mixed relation-
ship between the expected IVOL estimated by the ARFIMA model and stock returns.

Keywords Asset Pricing · Idiosyncratic volatility · Time-varying · ARFIMA · HAR · 
EGARCH

JEL Classification C53 · G12 · G17

1 Introduction

Contradictory results stem from the time-varying nature of idiosyncratic volatility (IVOL), 
which inherently reflects firm-specific activities such as periodical disclosures and seasonal var-
iations in operating activities. Ang et al. (2006) [AHXZ (2006) hereafter] propose one path of a 
negative relationship, known as the IVOL puzzle, using the IVOL from the current month as a 
proxy for the next month. Another route, following Fu (2009), supports a positive IVOL-return 
relationship by adopting the expected IVOL from Exponential Generalized Autoregressive 
Conditional Heteroskedasticity (EGARCH) models. Consequently, predicting the future value 
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for a non-stationary random walk series, as described by AHXZ (2006), is deemed inappropri-
ate, given the persistent impact of a random shock from a faraway time to the present (Fu 2009).

Recognizing the critical role of the time-series property of IVOL in examining its 
relationship with stock and market returns, as well as in selecting the approximate value 
for expected IVOL, we are motivated to compare the performances of other, unexplored 
dynamic models in catching the time-variation of IVOL and examine the relationship 
between the expected IVOL and stock returns. Beyond the EGARCH model, our paper also 
resorts to the Autoregressive Fractionally Integrated Moving Average (ARFIMA) model 
and calibrates the Heterogenous Autoregressive (HAR) model to capture the time-series 
property in IVOL. In particular, the ARFIMA model, enhancing the Autoregressive Mov-
ing Average (ARMA) model and ARIMA model, incorporates the conversion between fac-
tional integration and fractional difference, demonstrating clear performance in capturing 
long-run dependence in realized volatility prediction (Koop et  al. 1997; Andersen et  al. 
2003; Bhardwaj and Swanson 2006). The HAR model reproduces the decay of autocorrela-
tions over various horizons (Corsi et al. 2008; Corsi 2009). The HAR model treats the time 
series as immediately observable and is also straightforward to estimate (Bollerslev et al. 
2016). Despite their frequent use in the realized volatility literature,1 the ARFIMA and 
HAR models are surprisingly absent from IVOL literature.2

Meanwhile, we revisit the IVOL-return relationship on both the stock and portfolio lev-
els using expected IVOLs from ARFIMA, HAR, and EGARCH models. The IVOL puzzle, 
stating that lower IVOL should be compensated by higher returns, has been contested under 
various model specifications. Notably, the one-month-lagged IVOL in AHXZ (2006) and Ang 
et al. (2009) [AHXZ (2009) hereafter] is questioned due to its unreliable nature and its auto-
correlation of 0.33, contradicting their underlying random walk assumption. For instance, the 
IVOL predicted by the EGARCH model shows a positive relationship with future stock returns 
(Fu 2009). Chua et al. (2010) document a positive relationship conditioning on the unexpected 
aspect of IVOL, decomposing IVOL from AR(2) processes into expected and unexpected 
components. However, the positive IVOL-return relationship modeled by the ARIMA model 
is reversed due to short-term return reversals (Huang et al. 2010) or January effects (Peterson 
and Smedema 2011).

Previous studies have taken into account the time-series nature of financial variables, 
for instance, the time-varying expected business conditions (Campbell and Diebold 2009). 
However, there is no consensus in the relevant literature on the most appropriate model 
for capturing the time-series characteristics of IVOL. For instance, when estimating the 
conditional IVOL, Spiegel and Wang (2005), Fu (2009), and Guo et al. (2014) adopt an 

1 It has been demonstrated that the long-memory ARFIMA model outperforms over conventional models 
such as the AR, Moving Average (MA), ARMA, GARCH and Stochastic Volatility (SV) models, in the par-
simonious way of volatility forecasts (Andersen et al. 2003; Bhardwaj and Swanson 2006). The ARFIMA 
model, however, is unable to effectively depict and reflect the true structure of data and lacks a clear eco-
nomic meaning (Corsi et al. 2008; Jiang et al. 2017; Izzeldin et al. 2019). The multicomponent HAR model 
of Corsi (2009) and its augmented family (see Andersen et  al. 2007; Andersen et  al. 2011; Busch et  al. 
2011; Jou et  al. 2013; Bollerslev et  al. 2016 for more augmented HAR models) have subsequently been 
shown to fit and perform better towards the long memory characteristics (Patton and Sheppard 2009).
2 Models like the ARFIMA, EGARCH and HAR models are commonly used in literatures on realized vol-
atility to capture the long memory and nonlinearity in time series (e.g., Andersen et al. 2001; Corsi 2009). 
In contrast, rather than modelling IVOL itself, the research on IVOL focuses more on its causes and effects. 
The relationship between IVOL and various factors, such as firm characteristics, market conditions, and 
investor behaviour, is therefore frequently studied using simpler models (e.g., Pástor and Stambaugh 2003; 
AHXZ, 2006; AHXZ, 2009; Babenko et al. 2016).
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EGARCH model in light of its relaxation of the symmetry requirement in the General-
ized Autoregressive Conditional Heteroskedasticity (GARCH) model examined by Xu 
and Malkiel (2003). Fu’s empirical findings demonstrate a positive relationship between 
expected stock returns and the EGARCH-estimated IVOL. Others, such as Diavatopoulos 
et al. (2008), Chua et al. (2010), and Bekaert et al. (2012), utilize the Autoregressive (AR) 
model, while some, including Huang et al. (2010) and Peterson and Smedema (2011), go 
further to test the Autoregressive Integrated Moving Average (ARIMA) model. Khovansky 
and Zhylyevskyy (2013) first apply the Gaussian Mixed Models (GMM).

Our sample includes stocks with share codes 10 and 11 traded on the NYSE, AMEX, and 
NASDAQ from CRSP during the period from July 1965 to December 2020. We calculate 
IVOL as the standard deviation of residuals with respect to the Fama–French three-factor 
model scaled by the number of trading days. Initially, we assess the long memory property 
of IVOL through unit root tests and graphical analyses (line graph, density graph, and auto-
correlogram). Significant Augmented Dickey-Fuller (ADF) results are documented for both 
IVOL series and sorted portfolios, indicating that recent IVOLs are still impacted by past 
IVOLs. Subsequently, we select the best-fitting models. For the EGARCH model, we test 
nine permutations among its autoregressive parameter (1 ≤ p ≤ 3) and the moving average 
parameter (1 ≤ q ≤ 3). For the ARFIMA model, we test 16 permutations among its autore-
gressive parameter (0 ≤ p ≤ 3), and the moving average parameter (0 ≤ q ≤ 3), and estimate 
the long memory parameter d. For the HAR model, we identify the most significant autore-
gressive lags based on ACF (Autoregressive Function), PACF (Partial Autoregressive Func-
tion), and AIC (Akaike Information Criterion). All models are run recursively using IVOLs 
up to month t to predict IVOL in month t + 1. We use notations such as Exp_IVOLARFIMA, 
Exp_IVOLHAR, and Exp_IVOLEGARCH to refer to IVOLs predicted by the ARFIMA, HAR and 
EGARCH models, respectively. The original IVOL is denoted as Actual_IVOL.

To assess each model’s predictive ability, we compare all expected IVOLs to Actual_IVOL. 
Later, to examine the pricing ability in the IVOL-return relationship, we regress stock returns 
on each expected IVOL individually and collectively with controls. On the stock level, we 
begin by recursively estimating expected IVOLs using value-weighted and equal-weighted 
series. Autocorrelograms and ADF tests suggest long-term reliance in both series, where 
previous IVOLs continue to impact current IVOL. We find that the HAR model more accu-
rately reproduces the time-variation of Actual_IVOL with 1-month, 3-month, and 9-month 
lags for value-weighted series and with 1-month, 2-month, 3-month, and 12-month lags for 
equal-weighted series. Notably, the IVOL puzzle is observed only for Exp_IVOLHAR in value-
weighted series, while the IVOL-return relationship for Exp_IVOLARFIMA remains positive, 
unaffected by the weighting scheme.

On the portfolio level, we employ the portfolio-sorting approach, frequently used in the 
relevant literature for examining relationships between variables and generally performing 
well for nonlinear relationships.3 In the main section, we sort the data using three different 

3 For example, AHXZ (2006, 2009) form value-weighted quintile portfolios based on IVOL, size, book-
to-market ratio, leverage, liquidity, volume, turnover, bid-ask spreads, and dispersion of analysts’ forecasts. 
Fu (2009) sorts the sample on IVOL and one-month lagged return. Huang et al. (2010) explain the IVOL 
puzzle through return reversals and sort their sample on IVOL. Hur and Luma (2017) explain the dynamic 
of the negative relationship between aggregate IVOL and unrealized gains on capital gains overhang port-
folios. Verousis and Voukelatos (2018) sort stocks into quintiles using their IVOL proxy, the cross-sectional 
dispersion of individual stock returns to the market return. Bi and Zhu (2020) study the variations in the 
relationship between value-at-risk and expected stock returns by using both the single sorting and double 
sorting methods, followed by the construction of value- and equal-weighted deciles.
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methods: IVOL-sorting, size-sorting, and book-to-market ratio-sorting, respectively. Gen-
erally, we observe the existence of the IVOL puzzle in the lowest value-weighted portfo-
lios, in contrast to the positive relationship in the lowest equal-weighted portfolios, across 
all sorting approaches. Furthermore, the IVOL puzzle exists when the HAR model outper-
forms. Positive IVOL-return relationships are found when the EGARCH model surpasses 
the other two models, but only in the two lowest quintiles. However, the precise direction 
of the IVOL-return relationship is inconclusive when the ARFIMA model outcompetes 
its rivals. Only the lowest two value-weighted quintiles show a concentration of the nega-
tive relationship; the other quintiles have a positive relationship. In the robustness check, 
we discover a similar pattern for quintile portfolios sorted by BETA as well as for various 
exclusion schemes of the IVOL building under 10-day and 11-day. We discover that the 
IVOL explanation for the BETA anomaly put forth by Liu et  al. (2018) depends on the 
model applied for the IVOL prediction. We further include analysis for portfolios sorted 
by the sentimentalized IVOL. The previously described pattern becomes confused when 
the joint factor is included, and a positive Exp_IVOLHAR-return relationship is first noticed.

Overall, our study contributes to the comprehensive investigation of the time-varying 
property of IVOL and addresses the IVOL puzzle under various model specifications as 
well as stock compositions within the portfolio. We expand the toolkit with the ARFIMA 
and HAR models to the discussion on the IVOL puzzle.4 Our empirical results unfold 
attention on lower portfolios across various sorted contexts., underscoring the importance 
of carefully assessing the risk and return dynamics when making investment decisions. 
However, it is inconclusive which model outperforms in predicting IVOL and capturing 
its time-varying feature. By merely using the EGARCH model for the prediction, we are 
unable to refute the existence of the IVOL puzzle. The inclusion of the ARFIMA and HAR 
models emphasizes the need for careful consideration of the IVOL-return relationship.

The remainder of this paper is organized as follows. Section 2 reviews related literature 
on the IVOL puzzle and the time-series properties of IVOL. Section 3 describes data and 
introduces the calculation of IVOL and the mechanisms of EGARCH, ARFIMA, and HAR 
models. The empirical findings for the IVOL series and sorted portfolios are presented in 
Section 4. We discuss robustness in Section 5 and include a further analysis in Section 6. 
Section 7 concludes.

2  Related literature

2.1  The IVOL puzzle

AHXZ (2006) point out a considerable difference in the monthly average returns between 
the quintiles with the highest idiosyncratic volatility and the lowest idiosyncratic volatility. 
As indicated by this anomalous negative correlation, the difference of 1.06% is substantial 

4 Our paper focuses on the time-series property of IVOL and introduces novel methodologies (i.e., the 
ARFIMA and HAR models) in IVOL estimation and the IVOL-return relationship, which is to fill the 
important research gap from previous studies. For instance, Fink et al. (2012) and Guo et al. (2014) pro-
vide comprehensive examinations of the look-ahead bias in the IVOL estimation process. Their expected 
IVOLs are estimated based on three sets of EGARCH(p,q) models, namely, using the full sample, using Fu 
(2009)’s method, and correcting the look-ahead bias. However, the incorporation of the ARFIMA and HAR 
models in analyzing the time-variation property of IVOL is absent in the previous IVOL literature.
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at the portfolio level. At the firm level, the negative coefficient stands. The subsequent work 
by AHXZ (2009), investigates further by extending the IVOL puzzle findings made by 
AHXZ (2006) in the U.S. market to international stock markets such as those in G7 coun-
tries, even while contending with the effects of size, value, momentum, volume, liquidity, 
market frictions, and information asymmetry (see Jiang et al. 2009; Babenko et al. 2016; 
Chen and Strebulaev 2019, for more negative relationship). However, Fu (2009) illustrates 
a positive relationship between future stock returns and their IVOL measure using an 
EGARCH model and emphasizes the IVOL measure in their ability to capture the time-
variant characteristic. Bergbrant and Kassa (2021) suggest the use of various out-of-sam-
ple EGARCH models dynamically and find the IVOL-return relationship to be positive 
after ruling out the noise brought by using just one out-of-sample EGARCH model. From 
Brockman et al. (2022), the IVOL premium is present in 57 different countries worldwide 
(see Malkiel and Xu 2002; Spiegel and Wang 2005; Boehme et al. 2009; Chua et al. 2010; 
Brockman et al. 2022, for more positive relationship). The positive relationship appears to 
be more inclined to the under-diversification argument offered by classical theories (Levy 
1978; Merton 1987), while the negative relationship is explained within the context of mis-
pricing (Shleifer and Vishny 1997; Brav et al. 2010).

Mixed relationships between IVOL and stock returns have been documented in other 
studies. For instance, Guo and Savickas (2006) find that when combined with the aggre-
gate market realized volatility, the negligible forecasting power from value-weighted IVOL 
becomes significantly negative. Duan et  al. (2010) discover a significant monthly return 
difference between the stocks with the highest and lowest IVOL quintiles while the nega-
tive IVOL-return relationship clusters among stocks with a high short interest. Huang et al. 
(2010) ascribe the negative relationship to return reversals and demonstrate that the magni-
tude of this bias depends on the IVOL estimation approach used. As shown in Rachwalski 
and Wen (2016), stocks with high idiosyncratic volatility earn lower returns initially for a 
few temporary months (during the previous six months), but subsequently see continuously 
higher returns. The lower return over a short period reflects the delay in incorporating risk 
news. The IVOL puzzle is more substantial when receiving a lower attention from sophisti-
cated investors and is concentrated in the first half of the month following portfolio forma-
tion (see, for instance, Bali and Cakici 2008; Khovansky and Zhylyevskyy 2013; Cao and 
Han 2016 for more details).

2.2  The time‑series properties of IVOL

The current body of research employs various techniques in an effort to dynamically cap-
ture the time variation exhibited in the IVOL series. According to earlier investigations, 
IVOL decays slowly and has a strong first-order autocorrelation (Amihud and Hurvich 
2004; Lewellen 2004; Campbell and Yogo 2006). As a result, the approach of regressing 
the lagged IVOL on stock returns to gauge their relationship may prove unproductive (Jiang 
and Lee 2006). The recent research most frequently uses the EGARCH model, which is 
selected as a natural estimator for IVOL (Spiegel and Wang 2005; Fu 2009; Huang et al. 
2010; Peterson and Smedema 2011; Fink et al. 2012; Guo et al. 2014; Cao and Han 2016; 
Bergbrant and Kassa 2021; Brockman et al. 2022). Fu (2009) explicitly elaborates on the 
adoption of the EGARCH model and finds a positive IVOL-return relationship with the 
constraint that stocks have a minimum of 15 trading days in a month in the pooled sam-
ple. Because the autocorrelation of 0.33 during Fu (2009)’s sample period deviates from 
the underlying implication of random walk in AHXZ (2006, 2009), which is reaffirmed 
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by the Dickey-Fuller test result, Fu (2009) contends that the one-month lagged IVOL in 
AHXZ (2006,2009) is not necessarily a proper proxy for the expected IVOL. The advan-
tage of the EGARCH model in relaxing the non-negative parameter restrictions makes it 
able to reflect the asymmetry of volatilities. Fu (2009) evaluates nine permutations of the 
EGARCH model with the auto-regressive parameter p to be between 1 to 3 and the moving 
average parameter q to also be between 1 to 3 and then chooses the best-fitting model based 
on the lowest AIC with an expanding window of the previous 30 months.

Due to its reflection of the time-series features and its reduction of the majority of serial 
autocorrelation, Diavatopoulos et al. (2008) and Chua et al. (2010) decide to employ the 
AR(2) model based on AIC. Bekaert et al. (2012) describe IVOL at the aggregate level by 
AR(1) and AR(3) processes. In accordance with the time-series characteristics of IVOL, 
Huang et al. (2010) and Peterson and Smedema (2011) implement the ARIMA model over 
a 24-month rolling window. The direction of the IVOL-return relationship is dependent 
on the estimation windows, following Khovansky and Zhylyevskyy (2013), who initially 
implement the GMM procedure to estimate IVOL. The GMM approach frees the previ-
ous two-pass method in that it immediately makes an estimation without being affected 
by the duration of available stock returns and does not require estimating IVOL as the first 
step based on the Fama–French model. Nevertheless, this GMM approach is parametri-
cally constrained and has distributional restrictions. Aslanidis et al. (2019) extend Boyer 
et al. (2010)’s methodology for calculating expected idiosyncratic skewness, to obtain the 
expected IVOL throughout regressions on the one-period lagged IVOL with a 240-month 
rolling window.

Overall, the existence of the IVOL puzzle is currently being researched and the best-
fitting model for IVOL estimation is inclusive. By utilizing the novel ARFIMA model and 
HAR model to capture the time-series evolution of IVOL and to explore the IVOL puzzle 
with a comparison to the EGARCH model, our paper adds to the field.

3  Data and methodology

3.1  Data and IVOL calculation

The sample period is from July 1965 to December 2020, with a total of 666 months. Daily 
stock returns including all the ordinary common equities (share code 10 or 11) on the 
NYSE, AMEX, and NASDAQ (exchange code 1, 2, or 3) are collected from CRSP. There 
are overall 28,523 stocks identified by the unique PERMNO during the sample period 
without any exclusion. We include common time-series control variables in the regres-
sions (AHXZ, 2006; Peterson and Smedema 2011). Monthly excess market return (MKT), 
HML, SMB, MOM, LMW, and risk-free rate are from Professor Kenneth French’s website.5 
The risk-free rate is the monthly T-bill return compounded from the simple daily rate from 
Ibbotson and Associates Inc. Excess market return MKT is calculated by subtracting the 
risk-free rate. HML stands for high book-to-market ratio minus low book-to-market ratio 
while SMB stands for small market capitalization minus big market capitalization. MOM 
stands for the momentum factor, which is the difference between the average return on the 
two high prior (2–12 month) return portfolios and the two low prior (2–12 month) return 

5 https:// mba. tuck. dartm outh. edu/ pages/ facul ty/ ken. french/ data_ libra ry. html.

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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portfolios. ST_Rev is the short-term reversal factor, which is the difference between the 
average return on the two high prior (1  month) return portfolios and the two low prior 
(1 month) return portfolios. We also include the liquidity factor (PS) of Pástor and Stam-
baugh (2003), which is available from Professor Stambaugh’s website.6

To be consistent with previous studies and for a better comparison, we adopt the preva-
lent measurement of computing the standard deviation of the residuals from the Fama and 
French (1993) three-factor model7 as follows:

where XRETi,n is the excess return for stock i in day n and RETM,n, HMLn, and SMBn are 
the three Fama–French factors in day n. The standard deviation of the residual series on 
stock i and day n will be computed each month for stock i following the estimate in order 
to indicate the stock i’s monthly IVOL. In particular, IVOL is scaled by the square root of 
the number of trading days inside the corresponding month and is estimated monthly using 
daily data. The exclusion applies to stocks with less than 5 trading days in a month (differ-
ent exclusions of days will be carried out in the robust tests).

3.2  Unit root test and long memory

To determine whether the time series of IVOL has a long memory, the Augmented Dickey-
Fuller test (ADF test) and autocorrelogram are used. The null hypothesis of the ADF test is 
that there exists a unit root in the time-series sample. The null hypothesis is rejected when 
the P-value is below the predetermined significance level, proving that the time series sam-
ple does not have a unit root and is therefore stationary. In this case, we can state that this 
time series sample has a long memory if the autocorrelogram demonstrates that lagged 
terms continue to lay influence on present terms. A forecast of the future IVOL is pos-
sible, in a sense, for instance, if the time series of IVOL has a long memory, and historical 
IVOLs are still influencing future IVOLs. As stated by Fu (2009), by capturing the time-
varying characteristic of IVOL, we can predict expected IVOL using the EGARCH model. 
We can then examine the relationship between the predicted expected IVOL and the stock 
return. Similarly, we may also predict the expected IVOL using the ARFIMA and HAR 
models, both of which are established on the principle of long memory.

3.3  The EGARCH model

The EGARCH model, which Nelson (1991) extended based on Engel (1982)’s ARCH 
model and Bollerslev (1986)’s GARCH model, accommodates the asymmetry in volatility, 
known as the leverage effect, where the return volatility increases more after stock price 
declines due to the increase of leverage ratio, and relaxes the parameter restriction of non-
negative variance in the earlier two models. Assuming that the IVOL estimation process’s 
residuals from the Fama–French three-factor model (Eq. (1)) follow a normal distribution 
and are serially independent,

(1)XRETi,n = �i + �iRETM,n + hiHMLn + siSMBn + �i,n,

6 https:// finan ce. whart on. upenn. edu/ ~stamb aug/.
7 Our results are robust to the choice of alternative factor models for IVOL calculation, namely, the Carhart 
(1997) model and the Fama and French (2015) five-factor model. Furthermore, our results are also aligning 
with the previous studies (Khasawneh et al. 2023) that report similar IVOL outcomes.

https://finance.wharton.upenn.edu/~stambaug/
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and the conditional variance �2

i,n
 follows the EGARCH (p,q) process,

where the conditional variance �2

i,n
 has the past p periods and return shocks have the past q 

periods.
The EGARCH model has already been applied in the IVOL prediction (for further 

information on how to use EGARCH models, see Spiegel and Wang 2005; Fu 2009). It has 
been proven that the expected IVOL, as calculated by the EGARCH model, is robustly and 
positively correlated with stock returns.

3.4  The ARFIMA model

The fractal market hypothesis, which takes into account the nonlinear causal relationship 
between irrational investor expectations and the market’s response to information, pre-
senting the market structure and characteristics under normal circumstances, serves as the 
rationale of the ARFIMA model. The long memory is represented by parameter d in the 
ARFIMA model, and the short-term first-order property of time series is represented by 
parameters p and q. Following Granger and Joyeux (1980), the ARFIMA model can be 
expressed as in the following Eq. (4),

where ϕ(L) and θ(L) are lag polynomials of finite orders. ϵt, which is only defined for the 
integer value of d, is a stationary noise series. L is the lag operator and is generalized to 
fractional differences using binomial expansion. The long memory parameter d is a real 
number in the range [-0.5,0.5] within which the time series will be stable, and more weight 
is given to older data. The ARFIMA model is a development of the ARIMA model to non-
integer values of d. As the ARFIMA(p,d,q) model degrades into the ARMA(p,q) model, 
the time series will specifically have long memory in the region [0,0.5], medium memory 
in the region [-0.5,0] and short memory when d = 0.

It is widely acknowledged that the ARFIMA model can demonstrate the first-order 
long-term and short-term correlation of time series and can depict the fractional feature 
via parameter d, making it superior to other models that only take into consideration short 
or long memories as well as the autocorrelogram, which relies on intuition and subjective 
judgment (Granger and Joyeux 1980).

3.5  The HAR model

The fat-tailed, leptokurtic, and scaling characteristics of time series cannot be replicated by 
the standard GARCH model and other stochastic models. Corsi (2009) also disputes fac-
tional integrated models such as the ARFIMA model for their complexity and information 
loss. Then the HAR model is raised with the addictive autoregressive cascade with the goal 
of easily and parsimoniously capturing and forecasting the long-memory feature of time 

(2)�i,n ∼ N
(
0, �2

i,n

)
,
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series. Based on Müller et al. (1993)’s Heterogeneous Market Hypothesis, the HAR model 
incorporates information from diverse time scales of different market participants as shown 
in Eq. (5),

where the time series of volatility in time t is estimated by the daily (Vt-1), weekly (Vt-5), 
and monthly (Vt-22) volatility.

In terms of the IVOL study, Chua et al. (2010) applied AR models to the IVOL time 
series and discovered that the AR(2) model fits the data best under the criterion of AIC. 
Their sample period is from July 1963 to December 2003. In this study, we calibrate 
Corsi’s HAR model and choose the autoregressive lags for the value-weighted and equal-
weighted IVOL series, as well as the sorted portfolios based on AIC. We examine hetero-
geneous time scales and choose the significant lags rather than being constrained by the 
precise AR lags. Therefore, our calibrated HAR model does not require lags from short-, 
near- and long-term strictly but is flexible for the lags included to consider the time-varia-
tion in IVOL and at the same time absorb varied impact from different time scales.

4  Empirical results

This section first describes the basic statistical features of the time-series of value-weighted 
and equal-weighted Actual_IVOL for the entire sample and portfolios through the line 
graph, density distribution graph, autocorrelogram, and unit root test. The series will be 
evaluated to see if it possesses the long memory characteristic. Later, it will address how 
well the ARFIMA, HAR, and EGARCH models can capture time-varying traits, such 
as the long memory feature. Finally, we examine the IVOL-return relationship for the 
expected IVOLs at both stock and portfolio levels.

4.1  Time‑variation in actual IVOL

4.1.1  Actual IVOL series

Figure  1 displays line graphs, density distribution graphs, and autocorrelograms (from 
top to bottom) for the monthly value-weighted Actual_IVOL (left) and equal-weighted 
Actual_IVOL (right), respectively. The statistical findings with the ADF test for unit root 
are listed in Panel A of Table 1. Both the value-weighted and equal-weighted Actual_IVOL 
are leptokurtic, right-skewed and have fat tails. The equal-weighted Actual_IVOL series 
has a higher standard deviation of 0.0374, making it more volatile. The value-weighted 
Actual_IVOL, however, is more right-skewed and has a higher kurtosis. Based on the ADF 
test, the null hypothesis that a unit root exists in the sample series is rejected at a 1% signif-
icance level by both value-weighted and equal-weighted Actual_IVOLs. The monthly time-
series of value-weighted and equal-weighted Actual_IVOLs are stationary in some degree 
across the sample period between July 1965 to December 2020. Moreover, the autocor-
relograms reveal that even 20 lags later, the long memory persists for both value-weighted 
and equal-weighted Actual_IVOLs, indicating that prior Actual_IVOLs continue to have a 
strong influence on recent Actual_IVOLs.

We use Actual_IVOLs from the previous t months to predict expected IVOLs through the 
ARFIMA, HAR, and EGARCH models in month t + 1 recursively to avoid the look-ahead 

(5)Vt = � + �1Vt−1 + �2Vt−5 + �3Vt−22 + �t,
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bias (Guo et al. 2014; Fink et al. 2012). Fu (2009, 2010)’s approach that requiring the first 
30 months to generate the initial forecast results in 636 expected IVOLs remaining in the 
sample.8 When it comes to the EGARCH model, we test nine different models following Fu 
(2009): EGARCH(1,1), EGARCH(1,2), EGARCH(1,3), EGARCH(2,1), EGARCH(2,2), 

Time-Series Properties of Actual_IVOL

Value-weighted Actual_IVOL Equal-weighted Actual_IVOL

Fig. 1  Time-Series Properties of Actual_IVOL. This set of figures shows the line graph, the density distri-
bution graph, and the autocorrelogram (from top to bottom) of value-weighted (left) and equal-weighted 
(right) Actual_IVOLs. The monthly Actual_IVOL is computed as the standard deviation of the residuals 
with respect to the Fama–French three-factor model of daily stock returns and is scaled by the square root 
of the number of trading days in each month. The value-weighted Actual_IVOL is taken monthly according 
to the market capitalization of each stock. The sample period is from July 1965 to December 2020. The 
shadow in the autocorrelogram (the bottom) is Bartlett’s formula for the MA(q) 95% confidence band

8 Following Spiegel and Wang (2005) and Guo et al. (2014), we additionally require the first 60 months to 
generate the initial forecast. Our results are robust, which are in line with Fu (2010) and Fink et al. (2012).
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EGARCH(2,3), EGARCH(3,1), EGARCH(3,2), and EGARCH(3,3). In other words, these 
nine models are permutations of the autoregressive parameter, 1 ≤ p ≤ 3, and the moving 
average parameter, 1 ≤ q ≤ 3. The converged model with the lowest AIC will be selected 
following the estimation. Each model estimating approach employs the selection proce-
dure. The parameters of its best-fit model are used to predict expected IVOLs, denoted as 
Exp_IVOLEGARCH. For example, in Panel C of Table 2, 96.23% of all estimations adopt the 
EGARCH(1,1) model, and the remaining 3.77% are generated by the EGARCH(2,1) model 
for the value-weighted Actual_IVOL series. As for the equal-weighted Actual_IVOL series, 
the EGARCH(1,1) model is the best-fitting for 99.06% of estimations.

The ARFIMA model is suitable to describe the time-varying characteristics in the 
monthly time-series of value-weighted and equal-weighted Actual_IVOL, according to 
the analysis of Fig. 1 and Panel A of Table 1. As indicated, the ARFIMA model depicts 
a long memory via the parameter d and describes the short-term first-order characteris-
tic via parameters p and q. We test 16 permutations: ARFIMA(0,d,0), ARFIMA(0,d,1), 
ARFIMA(0,d,2), ARFIMA(0,d,3), ARFIMA(1,d,0), ARFIMA(1,d,1), ARFIMA(1,d,2), 
ARFIMA(1,d,3), ARFIMA(2,d,0), ARFIMA(2,d,1), ARFIMA(2,d,2), ARFIMA(2,d,3), 
ARFIMA(3,d,0), ARFIMA(3,d,1), ARFIMA(3,d,2), ARFIMA(3,d,3), with the autoregres-
sive parameter, 0 ≤ p ≤ 3 and the moving average parameter, 0 ≤ q ≤ 3. As a result, the long 
memory parameter d is where the ARFIMA model estimation’s crucial point is located. We 
shall state that the Actual_IVOL series is stationary and has a long memory if d falls within 
the region [0,0.5]. Hence, by selecting the model with the lowest AIC, we will also choose 
the ARFIMA model that fits the data the best. The best-fitting ARFIMA model was found 
in Panel A of Table 2, where p = 0 and q = 0 were set for the value-weighted Actual_IVOL 
series (34.91% across all estimations) and p = 1 and q = 0 for the equal-weighted Actual_
IVOL series (28.3% across all estimations). The long memory parameter d is estimated in 
this circumstance to be 0.4961 and 0.4940, respectively. Both values are inside the region 
[0,0.5] and significant at the 1% level. This result reconfirms that using ARFIMA models 
to an Actual_IVOL time series is appropriate.

We also require the first 30  months to generate the first ARFIMA prediction. Then, 
using the Actual_IVOL from the previous t months to forecast the Actual_IVOL in month 
t + 1, we estimate the parameters recursively and denote the predicted values as Exp_IVOL-
ARFIMA. The best-fitted findings for the ARFIMA model differ from the relatively consistent 
best-fitted results for the EGARCH model, depending on the observation. As compared to 
the EGARCH model, we would anticipate that the more adaptable ARFIMA model will 
be better able to capture the time-variation in the Actual_IVOL series and provide a more 
precise expected IVOL forecast for the subsequent period.

For the HAR model, we examine various AR lags using partial autocorrelations and 
AIC statistics, and we arrive at the best-fitting model for the Actual_IVOL series. One, 
three and nine-month lags of the Actual_IVOL are given in Panel B of Table  2 for the 
value-weighted Actual_IVOL series, which is affected by the previous short-, near- and 
long-term periods with Actual_IVOLt-1 contributing the most from a coefficient of 0.5362. 
Recent Actual_IVOLs with one, two, and three-month lags have a greater impact on the 
equal-weighted Actual_IVOL series. The preceding long-term Actual_IVOLt-12 even shares 
a coefficient of 0.0769 with the present Actual_IVOLt. In order to predict the expected 
IVOL in month t + 1, we first record the coefficients from the recursive OLS regressions of 
the observations up through month t and denote the predictions as Exp_IVOLHAR. To gen-
erate the initial forecast, we also need the first 30 months’ worth of observations.

After that, we make a comparison between the Exp_IVOLARFIMA, Exp_IVOLHAR,, and Exp_
IVOLEGARCH and the Actual_IVOL for the relevant month. To determine how well expected 
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IVOLs catch the time-varying trait inside the Actual_IVOL, we regress the Actual_IVOL on 
expected IVOLs individually and collectively and anticipate their coefficients to be close to 1. 
In Table 3, whether value-weighted or equal-weighted, the mean of Exp_IVOLHAR is closest 
to the mean of the Actual_IVOL. When regressed independently, all the expected IVOLs are 
significantly related to the Actual_IVOL. However, when regressed jointly, the direction of Exp_
IVOLEGARCH and Exp_IVOLARFIMA switches from positive to negative. Only the direction and 
significance of the Exp_IVOLHAR coefficient remain consistent and close to 1. As it stands, the 
HAR model outperforms the ARFIMA and EGARCH models in terms of reflecting the time-
variation inside both value-weighted and equal-weighted Actual_IVOL series.

4.1.2  Actual IVOL portfolios

We then describe the pattern for Actual_IVOL in terms of sorted portfolios. First, 
we sort all stocks into quintiles each month based on their Actual_IVOL. In Panel B 
and C of Table 1, we record the basic statistics for each value-weighted and equal-
weighted Actual_IVOL quintile. The lowest Actual_IVOL quintile has the largest 
right-skewness and leptokurtosis but the least variation for both value-weighted and 
equal-weighted portfolios, while the highest Actual_IVOL quintile shows the reverse 
trend. Overall, value-weighted Actual_IVOL portfolios are more right-skewed and 
leptokurtic, aligning with the outcomes for the full sample. However, only the lowest 
equal-weighted Actual_IVOL quintile, which stands out from all other quintiles, has 
a high kurtosis of 8.8116. The stationary for Actual-IVOL-sorted portfolios is indi-
cated by the fact that all the ADF statistics are significant at the 1% level.

Table 3  The comparison of expected IVOLs for Actual_IVOL series

This table reports the mean of Exp_IVOLARFIMA, Exp_IVOLHAR, and Exp_IVOLEGARCH and their coefficients 
when regressed on the Actual_IVOL individually and collectively during the sample period from July 1965 
to December 2020. In Panel A, expected IVOLs are predicted based on the value-weighted Actual_IVOL 
series while in Panel B, expected IVOLs are predicted based on the equal-weighted Actual_IVOL series. 
Columns (1), (2), and (3) contain the coefficient β when regressing the Exp_IVOL predicted by each model 
on the Actual_IVOL as in the following Eq. (8):
Actual_IVOLt = �t + �tExp_IVOLt + �t . (8)
The last column (4) contains the coefficient �ARFIMA,�HAR, and�EGARCH when regressing the expected IVOLs 
collectively on the Actual_IVOL as in the following Eq. (9):
Actual_IVOLt = �t + �ARFIMA

t
Exp_IVOLARFIMA

t
+ �HAR

t
Exp_IVOLHAR

t

+�EGARCH
t

Exp_IVOLEGARCH
t

+ �t .
 (9)

t-statistics are reported in parentheses: *** p < 0.01, ** p < 0.05, * p < 0.1

Mean (1) (2) (3) (4)

Panel A Value-Weighted
  Exp_  IVOLARFIMA

t 0.0594 0.1344*** -0.1516
  Exp_  IVOLHAR

t 0.0626 0.9625*** -0.0082
   Exp_IVOLEGARCH

t 0.0042 5.7575*** 0.9892***
Panel B Equal-Weighted

  Exp_  IVOLARFIMA
t 0.1196 0.6871*** -0.0182

  Exp_  IVOLHAR
t 0.128 0.9692*** 1.1462***

   Exp_IVOLEGARCH
t 0.0177 3.0582*** -0.5404*
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The results of model selection and model comparison for each Actual_IVOL quintile 
are included in the Online Appendix Tables A.1 and A.2, following the same sorting and 
selection procedure. For both value-weighted and equal-weighted Actual_IVOL portfo-
lios, the best-fitted EGARCH and ARFIMA models vary over a wider range, especially 
for the ARFIMA model. The choice for the EGARCH(1,1) model still predominates, 
nevertheless. For the first three quintiles, we choose the ARFIMA(0,d,0) model, and for 
the top two quintiles, we select the ARFIMA(0,d,3) model. Value-weighted and equal-
weighted Actual_IVOLs almost always have the same AR lags for the HAR model for 
every quintile. The main influence is always accounted for by Actual_IVOLt-1. Actual_
IVOLt-4 lays a negative impact on the current Actual_IVOL if it is included as an AR lag. 
Exp_IVOLHAR outperforms the competition in that its coefficient is closer to 1.

The portfolio-sorting process is also done in accordance with some commonly used firm 
characteristics such as size and book-to-market ratio (BM ratio). Here, we sort all stocks into 
quintiles according to NYSE breakpoints to reduce the noise brought by small-sized stocks 
(Fama and French 1992; Bali and Cakici 2008). The sorting process is balanced monthly. For 
size-sorted quintiles, the basic statistics in Panel B and C of Table  1 demonstrate a differ-
ent pattern. The three middle quintiles are more right-skewed, have higher kurtosis, and have 
higher ADF test statistics. In the Online Appendix A.1 and A.3, we report the selection and 
comparison among models in detail. First of all, the EGARCH(1,1) model remains dominant 
across all size-sorted quintiles, regardless of value-weighted or equal-weighted. Except for the 
ARFIMA(1,d,0) model of the second-lowest value-weighted size quintile and the two-lowest 
equal-weighted size quintiles, the ARFIMA(0,d,0) model predominates. With respect to the 
HAR model, almost all quintiles have lags of one, two, and three months. The lowest value-
weighted quintile has lags of one, two, three, four, nine, and ten months, whereas the lowest 
equal-weighted quintile has lags of one, two, three, and four months. Nevertheless, the coef-
ficient of the one-month lag of Actual_IVOL has the greatest impact on the present Actual_
IVOL for all portfolios, followed by the three-month lag of Actual_IVOL. If Actual_IVOL with 
a four-month latency is chosen, the effect is always negative. In each quintile, when comparing 
expected IVOLs to the Actual_IVOL, the Exp_IVOLHAR has the closest mean and stands out as 
the most prominent regressor with a close value of 1 with a consistent direction.

Next, we sort all stocks into quintiles according to their BM ratio, which is calculated 
following Fama and French (1992) by using the book value of equity from the previous 
fiscal year upon the market capitalization from the previous calendar year. This procedure 
is also monthly balanced. We report the basic statistics for each value-weighted and equal-
weighted BM quintile in Panel B and C of Table 1. All BM-sorted portfolios are right-
skewed and leptokurtic. The results of the ADF test show that previous Actual_IVOLs 
still have an impact on the current Actual_IVOL. The EGARCH(1,1) model is still suit-
able for all value-weighted and equal-weighted BM-quintiles, as described in the Online 
Appendix Table  A.1. Here, different ARFIMA models, including the ARFIMA(0,d,0), 
ARFIMA(1,d,0) and ARFIMA(0,d,3) models are chosen. Except for the lowest and the 
highest equal-weighted BM-quintiles, the HAR model selection is dominated by one-, 
two-, and three-month lags. The characteristics of expected IVOLs remain the same for 
BM-sorted portfolios (see the Online Appendix Table A.4).

4.2  The expected IVOL‑return relationship

In this section, we revisit the IVOL puzzle by using expected IVOLs from the ARFIMA, 
HAR, and EGARCH models at both the stock and portfolio levels.
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4.2.1  Stock‑level analysis

For stock-level analysis, we form both the value-weighted excess stock returns monthly 
according to the market capitalization as well as the equal-weighted excess stock returns. 
To examine whether the IVOL puzzle exists, we regress the excess stock returns on the 
expected IVOLs respectively and collectively in combination with additional time-series 
control variables. Our comparison is justified by the fact that we require the significance 
for each expected IVOL when regressing both individually and collectively. We also need 
the coefficients for each expected IVOL to point in the same direction. The model with the 
highest adjusted-R2 and the lowest Root Mean Squared Error (RMSE) is then picked.

From Panel A of Table 4, we could observe that when regressing each expected IVOL 
with control variables separately (in regressions (1), (2), and (3)), the Exp_IVOLARFIMA 
and Exp_IVOLHAR exhibit the capacity to price the value-weighted returns. The direc-
tion of Exp_IVOLEGARCH alters from negative to positive while the Exp_IVOLARFIMA and 
Exp_IVOLHAR remain consistent and significant when all expected IVOLs and control vari-
ables are taken into account in regression (5). The Exp_IVOLARFIMA has an adjusted-R2 of 
4.52% in regression (1) which is marginally greater than the Exp_IVOLHAR’s in regression 
(2) as well as an RMSE of 0.2696 is slightly lower than the Exp_IVOLHAR’s. All expected 
IVOLs in Panel B of Table 4 for the equal-weighted returns are significant whether they are 
regressed separately or jointly, except the direction of Exp_IVOLHAR, which is inconsist-
ently changing from positive to negative. Once more, Exp_IVOLARFIMA outperforms Exp_
IVOLEGARCH with a higher adjusted-R2 of 5.77% and a lower RMSE of 0.2680. The results 
are not affected after comparing with the results of Actual_IVOL (in regressions (4) and 
(5)) as a benchmark. Given that the IVOL-return relationship depends on the model being 
utilized, we are unable to draw the conclusion that the IVOL puzzle exists. Specifically, 
the IVOL puzzle only arises for the Exp_IVOLHAR in the value-weighted series but not for 
other circumstances.

Overall, Exp_IVOLARFIMA exhibits consistency, maintains positive significance, and 
holds the lowest RMSE and the highest adjusted-R2 for pricing both value-weighted and 
equal-weighted Actual_IVOL series. The Exp_IVOLEGARCH is an additional option with 
a positive pricing ability for the equal-weighted Actual_IVOL series. Only the value-
weighted Actual_IVOL series employing the HAR model with one-, three-, and nine-month 
lags could reveal the IVOL puzzle.

4.2.2  Sorted portfolios analysis

We further expand our results to value-weighted and equal-weighted Actual_ IVOL-sorted, 
size-sorted, and BM-sorted portfolios. First, the Exp_IVOLARFIMA and Exp_IVOLEGARCH 
have better pricing ability than Exp_IVOLHAR across all Actual_IVOL quintiles. Table  5 
shows that, although Exp_IVOLHAR more closely resembles and fits the Actual_IVOL varia-
tion observed in earlier analyses, the Exp_IVOLHAR is either inconsequential or inconsistent 
when it comes to pricing stock returns in Actual_IVOL-sorted portfolios. For example, the 
EGARCH model for the Actual_IVOL quintile 2 and the ARFIMA model for the Actual_
IVOL quintile 3, 4, and 5 are both consistent choices within the same quintile whether 
weighted equally or by value. The value-weighted Actual_IVOL quintile 1 chooses the 
ARFIMA model in contrast to its equal-weighted equivalent, which selects the EGARCH 
model. It is possible that the underlying pricing feature residing in Actual_IVOL-sorted 
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portfolios can be better captured by the ARFIMA and EGARCH models. Only the lowest 
value-weighted Actual_IVOL quintile for the Exp_IVOLARFIMA has the IVOL puzzle.

We do observe the IVOL puzzle for all value-weighted portfolios as well as for equal-
weighted portfolios 4 and 5 concerning size quintiles. In Table 6, all of these IVOL puz-
zles, except for the value-weighted portfolio 2 by the Exp_ IVOLARFIMA, are discovered to 
be predicted by the Exp_IVOLHAR. The lowest three equal-weighted quintiles include only 
two positive Exp_IVOLEGARCH-return relationships. The two smallest size quintiles, like 
Actual_IVOL quintiles, are appropriate for various models and have coefficients that point 
in opposite directions.

When it comes to quintiles that are sorted using the BM ratio, the pattern is distinct 
from previously sorted portfolios. As reported in Table  7, excluding quintile 2, value-
weighted BM-quintiles generally exhibit an IVOL puzzle, whereas all equal-weighted BM-
quintiles present a positive IVOL-return relationship. Nevertheless, only quintile 2, which 
is either value-weighted or equal-weighted, chooses the EGARCH model with a positive 
coefficient.

In conclusion, we could notice that the IVOL puzzle always exists in the lowest 
value-weighted portfolios from the aforementioned Actual-IVOL-, size-, and BM-sorted 
approaches. In contrast, the two lowest equal-weighted quintiles always show a positive 
IVOL-return relationship. Furthermore, focusing on the individual model, we also observe 
the negative IVOL-return relationship across all HAR-predicted quintiles, regardless of 
how the data are sorted (Actual_IVOL, size, or BM), whether they are value- or equal-
weighted. Although the EGARCH model only outperforms in the bottom two quintiles, we 
also confirm that the Exp_IVOLEGARCH-return relationship is positive. The IVOL puzzle 
brought by the Exp_IVOLARFIMA, on the other hand, is only present in the lowest two value-
weighted quintiles and is more circumstantial. It is difficult to pinpoint the precise choice 
of models for predicting expected IVOLs as it depends on the stock composition within the 
portfolio.

5  Robustness checks

5.1  Results for BETA‑sorted portfolios

We estimate BETA following Liu et  al. (2018)’s explanation of the beta anomaly, which 
states that stocks with low beta have higher earnings than stocks with high beta. They argue 
that the beta anomaly is caused by the interaction between the positive beta-IVOL correla-
tion and the negative IVOL-return relationship among overpriced stocks. In our sample, we 
expect that the coefficient of the best expected IVOL in explaining stock returns will also 
be negative.

To reconcile non-synchronous trading effects, we regress the monthly excess stock 
return of i in month t on the monthly market excess return in both month t and month 
t-1 with a 60-month rolling window. We require stocks to have at least 36  months of 
returns and the excess return is computed by subtracting the one-month US treasury bill. 
We denote the sum of coefficients of the current market excess return and the one-month 
lagged market excess return as βi (Dimson 1979). Then following Vasicek (1973), we com-
pute BETA by shrinking βi with weight ωi as in Eq. (6),
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where weight ωi is defined as,

Specifically, in the above Eq.  (7), σ2(βi) is the variance of βi; �̂2(�) is the estimate of 
the cross-sectional variance of true betas, computed by taking the difference between the 
cross-sectional variance of βi and the cross-sectional mean of σ2(βi).

We include the results for BETA-quintiles in the Online Appendix (Tables A.5, A.6, and 
A.7). Similar to the general characteristics observed in the previous sorted approaches, the 
lowest two equal-weighted quintiles still reveal a positive IVOL-return relationship. How-
ever, the relationship is positive rather than negative for the lowest value-weighted quintile. 
Regarding the beta anomaly, we could only find negative relationships for the Exp_IVOL-
HAR in value-weighted portfolios, whereas positive relationships are presented from the 
Exp_IVOLARFIMA and Exp_IVOLEGARCH.

5.2  Different exclusion schemes for IVOL

In the main section above, we have excluded stocks having less than 5 trading days in a 
month. As noted in Bali and Cakici (2008), however, there is no consensus in the extant lit-
erature about the exclusion of stocks. Different ways of applying the data collection criteria 
such as selecting from monthly, daily, or even intra-day data, weighting equally or by value, 
or excluding small-sized, low-priced, or illiquid stocks, lead to positive, negative, or compro-
mised conclusions for the investigation of the IVOL-return relationship. By implementing 
two additional exclusion strategies during the IVOL construction process, we corroborate our 
findings. Since the exact number of stocks excluded between the 10-day scheme and 11-day 
scheme is significant, we choose to exclude both stocks with less than 10 trading days in a 
month and stocks with less than 11 trading days in a month. Although unreported, it is note-
worthy that our main findings are not affected by the exclusion scheme.

6  Further analysis

We further take into account portfolios that are sorted on the sentimentalized idiosyncratic 
volatility [hereafter sentimentalized IVOL], which is the product between the investor sen-
timent index aligned by Huang et al. (2015) and IVOL. We find a significant pricing effect, 
shifting from negative to positive with the growth of the sentimentalized IVOL itself, on 
the cross-section of stock returns.

Both value-weighted and equal-weighted portfolios show novel patterns within senti-
mentalized IVOL quintiles when the IVOL-return relationship is examined (see the Online 
Appendix Table A.8). Previously, all Exp_IVOLHAR always displayed the IVOL puzzle. In 
quintiles sorted on the sentimentalized IVOL, the lowest value-weighted quintile and the 
two bottom equal-weighted quintiles have a positive coefficient with Exp_IVOLHAR. Value-
weighted quintiles 4 even have no discernible IVOL-return association. We might locate 
the IVOL puzzle for the Exp_IVOLHAR in quintiles 4 and 5 when equally weighted.

(6)BETAi = �i ∗ �i +
(
1 − �i

)
∗ 1,

(7)�i =

1

�2(�i)

1

�2(�i)
+

1

�̂2(�)

.
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7  Conclusion

The time-varying property of IVOL is crucial in examining the relationship between IVOL 
and stock returns and selecting the appropriate model for estimating IVOL. In this paper, we 
evaluate the three expected IVOLs from the ARFIMA, HAR, and EGARCH models for their 
capacity to replicate and capture the time-variation property within the Actual_IVOL series and 
portfolios. We also look at how the three expected IVOLs and stock returns are related. Empiri-
cally, we find that the Exp_IVOLHAR beats its two counterparts by a wide margin when it comes 
to simulating the variation in both the Actual_IVOL series and portfolios. This benefit cannot, 
however, be extended to the pricing ability. There is no all-encompassing model that can esti-
mate expected IVOLs and reproduce its time-variation simultaneously. As a result, the perfor-
mance of expected IVOLs in the IVOL-return relationship varies depending on the model used.

Our findings add to the ongoing debate over the IVOL puzzle. Under the EGARCH 
model, in which the best-fitted model is selected recursively, the IVOL-return relationship 
is consistently positive. The findings of Fu (2009) are likewise consistent with this positive 
relationship. The advantage of the HAR model in capturing the time-varying property sug-
gests that different models might yield varying insights into the IVOL-return relationship. 
We discover the presence of the IVOL puzzle for Exp_IVOLHAR in our sample period of July 
1965 to December 2020, where the best-fitted HAR model is calibrated under the particu-
lar value-weighted and equal-weighted series or portfolios. The direction of the relationship 
between the Exp_IVOLARFIMA and stock returns is undetermined, so each case must be sepa-
rately examined. Overall, there is not a universally recognized and standardized model that 
can effectively capture the dynamic time-dependency of IVOL and duplicate it. Therefore, 
if we solely rely on the expected IVOL derived from a single model, we would be unable to 
challenge the IVOL puzzle of AHXZ (2006). Continuous scrutiny of model assumptions and 
methodologies is still essential. While the inconclusive IVOL puzzle is still under investiga-
tion and depends on the sample composition, our findings imply some unique portfolios for 
the puzzle and call for more cautionary portfolio construction and decision-making. By rec-
ognizing the limitations of relying on one certain model, practitioners need to refine their risk 
management practices, with higher awareness of lower portfolios.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s11156- 024- 01279-z.
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