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Abstract
The spectacular nature of bitcoin price crashes baffles market spectators and prompts rou-
tine warnings from regulators cautioning that cryptocurrencies behave in contra to the 
fundamental properties that traditionally define what constitutes money. Arguably most 
concerning to the public is, first, bitcoin’s unprecedented price volatility relative to other 
asset classes and, second, its seemingly detached price behavior relative to time-honored 
economic and market fundamentals. In an attempt to create an early warning system of bit-
coin price crash risk using generalized extreme value (GEV) and logistic regression mod-
eling, this study integrates order flow imbalance, along with several control factors which 
reflect blockchain activity and network value, in order to nowcast bitcoin’s price crashes. 
From a data analysis perspective, and despite their dissimilar distributional underpinnings, 
the GEV and logistic models perform comparably. When evaluating the type I and type II 
errors which these models yield, it is shown that their performance is comparable in terms 
of accuracy. In addition, it is also shown how the proportion of type I and type II errors can 
shift dramatically across probability cutoff tolerances. Towards the end of this study, time 
varying probabilities of a price crash are shown and evaluated. The sample range in this 
study encompasses the SARS-CoV-2 (Covid-19) time period as well as the recent scandal 
and collapse of the FTX cryptocurrency exchange.
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1 Introduction

This decade has witnessed a rise in blockchain-based technologies and a plethora of off-
shoot fintech firms that specialize in building cryptographic ledger systems for banks, stock 
exchanges, and credit card companies.1 A distinguishing feature of blockchain is the dis-
tributed public ledger system which stores transactions between parties without the super-
vision or regulatory oversight of a central authority. In that way, two or more unacquainted 
and anonymous parties can create an irrevocable transaction that is forever recorded on the 
ledger and which is unreservedly viewable by the public (Nakamoto 2008).

Bitcoin is the very first application of blockchain technology. Since the first transac-
tion involving bitcoin in January of 2009 until today, its value has experienced incompa-
rably high volatility relative to what is observable in other traditional assets such as equi-
ties, bonds, commodities or currencies.2 While presently there are over 2000 decentralized 
cryptocurrencies in circulation, bitcoin constitutes over 60% of the total market capitaliza-
tion of all cryptocurrencies in existence, with an average daily trading volume in 2022 that 
far exceeded $30 billion.3

There are starkly divergent views on the legitimacy of bitcoin as a viable currency or the 
potential for blockchain technology to disrupt business and financial services (Abadi and 
Brunnermeier 2018; Bowden et al. 2021; Chiu and Koeppl 2019; Cong and He 2019; Har-
vey 2016; US Senate 2013; Yermack 2017). Arguably the dominant argument for why bit-
coin cannot become a mainstream currency is because its supply and its seemingly explo-
sive price fluctuations are exogenously determined (Lo and Wang 2014). Because a central 
bank’s monetary policy decisions, based on the state of the economy, have no bearing on 
the supply of bitcoin, its price is thus independent of shifts in economic fundamentals.4

Among all its characteristics, bitcoin’s price behavior has arguably garnered the most 
attention in the financial press and among investors (Wall Street Journal 2019). To illus-
trate, in early July of 2010, one bitcoin was worth less than $0.05 and, by December of 
2017, was worth more than $18,000 before crashing to about $3000 in December of 2018. 
In April of 2021 it was somewhat over $60,000 before crashing to $31,000 in July 2021. In 
November 2021 it reached a record high of just over $64,000 while in subsequent months it 
lost more than half its value and market capitalization. During the height of the FTX cryp-
tocurrency exchange scandal in early November of 2022, bitcoin lost approximately 25% of 
its value in a matter of days. Presently, it is trading at around $20,000.

2 On January 3, 2009, the bitcoin network was born when Satoshi Nakamoto, the mystery creator, mined 
the genesis block of bitcoin (the first block in the blockchain—block 0). The coinbase parameter contained 
the following encoded text message: “The Times 03/Jan/2009 Chancellor on brink of second bailout for 
banks” (see https:// en. bitco in. it/ wiki/ Genes is_ block). This message is in reference to an article headline in 
The Times for that day (Duncan and Elliott 2009) and serves as a time stamp for proof that the block was 
created on this date. Apart from serving as a time stamp, it is arguably a manifesto decrying the instability 
of big banks and the social costs they impose.
3 See https:// coinm arket cap. com.
4 While economists and policymakers view monetary instruments whose supply cannot be regulated by a 
central bank as potentially hazardous (Lo and Wang 2014), proponents of bitcoin argue that this very char-
acteristic is what gives bitcoin its value and protects it from inflationary forces (Athey et al. 2016; Bolt and 
van Oordt 2016; Dwyer 2015; Pagnotta and Buraschi 2018).

1 See for example Forbes’ 2019 Fintech 50 list here: https:// www. forbes. com/ finte ch/ 2019/. In 2010, the 
multinational consulting firm Accenture launched a “Fintech Innovation Lab” that is designed to bring 
together Fintech startups with financial institutions: https:// www. accen ture. com/ us- en/ servi ce- finte ch- innov 
ation- lab.

https://en.bitcoin.it/wiki/Genesis_block
https://coinmarketcap.com
https://www.forbes.com/fintech/2019/
https://www.accenture.com/us-en/service-fintech-innovation-lab
https://www.accenture.com/us-en/service-fintech-innovation-lab
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While this type of price volatility is alluring for certain speculators seeking upside 
rewards, it also means a high probability of extreme downside risk. This begs the question 
that is the motivation for this study: Can we foresee when bitcoin will experience a price 
crash and, if so, on the basis of what factors?

The merits of the first part of this question are immediately self-evident to market par-
ticipants and regulators alike. While investors and firms that accept bitcoin have a vested 
interest in monitoring and managing bitcoin’s downside risk, regulators understand that 
bitcoin price shocks can affect not only other cryptocurrencies and their market exchanges, 
but other segments of our global financial system (Adrian and Mancini-Griffoli 2019; Auer 
and Claessens 2018; Cheah and Fry 2015; Chimienti et al. 2019; King et al. 2021; Meaning 
et al. 2018). The merits of the second part of this question as to what factors are equally 
important. There is prevailing disagreement however as to what are the forces which drive 
bitcoin’s price fluctuations and, more fundamentally, whether bitcoin has any intrinsic 
value at all. Some studies invoke models from network theory, such as Metcalfe’s Law, 
which argues that the value of a network grows as a nonlinear function of the number of 
users (Alabi 2017; Koutmos and Payne 2021; Metcalfe 2013; Peterson 2018; Van Vliet 
2018).5 Other economists, such as Bradford DeLong, argue that networks inherently face 
diminishing returns and cannot grow uninhibitedly and exponentially.6 Specifically, net-
works tend to build the most valuable connections first, and, while subsequent connections 
may provide value, they do so at a diminishing rate. In spite of this debate, other stud-
ies argue that inferences regarding Bitcoin’s value are difficult to make altogether since its 
price may experience manipulation at various points in time (Gandal et al. 2018).

Against this backdrop, this study illustrates the importance of modelling bitcoin’s price 
crash risk using order imbalance data along with blockchain factors which reflect condi-
tions in its microstructure. The concern of this study is to nowcast bitcoin’s crash risk and 
begin laying the foundations of an early warning system that can be used by market partici-
pants to estimate probabilities of a bitcoin crash. Nowcasting is the focus of our study. This 
is because it seeks to provide a current description of bitcoin’s crash risk using variables 
that reflect the nearly-contemporaneous state of the bitcoin’s unique ecosystem. Theoreti-
cally, our study makes two main contributions to this emerging strand of literature.

First, it shows the importance of order flow imbalance (buying relative to selling activ-
ity) as a variable that can nowcast bitcoin price crashes. Order imbalances, their manifesta-
tions, and their role in explaining or forecasting returns, have received intense empirical 
attention following Chordia et al. (2002). Such imbalances are important to study because, 
first, they may signal trading based on private information and, second, can create market-
wide illiquidity and inventory problems for market makers. Kumar and Lee (2006) argue 
that order imbalance can describe investor sentiment, whereby optimism spurs more buy-
ing activity while pessimism spurs more selling activity, ceteris paribus.

Second, it shows that when trying to model bitcoin’s price behavior, it is important 
to incorporate factors that reflect shifts in Bitcoin’s blockchain. Much of the emerging 

5 Metcalfe’s Law is founded on the observation that in some communication network consisting of n nodes 
(participants), there are n(n − 1)∕2 possible pairwise connections that can be made in total. Thus, and if we 
make the blanket assumption that all such pairwise connections are equally valuable, the value of the whole 
network grows by approximately n2 . Derived from the same assumption that all connections are equally val-
uable, Reed’s Law argues that with the advent of the internet, nodes can form groups in addition to connect-
ing as pairs (Reed 2001). Given n nodes, there can exist 2n groups. Thus, the value of the network grows by 
approximately 2n , which is a greater estimate relative to Metcalfe’s Law.
6 See Paul Krugman’s web article: http:// web. mit. edu/ krugm an/ www/ metca lfe. htm.

http://web.mit.edu/krugman/www/metcalfe.htm
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literature on this subject, like the studies referenced earlier, attempt to link bitcoin with 
shifts in economic and market variables that have been shown to explain the returns of 
conventional asset classes, such equities or commodities. As some recent studies show, 
however, it is important to understand that Bitcoin’s microstructure is very different 
from that of conventional assets, both from a technical and economic standpoint (Auer 
2019; Böhme et al. 2015; Ma et al. 2018). In the words of Liu and Tsyvinski (2018, p. 
3), "…cryptocurrencies comprise an asset class which is radically different from tradi-
tional asset classes…".

Econometrically, our study makes the following two main contributions. First, 
we show that both the logistic and the generalized extreme value (GEV) regression 
approaches perform comparably in terms of nowcasting errors. This is an important 
observation that is relevant to all applications of probabilistic forecasting involving a 
binary-type outcome. This is because the logistic link function is symmetrical around 
the value of 0.50. This means that the probability of a binary event can approach zero 
at the same rate in which it can approach one. Czado and Santner (1992) show that 
assuming such a logistic link function can lead to biases and inabilities in estimating 
accurate probabilities. The GEV regression approach attempts to augment this short-
coming in logistic regressions because of its asymmetric link function that is based on 
the GEV distribution, which in extreme value theory, has shown to better model rare 
events in statistics (Kotz and Nadarajah 2000; Wang and Dey 2010).

Towards the end of our study, we report on the nowcasting performance of the mod-
els and how well they classify days where a price crash occurred relative to days when 
one did not occur. We show how type I errors (false positive classifications) and type II 
errors (false negative classifications) are important to consider when trying to deduce 
what estimated probability is a likely indication that a price crash will actually occur. 
Finally, we show a time-varying forecasted probability for bitcoin price crashes. To 
the best of our knowledge, this is one of the first attempts to produce such a forecast, 
which can serve as a basis for an early warning system for bitcoin investors, those 
businesses that accept bitcoin as a form of payment, and regulators and market partici-
pants at large.

The remainder of this study is organized as follows. Section  2 presents evidence 
of the linkages between order flow imbalance and bitcoin returns as well as some 
preliminary statistical description of bitcoin’s downside risk. Section  3 presents the 
blockchain variables that are integrated into our analysis as well as the econometric 
approaches in estimating probabilities for a bitcoin price crash. Section 4 provides an 
economic analysis of our findings and reports on the nowcasting performance of each 
of our models. Section 5 concludes.

2  Motivating evidence

This section presents initial evidence on the linkages between bitcoin order flow imbal-
ance and returns, motivating the importance of integrating order flow into models that 
try to model bitcoin’s price behavior. Koutmos (2023) illustrates the challenges with 
using linear regression modeling to decipher the relation between bitcoin returns and 
order flow imbalance, especially since some of the most extreme downside price move-
ments occur when there is no significant imbalance.
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Instead, we show here that order flow imbalances Granger cause returns more often 
than returns Granger cause order flow imbalances. This motivates us to incorporate 
order flow imbalance into our analytical framework (Sect.  3), where we try to deter-
mine whether it can serve as an important nowcasting variable. The theory and main 
evidence from the analysis is presented in Sect. 4.

2.1  Order imbalance and returns

The price of bitcoin has experienced sharp perturbations since its inception. Figure  1 
shows a time series plot of bitcoin’s price (in USD) as well as order flow imbalance for our 
sample period (April 1, 2013 until January 15, 2023). We describe our sample data and 
sample range more in Sect. 3.

Chordia et al. (2002) show how order flow imbalance can impact an underlying asset’s 
liquidity and its price. In several recent studies it is shown that it can signal information 
leakage and that it is an important determinant of (expected) price movements (Bernile 
et al. 2016; Muravyev 2016). In spirit with these studies, order flow imbalance is estimated 
as (B − S)∕(B + S) , whereby B (S) is the aggregate buyer-initiated (seller-initiated) trading 
volume. Estimating order flow imbalance as a ratio rather than as a subtraction between 
buyer- and seller-initiated volume is advantageous in that it provides a relatively more 
standardized distribution that is stable across time windows. This is because explosive 
behaviors, albeit transitory, in either buyer- or seller-initiated volume, will not result, in 
one direction or another, time series drifts in our order flow imbalance estimation. Remov-
ing such drifts ensures stationarity and thus stability in regression errors and across time 
windows.

As is shown in Fig. 1, bitcoin has experienced sharp bull and bear regimes in its price 
behavior. In December of 2017, bitcoin reached its first record peak of $19,270 before 
declining precipitously to $6850 in early February of 2018, amid the systematic crack-
down and subsequent ban of all cryptocurrencies in mainland China by regulators.7 Bitcoin 
reached a subsequent peak in April of 2021, where one bitcoin was worth just over $60,000 
before it crashed to $31,000 in July of 2021. November of 2021 has been, as of now, its last 
record high (just over $64,000), while presently it is trading at around $20,000. This comes 
in light of the FTX cryptocurrency exchange scandal which, when became widely public in 
early November of 2022, resulted in about a 25% decline in bitcoin within only a few days.

Across the overall sample, order flow imbalance in Fig. 1 has a mean of 0.1759 and a 
standard deviation of 0.2474. In approximately 75% of all trading days it is greater than 
0 (B > S) and in 25% of cases it is less than 0 (B < S) . Skewness is negative for the over-
all sample (− 0.2312), indicating an asymmetry in the direction of the imbalance. A case 
can be made that despite bitcoin investors’ higher appetites for risk relative to investors 
who trade in traditional asset classes, they can still behave in accordance with loss aversion 
theory. Specifically, (expected) negative returns amplify trading behaviors more than do 
(expected) positive returns of similar magnitude.

A scatter plot of bitcoin log returns against order flow imbalance is shown in Fig. 2. Vis-
ual inspection shows that in the relative absence of order flow imbalance (B ∼ S) , there is a 

7 This report from the Library of Congress details the approach which government officials have taken to 
eliminate the circulation and mining of cryptocurrencies from mainland China: https:// www. loc. gov/ law/ 
help/ crypt ocurr ency/ china. php.

https://www.loc.gov/law/help/cryptocurrency/china.php
https://www.loc.gov/law/help/cryptocurrency/china.php
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great degree of dispersion in bitcoin log returns. For instance, the largest negative return in 
the sample of − 47% is associated with an order flow imbalance of − 0.08.8 When inspect-
ing returns that lie on or near zero (the x-axis), we can also see how there is a great degree 
of dispersion in order flow imbalance in both directions.

At a minimum, the scatter plot shows, first, that a greater proportion of large negative 
bitcoin returns materialize during points when (B < S) and, second, some form of regres-
sion analysis involving bitcoin returns and order flow imbalance is not likely to yield a 
smooth linear relation between the two. This is evident by the near-zero linear fit ( R2 = 
0.013) and the behavior of the nearest neighbor fit line, which shows sharp nonlinearities 
throughout the range of the order flow imbalance.

Figure  3 shows rolling window p value estimates when bitcoin returns are regressed 
against order flow imbalance. In regressions when order flow imbalance is contempora-
neous and lagged, respectively, we see time varying performance in explanatory power; 
for example, when order flow imbalance is lagged by one trading day (t–1) for the 60-day 
window length, we see that in several cases it retains significance at the 5% level at least.

A preliminary exploration of whether lags beyond one trading day in order flow imbal-
ance can explain bitcoin returns is shown in the predictive regression analysis in Table 1. 
While a one trading day lag shows the highest R2 value compared to the other time hori-
zons, it is interesting to see how order imbalance retains its significance (at the 5% level) 
up to a 7-day lag. Afterwards, it appears that statistical significance diminishes.

2.2  Granger causality

To demonstrate the benefits that can be realized by using order flow imbalance, rolling 
Granger causality tests are also used. As shown in Fig. 4, and for rolling 60-day non-over-
lapping subsamples, order flow imbalance is evaluated to see whether it can Granger cause 
bitcoin returns.

Order flow imbalance ⟨OIt⟩ causes bitcoin returns ⟨rett⟩ in the Granger sense if current ret 
can be better predicted by including lagged values of OI while also considering past values 
of ret . Thus, order flow imbalance Granger causes returns if σ2(rett∕ret) > σ2(rett∕ret,OI) 
and whereby ret = {rett−1,… , rett−n} and OI = {OIt−1,… ,OIt−n} . The minimum pre-
dictive variance of rett extracted by regressing rett on ret and ret on OI is, respectively, 
σ2(rett∕ret) and σ2(rett∕ret,OI).

Implementing a rolling Granger causality test is advantageous in that it allows us to 
check, first, whether order flow imbalance Granger causes returns or vice versa, and, sec-
ond, to evaluate which of the two variables relative to one another possesses greater statis-
tical causality power. From Fig. 4, it is observed that there is time series heterogeneity in 
causality from OI to ret and vice versa. An important discovery here, however, is that OI 
Granger causes ret more frequently than vice versa. This provides some support for the use 

8 This observation point is associated with April 11, 2013. The reasons for why bitcoin crashed during 
this day and April 12, 2013 are still being debated. During these days, Mt. Gox halted trading and went 
offline in order to perform network maintenance following distributed denial-of-service (DDoS) attacks. 
This stirred uncertainty among cryptocurrency traders and whereby public attention on bitcoin peaked; 
news outlets suggested bitcoin has reached the point where it will crash (historical news articles can be 
accessed via Google News) while the Bitcoin subreddit became one of the most viewed around the world). 
While possibly unrelated, Satoshi Nakamoto’s final words to the bitcoin community in the volatile month of 
April 2013 were, “…I’ve moved on to other things…it’s in good hands now…”.
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of order flow imbalance as an important variable for trying to explain or foresee bitcoin 
price crashes. This finding also contributes to literature which indicates that bitcoin returns 
are a statistically dominant factor in explaining changes in other blockchain characteristics, 
such as transaction activity and bitcoin usage volumes, rather than vice versa (Koutmos 
2018; Li and Wang 2017).

Fig. 1  Time series plot of BTC price and order imbalance. This figure shows a time series plot of BTC 
price in USD (in red and left axis) and order imbalance (in black and right axis) for the sample period of 
April 1, 2013 until January 15, 2023. The data are sourced from the Bitstamp cryptocurrency exchange. 
Footnotes (14) and (15), respectively, discuss the data sample and sources in more detail (Color figure 
online)

Fig. 2  Scatter plot of BTC returns and order imbalance. This figure shows a scatter plot of BTC returns 
(expressed in decimal form and not in percentages on the left axis) against order imbalance (bottom axis) 
for the sample period of April 1, 2013 until January 15, 2023. A linear regression fit (in red) is estimated 
with an  R2 of 0.013 (expressed in decimal form) while the green line estimates a k-nearest neighbor regres-
sion fit. Confidence ellipses are in blue for each of the respective confidence levels. The data are sourced 
from the Bitstamp cryptocurrency exchange. Footnotes (14) and (15), respectively, discuss the data sample 
and sources in more detail (Color figure online)
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2.3  Extreme movements in bitcoin prices

The most common criticism against using bitcoin as a medium of exchange or as an invest-
ment vehicle is its unprecedented volatility, which far exceeds what is observable in tra-
ditional asset classes. In a 2018 speech, Lael Brainard, who is a member of the Board of 
Governors of the Federal Reserve System, argued that “…[b]itcoin’s value has been known 
to fluctuate by one-quarter in one day alone…such extreme fluctuations limit an asset’s 
ability…[to perform]…the functions of money…”9 Likewise, Schuhy and Shyz (2016) cite 
bitcoin’s price volatility as a barrier to adoption among risk-averse consumers.

Table  2 provides a basis for comparison between the distributional properties of bit-
coin’s price changes and those of other traditional assets. It shows the gravity of bitcoin’s 
crash risk and reports statistics for the entire sample that is subsequently used in this study 
(and which includes weekend price data) as well as for only weekdays (for the sake of com-
parison). The mean returns are expressed in percentages and thus the mean return for bit-
coin over the entire sample is about 0.1503% while a subsample which excludes weekend 
prices has a mean of about 0.1581%. This positive mean return is driven by the sustained 
price appreciations bitcoin has experienced throughout the sample period. The mean return 
for the entire sample (including weekends) is over three times higher than the Nasdaq 100 
E-mini, which has the next highest return among all the comparison assets. Overall, the 
mean returns of the other comparison assets over the sample period pale in comparison 

Fig. 3  Rolling regression p value estimates. This figure shows time series plots of p value estimates 
extracted from performing rolling regressions of bitcoin returns against order imbalance. The upper three 
graphs estimate a contemporaneous rolling regression, rt = a + b ∗ OIt + �t , across 30-, 60- and 90-day 
non-overlapping rolling windows, respectively. The lower three graphs estimate a lead-lag rolling regres-
sion, rt = a + b ∗ OIt−1 + �t , for each of the aforementioned non-overlapping window lengths. r and OI are 
bitcoin returns and order imbalance, respectively. The horizontal dashed blue and red lines are drawn across 
the 0.05 and 0.10 tick marks, respectively, and represent significance at the 5% and 10% levels. The sample 
period is from April 1, 2013 until January 15, 2023. The data are sourced from the Bitstamp cryptocurrency 
exchange. Footnotes (14) and (15), respectively, discuss the data sample and sources in more detail (Color 
figure online)

9 The speech is publicly available online: https:// www. feder alres erve. gov/ newse vents/ speech/ brain ard20 
18051 5a. htm.

https://www.federalreserve.gov/newsevents/speech/brainard20180515a.htm
https://www.federalreserve.gov/newsevents/speech/brainard20180515a.htm


133Nowcasting bitcoin’s crash risk with order imbalance  

1 3

to bitcoin’s mean returns. Two-sample t-tests for differences of means, assuming unequal 
variances, are performed (not tabulated) and show that bitcoin historically outperformed 
the other asset classes and by a significant margin.

This outperformance, however, comes with materially higher volatility and tail risks for 
investors. The value-at-risk (VaR) and modified VaR (MVaR) calculations for bitcoin far 
exceed what is calculated for the other assets.10 Similarly to what is observed in financial 

Table 1  Predictive regression 
analysis

This table reports ordinary least squares estimation results 
for a , b , and R2 statistics for the predictive regression, 
rt→t+h = � + b ∗ OIt + �t→t+h , where r and OI are bitcoin returns and 
order imbalance, respectively. The sample period is from April 1, 
2013 until January 15, 2023. The data are sourced from the Bitstamp 
cryptocurrency exchange. Footnotes (14) and (15), respectively, dis-
cuss the data sample and sources in more detail. Newey-West heter-
oskedasticity- and autocorrelation-robust t-statistics are shown in 
parentheses, while the last column reports R2 across each of the hori-
zons. Coefficients in bold denote significance at the 5% level at least (p 
value ≤ 0.05)

Horizon a b R2 (%)

0  − 0.0008
(− 1.08)

0.0522
(5.184)

1.320

1  − 0.0012
(− 1.645)

0.0157
(6.165)

1.052

2  − 0.0003
(− 0.438)

0.0103
(4.026)

0.452

3  − 0.0004
(− 0.052)

0.0083
(3.251)

0.295

4  − 0.0001
(− 0.076)

0.0084
(3.283)

0.301

5  − 0.0003
(− 0.372)

0.0096
(3.769)

0.396

6  − 0.0001
(− 0.098)

0.0084
(3.279)

0.300

7 0.0001
(0.109)

0.0074
(2.890)

0.233

12 0.0006
(0.663)

0.0057
(1.936)

0.158

24 0.0009
(1.098)

0.0024
(0.845)

0.031

36 0.0012
(1.295)

0.0016
(0.554)

0.004

10 VaR is estimated as: VaR = W

�
�Δt − n�

√
Δt

�
 whereby � is the mean return (ret) ; W is the value of the 

portfolio; n is the number of standard deviations depending on the confidence level; � is the standard devia-
tion; Δt is the time window. MVaR integrates skewness (S) and excess kurtosis (K) of bitcoin returns and is 
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− 3 . More discussion on the estimation of such VaR and Sharpe models can be 
found in Gregoriou and Gueyie (2003) and Signer and Favre (2002). Iqbal et al. (2020) provide an discus-
sion of some of their alternative distributional extensions.
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time series data, bitcoin returns exhibit negative skewness and excess kurtosis. This nega-
tive skewness is not particularly sizable relative to what is observed with the comparison 
asset returns and, while bitcoin returns are noticeably leptokurtic, the DJIA E-mini and 
S&P GSCI crude oil commodity index, respectively, actually exhibit a higher degree of 
kurtosis risk.

Bitcoin’s high volatility risk penalizes its high historical mean returns, thus leading to 
an estimate for its risk-adjusted returns (Sharpe and modified Sharpe ratios, respectively) 
that is even lower than what is estimated for, say, the Nasdaq 100 E-mini.11 Thus, investors 
seeking to hold bitcoin in order to gain from its price appreciation must also be willing to 
stomach its high volatility risk.

In this study, a bitcoin price crash (Crash) is defined as a return (rett) that lies one stand-
ard deviation or more below the sample mean:

This serves as our definition of a bitcoin crash and, as shown in Fig. 5, approximately 
8.89% (N = 318) of the return observations lie one standard deviation or more to the left 

(1)Crash =

{
1 if rett ≤ ret − 1SD(ret)

0 if otherwise

Fig. 4  Rolling Granger causality p value estimates. This figure shows time series plots of p value estimates 
extracted from 60-day non-overlapping Granger causality regressions between returns and order imbalance. 
The p value tests the null hypothesis that there is no Granger causality from returns to order imbalance and 
vice versa. In green, we see whether order imbalance Granger causes returns (OI → r) . In orange, we see 
whether returns Granger cause order imbalance (r → OI) . The null hypothesis of no causality is rejected 
more frequently in the case of OI → r . On average, the p-value for the case of OI → r is 0.2161 while for 
r → OI it is 0.4453. The horizontal dashed blue and red lines are drawn across the 0.05 and 0.10 tick marks, 
respectively, and represent significance at the 5% and 10% levels. The sample period is from April 1, 2013 
until January 15, 2023. The data are sourced from the Bitstamp cryptocurrency exchange. Footnotes (14) 
and (15), respectively, discuss the data sample and sources in more detail (Color figure online)

11 The Sharpe ratio is estimated as (rett − rf )∕σ while the modified Sharpe ratio is estimated as 
(rett − rf )∕MVaR . The holding period return for the 1-month treasury bill is used as a proxy for the risk-
free rate, rf . For bitcoin returns (the entire sample which includes weekends and thus requires weekend data 
for rf  ), a moving average is used to fit in the missing data. Treasury return data from Professor Kenneth 
French’s data library are used in this study; see https:// mba. tuck. dartm outh. edu/ pages/ facul ty/ ken. french/ 
data_ libra ry. html.

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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1 3

of the sample mean. Our full sample period, which we describe further in Sect. 3, is from 
April 1, 2013 until January 15, 2023 (N = 3577). Thus, a return of about − 3.57% or less is 
classified as a bitcoin crash in our study.

Choosing a one standard deviation length to the left of the sample mean requires strik-
ing a balance between two opposite constraints. On the one hand, it is necessary to have a 
sufficient sample of observations for which we can test the statistical explanatory power of 
the variables used in this study and their ability to nowcast. On the other hand, and from an 
investor’s point of view, a daily return of − 3.57% may not necessarily be reason for alarm 
considering the nature of bitcoin’s price behavior.

When isolating returns which we classify as bitcoin crashes and checking their distribu-
tional characteristics (untabulated for brevity but available upon request) we find the fol-
lowing. First, several of these negative returns are grouped together within at least one 
week apart. This means that within one trading week, an investor can lose about 10–20% 
on average if they were holding bitcoin during a crash episode. Second, a significant por-
tion of these total crash observations are daily returns which are at least − 7.00% (this 
is the mean of all “crash” returns). Thus, in order to maintain a sufficient subsample of 
crash observations, and in light of the fact that crash observations tend to cluster together 
and, therefore, early detection of an initial crash observation is useful, this study classifies 
returns that are one standard deviation or more in length to the left of the sample mean.

Since our study is concerned with modeling extreme values to the left of the return 
distribution, our methodological approach is motivated by extreme value theory (EVT) as 
a tool for describing the probabilistic characteristics of extreme events—in our case here, 
the extreme events are bitcoin crashes. It is worth noting that various other branches of sci-
ence, such as materials engineering, climatology and hydrology, as well as sociology, to 
name a few, have been concerned with the empirical modeling of extreme observations in 
order to answer questions such as12: What is the probability of a flood, or, drought? What 
is the probability of a heat wave? What is the probability that a part within a machine or a 
system will fail?

These types of questions are concerned with estimating the probabilities of sample 
extrema (maxima or minima), which lie in the tails of the distribution. Unlike the central 

Fig. 5  Frequency histogram of 
BTC returns. This figure shows a 
frequency (left axis) histogram of 
BTC returns (expressed in deci-
mal form and not in percentages 
on the bottom axis). The sample 
period is from April 1, 2013 until 
January 15, 2023. The data are 
sourced from the Bitstamp cryp-
tocurrency exchange. Footnotes 
(14) and (15), respectively, dis-
cuss the data sample and sources 
in more detail. Approximately 
8.89% of observations lie to the 
left of − 1σ

12 See Chavez-Demoulin and Davison (2005) and references therein on using the GEV distribution to 
model extreme temperatures. From an engineering view, Toshkova et al. (2020) discuss how it can be used 
as a warning system to detect failures in a mechanical system.
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limit theorem which is concerned with describing the sample mean, EVT is concerned 
with measuring the shape and thickness of a distribution’s tails, thus enabling accurate 
probabilistic measurements of extreme outcomes. According to EVT, the asymptotic distri-
bution of extrema can be described by the Gumbel, Fréchet, or Weibull limit distributions 
depending on the shape parameter of the tail, which we will denote as � for our immediate 
discussion (Coles et  al. 2001). Jenkinson (1955) lays the foundation for the generalized 
extreme value (GEV) distribution, which combines each of these three limit distributions 
into a single family of models.

Given we are working with bitcoin returns, and since we are seeking to model 
the probabilistic distribution of minima (bitcoin crashes), we have the following: 
M̃n = min{ret1,… , retn} , where a given ret represents a daily return that is independ-
ent and identically distributed (iid).13 Now, if we let Yi = −Xi for i = 1,… , n , then 
the change of sign means small values of Xi correspond to large values for Yi . Thus, if 
M̃n = min{X1,… ,Xn} and Mn = max{Y1,… , Yn} , then M̃n = −Mn . For our sample of n , 
and since we are modeling minima, the GEV distribution is expressed as

on 
{
z ∶ 1 − 𝜉(z − �𝜇)∕𝜎 > 0

}
 , where �̃ = −� . The shape parameter � determines whether 

we obtain the Gumbel (� = 0) , Fréchet (𝜉 > 0) , or Weibull (𝜉 < 0) distribution. Of the three 
limit distributions, the Weibull distribution has no tail because after a certain point there 
are no extrema and, while the Fréchet distribution has a fat and slowly decreasing tail, the 
Gumbel distribution has a thin and rapidly decreasing tail. The independent standard vari-
able z is reduced by the location parameter � and scale parameter �.

Maximum likelihood estimation (MLE) is utilized in this study to estimate parameters 
for the GEV distribution. MLE is shown to provide unbiased estimates with minimal vari-
ance (Coles et al. 2001). Smith (1985) shows the efficacy of MLE across a range of esti-
mates for � . Extant studies seeking to describe probabilistic outcomes of extrema, such as 
those mentioned in Footnote (12), use MLE for a wide range of applications. In this study, 
and in order to estimate parameters for our GEV distribution, MLE is performed using the 
optimization algorithm of Berndt et al. (1974).

3  Data and regression models

In order to nowcast bitcoin’s price crash risk, this study posits a series of regression models 
that combine order imbalance with control variables that serve as a description of exchange 
trading activity and shifts in blockchain activity. The purpose is to estimate the probability 

(2)

Pr
{
M̃n ≤ z

}
= Pr

{
−Mn ≤ z

}

= Pr
{
Mn ≥ −z

}

= 1 − Pr
{
Mn ≤ z

}

≈ 1 − exp
{
−
[
1 + 𝜉(−z − 𝜇)∕𝜎

]−1∕𝜉}

= 1 − exp
{
−
[
1 − 𝜉(−z − �̃�)∕𝜎

]−1∕𝜉}

13 Smith (1985) shows that an iid assumption is not a necessary requirement for modeling probabilistic out-
comes of extrema with limit distributions. See Coles et al. (2001) as well as the references in Footnote (12) 
for discussions on modeling maxima.
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of a bitcoin price crash, as defined in Eq. (1), using the GEV model in Eq. (2). In addition, 
a logistic model is also used to allow for cross-model comparisons.

The data variables, described in Table 3, are either exchange-specific or are blockchain-
wide and reflect the health or activity of the entire blockchain. The exchange-specific 
variables consist of order imbalance (OI) , along with following control variables: range 
volatility (RV) , trading volume (VOL) , and trades per minute (TPM) , respectively. The 
blockchain-wide variables consist of generated coins (COIN) , active addresses (ADDR) , 
transaction fees (FEE) , mining revenue (REV) , and block count (BLOC) , respectively.

The data for OI are sourced from Bitstamp, a major cryptocurrency exchange that has 
gained popularity in recent years for its relatively low transaction fees and the ability to 
trade fiat currencies with bitcoin as well as other cryptocurrencies.14 The data contains 
historical tick-by-tick information on the order book for the Bitstamp exchange. A cryp-
tocurrency exchange’s order book is the list of orders (buys and sells) at various prices for 
a particular cryptocurrency (in our case, bitcoin). Among the many services they provide, 
cryptocurrency exchanges use a matching engine that, at any given time, determines which 
orders in the flow are to be fully (or partially) executed depending on supply and demand.15 
At any given time, an imbalance can occur in the order book if there is a mismatch in buy 
and sell orders at given price points. In this study, we aggregate this tick-by-tick data to 
create a daily time series of OI , as mentioned in Sect. 2.1 and shown in Fig. 1, to estimate 
price crash probabilities. The Bitstamp exchange is used for empirical testing because it is 
one of the largest cryptocurrency exchanges and one that has, comparably speaking, a long 
history within the cryptocurrency community of investors (it presently offers active mar-
kets for a wide range of cryptocurrencies).16

The remaining exchange-specific data variables are obtained from Bitstamp using APIs 
and are discussed in turn. (1) RV  is the range volatility estimated from the highest and low-
est bitcoin (BTC) price for the day (quoted in US dollars): ln(High) − ln(Low) . Because 
higher volatility risk is linked with thicker tails in the distribution of price changes, it is 
expected that it should increase the probability of a bitcoin crash. (2) VOL is the total USD 
value of trading volume. The time series movements in volume reflect the stochastic arrival 
of news and information into the market and the subsequent incorporation of this news 
in asset prices (Black et al. 2023). For conventional investment assets, such as equities or 
index funds, a strong contemporaneous link is often shown between trading volume and 
return volatility. Following Clark (1973) and Tauchen and Pitts (1983), empirical speci-
fications of the volume-volatility relation are motivated by the mixture of distribution 
hypothesis (MDH), which posits a joint dependence of returns and volume on a common 
latent information flow variable. Given this joint dependence structure, and in light of the 
positive volume-volatility relation that is often found with traditional asset classes, it is 
expected that increases in trade volume will be associated with higher volatility and, there-
fore, a higher probability of a bitcoin crash. This may or may not be the case however given 
differences in bitcoin’s technological ecosystem or the degrees of risk aversion among its 

14 See https:// www. bitst amp. net/ api/# order- book. Trading days with suspensions or other such trading fric-
tions are omitted. Consequently, and in all, less than 1% of observations are omitted. One such particular 
example is on January 6, 2015 (and several trading days thereafter), whereby Bitstamp temporarily sus-
pended service due to a hack.
15 An example of a live order book can be found here: https:// www. bitst amp. net/s/ webapp/ examp les/ order_ 
book_ v2. html.
16 The Bitstamp exchange enables investors to trade a range of cryptocurrencies (https:// coinm arket cap. 
com/ excha nges/ bitst amp/).

https://www.bitstamp.net/api/#order-book
https://www.bitstamp.net/s/webapp/examples/order_book_v2.html
https://www.bitstamp.net/s/webapp/examples/order_book_v2.html
https://coinmarketcap.com/exchanges/bitstamp/
https://coinmarketcap.com/exchanges/bitstamp/
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investors. (3) TPM is the average number of trades per minute. This serves as a proxy for 
the velocity, or, intensity of news that flows to the market. During periods of accelerating 
investor attention in bitcoin stemming from news, both positive or negative, it is expected 
that TPM will rise.

Unlike the aforementioned variables which are specific to Bitstamp, the blockchain-
wide variables used here reflect the overall health of bitcoin’s ecosystem. They are not spe-
cific to an exchange but rather describe various characteristics in bitcoin’s blockchain.17 
Such variables reflect network activity and health in the overall bitcoin blockchain and, 
insofar as bitcoin market prices depend on exchange-specific idiosyncrasies such as liquid-
ity and platform security, affect market prices and the demand for bitcoin across all the 
many exchanges.

These blockchain-wide variables are now discussed in turn. (1) COIN is the number of 
new bitcoins generated through mining. Unlike fiat currencies, whose quantity is deter-
mined by central banking policies, bitcoin’s supply is limited to 21 million. Specifically, 
bitcoins are minted whenever a miner discovers a new block. The number of generated and 
newly minted bitcoins per block began at 50 and has been set to decrease geometrically, 
with a halving taking place in the generated coins every 210,000 blocks (approximately 
every 4  years). Thus, the cumulative supply of bitcoin can be expressed as �∑32

i=0
210, 000

�
50 ∗ 108∕2i

��
∕108 . The level of difficulty of the mathematical problem for 

hashing blocks is adjusted in order to maintain a constancy of about 6 blocks per hour. The 
reason for this limit in bitcoin’s supply has never been directly addressed in Nakamoto 
(2008). Some speculate that this corresponds with a four year reward halving arrangement. 
Others posit philosophical rather than empirical or technical reasons and note that if one 
were to form a cube of all the gold ever mined globally, each side would have a length of 
approximately 21  m.18 Whatever the reason may be, the supply of bitcoins generated 
through mining are an important determinant of value. (2) ADDR is the number of active 
bitcoin addresses. An address is a unique identifier that serves as a destination for a bitcoin 
payment. It is akin to an email address, which is required in order to send or receive an 
email. From the perspective of telecommunications and computer network value theory, 
each additional unique address that participates in transactions within bitcoin’s ecosystem 
contributes nonlinearly to the value of the overall bitcoin network (see Footnote 5). (3) 
FEE is the average fees that miners earn to process transactions. In the bitcoin ecosystem, 
miners compete to verify transactions and will naturally prioritize transactions that have 
larger transaction fees appended to them (relative to the size of the transaction). An inter-
esting feature of the bitcoin network is that transaction fees are voluntary and, while send-
ers of bitcoin are not required to submit a payment, miners are not required to verify and 
process transactions. If a bitcoin payment has been submitted with too small of an 
appended fee for the miners (or no fee at all), the transaction is likely to sit in the pool of 
unconfirmed transactions, known as the mempool, or, will not be confirmed and thus not 
be added to the blockchain. There are many publicly available online calculators that help 
bitcoin users estimate a (optimal) fee which they can append to their payments (depending 

17 See blockchain.com/charts for market data, block details, mining information, and network activity, 
respectively.
18 See updated data from the World Gold Council here https:// www. gold. org/ about- gold/ gold- supply/ gold- 
mining/ how- much- gold.

https://www.gold.org/about-gold/gold-supply/gold-mining/how-much-gold
https://www.gold.org/about-gold/gold-supply/gold-mining/how-much-gold
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on transaction size and how quickly they want their transaction to be confirmed).19 (4) REV  
is the sum of block rewards and transaction fees earned by all miners from validating trans-
actions as well as discovering new blocks. When the number of bitcoins approaches the 
supply limit of 21 million, miners will only be able to earn a reward for verifying transac-
tions to append to blocks. (5) BLOC is the number of blocks that are discovered by miners. 
Blocks contain information about transactions that take place among users (such as, for 
example, when a transaction took place, the amount and the participants). The computa-
tional work of miners hashes blocks (to distinguish them from other blocks) and to connect 
them to the blockchain, which at that point become immutable records. Miners “discover” 
blocks when they solve the hash function in order to append blocks to the blockchain. It 
takes approximately 10 min on average for blocks to be discovered.

In addition to order imbalance ( OI ), each of the three exchange-specific variables ( RV  , 
VOL and TPM ) and blockchain-wide variables ( COIN , ADDR , FEE , REV  and BLOC ) 
should serve as important determinants of bitcoin’s value. Table  3 also shows the data 
transformation that is performed to ensure that each of the time series are stationary for the 
upcoming analysis. For example, while OI and RV  are stationary and are used in their level 
( lv ) form, first-differences in the natural logs ( Δln ) of ADDR , FEE and REV  , respectively, 
are used to induce stationarity. The natural logs ( ln ) are applied to the remainder of the 
variable series ( VOL , TPM , COIN and BLOC , respectively). The frequency of all the data 
is daily and includes weekend observations (7-days a week).

Their expected sign in explaining the probability of a bitcoin crash is also shown in 
Table 3. For example it is expected that, everything else equal, rises in buy orders, and thus 
a rise in OI , is expected to decrease the probability of a bitcoin crash (hence the negative 
sign in Table 3). A rise in volatility, RV  , for example, should increase the probability of 
crash risk, especially since bitcoin returns are negatively skewed and leptokurtic (as shown 
in Table 2). For other variables, such as VOL , we may be less confident in surmising what 
the relation is a priori. If extant literature of the volume-volatility relation of well-known 
asset classes is any guide, we know that trading volume is positively related to volatility 
(Lamoureux and Lastrapes 1990). If volume is linked with higher volatility, and, if higher 
volatility is expected to be linked with higher crash risk, it is then expected that rises in 
volume should be linked with a higher probability of crash risk. But this may not be the 
case with bitcoin given how its microstructure is different from that of, say, equities and 
bonds. It is also possible that rises in volume are associated with enhanced liquidity and 
thus a lower probability of a price crash. A priori, and similar also to VOL , it is not obvious 
the sign which TPM will exhibit in our regression tests.

Similar to VOL , and of the blockchain-wide variables, it is not self-evident a priori what 
sign ADDR will have. While rises in the number of addresses means more users (and this 
should result in a rise in the value of the bitcoin ecosystem) it can also mean more nefari-
ous nodes, or networks of nodes, which are engaged in ransomware, cryptocurrency laun-
dering, or other forms of cybercrime (Turner et al. 2020). Rises in FEE and REV  , respec-
tively, reflect increases in the demand for services provided by miners. This likely serves 
as an indication of growing transaction activity in the Bitcoin blockchain, and, a priori, 
a growing ecosystem. BLOC also represents blockchain activity, since with the computa-
tional problem-solving of miners, new blocks are discovered and transactions are appended 

19 See https:// www. buybi tcoin world wide. com/ fee- calcu lator/. More description of the mining process, its 
importance and the role of fees can be found here: https:// suppo rt. block chain. com/ hc/ en- us/ artic les/ 36000 
09399 03- Trans action- fees.

https://www.buybitcoinworldwide.com/fee-calculator/
https://support.blockchain.com/hc/en-us/articles/360000939903-Transaction-fees
https://support.blockchain.com/hc/en-us/articles/360000939903-Transaction-fees
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to the blockchain. The difficulty of the computational problem is adjusted every 2016 
blocks to hold steady the rate at which blocks are generated. In the continuous limit of 
bitcoin’s mining activity, and like COIN , the computational power, on average, has a ten-
dency to rise, while periods where it does decline signals an exodus of miners in the race 
to discover blocks and, ultimately, to mine new coins.20 Whereas rises in BLOC can signal 
network activity, it also signals a rise in computational difficulty and a marginally declining 
rate at which newly minted bitcoins are minted. In the limit, mining will be cost prohibitive 
for most miners and the network will rely on transaction fees to operate. As such, a positive 
coefficient is postulated for BLOC.

Pairwise correlations of each of the transformed variables is shown in Table 4. The vari-
ables’ correlation with bitcoin returns is also shown in the first column (and row) of the 
table as a preliminary check of comovement between the respective transformed variables 
and bitcoin returns. Among all the pairwise correlations, the highest negative correlation is 
between COIN and TPM (− 0.7230). However, rolling window correlations between them 
(not tabulated) show considerable time variability in the correlation dynamics between 
these variables. Conversely, among all the pairwise correlations, REV  and BLOC have the 
highest positive correlation (0.4408).

The regression models we posit aim to, first, provide perspectives of the how order 
imbalance is linked to crash risk probabilities and, second, to see whether the statistical 
sign and magnitude of OI is robust with the inclusion of exchange-specific and blockchain-
wide control variables:

where Crash is defined in Eq. (1) and whereby Eqs. (3.1) through (3.6) are estimated using 
the GEV probability distribution function for minima, as shown in Eq.  (2). The variable 
�2
{
OIt−1

}
 denotes the conditional variance of lagged OI , whereby the variance is esti-

mated and fitted using a standard GARCH model. This variable reflects uncertainty, or, an 
imbalance between informed and uninformed traders (Chordia et  al. 2019). Inclusion of 

(3.1)Crasht = �1,0 +1,1 OIt + �1,t

(3.2)Crasht = �2,0 + �2,1OIt−1 + �2,t

(3.3)Crasht = �3,0 + �3,1OIt + �3,2OIt−1 + �3,t

(3.4)Crasht = �4,0 + �4,1OIt−1 + �4,2�
2
{
OIt−1

}
+ �4,t

(3.5)

Crasht = �5, 0 + �5, 1OIt + �5, 2OIt−1 + �5, 3�2
{
OIt−1

}
+…

…+ �5, 4RVt + �5, 5VOLt + �5, 6TPMt + �5, 7COINt +…

…+ �5, 8ADDRt + �5, 9FEESt + �5, 10REVt + �5, 11BLOCt + �5,t

(3.6)

Crasht = �6, 0 + �6, 1OIt + �6, 2�2
{
OIt−1

}
+ �6, 3RVt + �6, 4VOLt +…

…+ �6, 5TPMt + �6, 6COINt + �6, 7ADDRt +…

…+ �6, 8FEESt + �6, 9REVt + �6, 10BLOCt + �6,t

20 See https:// www. block chain. com/ charts/ diffi culty.

https://www.blockchain.com/charts/difficulty
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this variable in our tests controls for information asymmetry at time t − 1 . For the sake of 
comparison, Eqs. (3.1) through (3.6) are also estimated using a logistic model

where � is the odds of a bitcoin crash, as defined in Eq. (1), for each of the i models in 
Eqs. (3.1) through (3.6) and for all the respective x covariates. Equation (4) can be written 
in terms of the odds of a crash, where �i = 1∕

(
1 + exp

(
�i

))
.

The reason for the comparison between GEV and logistic regression modeling is moti-
vated by differences in the link function structures between the two. Logistic link functions 
are symmetric in nature. This implies that the slope probability of approaching Crash = 1 
is equal to the slope probability of approaching Crash = 0 . As Wang and Dey (2010) 
argue, first, market observations often depart from such symmetries and, second, the GEV 
link function effectively detects such departures and can adjust the shape parameter � , as is 
discussed in Eq. (2).

4  Main results

This section discusses parameter estimates for Eqs.  (3.1) through (3.6), when estimated 
using GEV and logistic regression approaches, respectively (Sect. 4.1.). The purpose here 
is threefold. First, to evaluate the signs and statistical significance of the coefficients and 
assess to what extent they depart from our a priori expectations. Second, to compare the 
performance of the logistic and GEV regressions, respectively, for accuracy as well as for 
robustness in the parameter estimates. Third, and as discussed in Sect. 4.2., to construct 
time varying probability estimates for bitcoin price crashes and assess how well they statis-
tically perform.

Apart from helping us understand how activity in bitcoin’s market microstructure is 
linked to extreme price movements, this analysis is also useful from a risk management 
perspective in that it lays a potential foundation for trying to build an early warning sys-
tem for a bitcoin price crash. This is useful to not only investors but to the growing num-
ber of companies and organizations that accept bitcoin for payment for goods or services 
rendered.21 Thus, depending on its fraction of consumers using bitcoin, a company’s cash 
flows inevitably have some degree of exposure to bitcoin crash risk. In addition, this analy-
sis is useful from a regulatory standpoint, especially in light of the increasing number of 
initial coin offerings (ICOs) and initial exchange offerings (IEOs) that have attracted large 
sums of money from investors from cryptocurrency exchanges.22 Finally, because there is 
much discussion as of late regarding the price level of bitcoin and if it resembles that of a 
bubble, it is beneficial to see how the aforementioned variables contribute to bitcoin’s crash 
probability and whether the signs of their contributions align, to some extent, with our a 
priori intuitions.

(4)logit
(
�i
)
= ln

(
�i∕

(
1 − �i

))
= �i,0 +

∑p

j=1
�jxji = �i

21 Major companies such as Microsoft, Overstock, and Newegg are beginning to accept bitcoins for some 
(or all) of their goods and services. A list of such companies can be found here: https:// paybis. com/ blog/ 
compa nies- that- accept- bitco in/.
22 See https:// www. sec. gov/ oiea/ inves tor- alerts- and- bulle tins/ ia_ initi alexc hange offer ings.

https://paybis.com/blog/companies-that-accept-bitcoin/
https://paybis.com/blog/companies-that-accept-bitcoin/
https://www.sec.gov/oiea/investor-alerts-and-bulletins/ia_initialexchangeofferings
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4.1  Regression estimates

Regression estimates for Eqs. (3.1) through (3.6) are shown in Table 5 using the logistic 
and GEV frameworks in Eqs. (2) and (4), respectively. From an econometrical stand point, 
it is of interest to compare the nowcasting performance of the GEV relative to the logistic 
regression since, as mentioned previously, its link function is asymmetric while the logistic 
link function is symmetrical around the value of 0.50. This means that the probability of a 
binary event can approach zero (Crash = 0) at the same rate in which it can approach one 
(Crash = 1).

To evaluate goodness-of-fit and performance, the following summary measures are 
shown: the McFadden Pseudo-R2 , root-mean-squared error (RMSE), mean absolute error 
(MAE), mean absolute percentage error (MAPE), and the Theil inequality coefficient (U), 
respectively, defined as:

where Crash and Ĉrash are the actual and the predicted binary dependent variable signify-
ing whether a crash has occurred, as defined in Eq. (1).

The coefficient estimates shown in Table 5 are standardized for the very fundamental 
reasons outlined in Mayer and Younger (1976) and Menard (2004, 2011), among oth-
ers. Specifically, standardized coefficients transform the variables into a common metric 
(which, in this case, are standard deviation units). Given that our variables (as shown in 
Table 3) represent different information content, come from different sources, and exhibit 
dissimilar scales in their time series behaviors, it is appropriate to estimate standardized 
coefficients to allow for meaningful comparisons. Furthermore, and as discussed in Menard 
(2004, 2011), and under certain circumstances, standardized coefficients in binary regres-
sion-type models can also allow for some comparisons in the relative strength between two 
or more variables.

Table 5 thus reports findings for Eqs. (3.1) through (3.6), which respectively shed unique 
light on the role which the variables play in the probability of a bitcoin price crash. Column 
1 (Eq. (3.1.)) for the logistic and GEV regressions, respectively, shows a negative coefficient 
(for �1,1 ) and that as order imbalance rises in value (B > S) the probability of a bitcoin price 

(5)R2
McFadden

= 1 − l
(
�̂
)
∕l
(
�̃
)

(6.1)RMSE =

√√√√ T+h∑
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(
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)2

∕h

(6.2)MAE =
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crash declines. This finding is consistent with both the logistic regression and the GEV esti-
mation, albeit the value of the coefficient is higher in absolute terms for the logistic model. 
The McFadden R2 estimates (in percent) are 0.182 and 0.183 for the logistic and GEV regres-
sions, respectively. These values are relatively low, despite the significance of the coefficients 
at the 5% statistical level, and denote the challenges which empiricists face in trying to explain 
the variation of bitcoin prices.

We can also observe how the coefficient �2,1 , which denotes lagged order imbalance, main-
tains its significance at the 5% level. This shows that order imbalance, even in its lagged form, 
contains important information that has some predictive capabilities. In spite of its signifi-
cance, the McFadden R2 estimates remain relatively low, as in �1,1 , for both the logistic and 
GEV regressions. As we incorporate coefficients for both the contemporaneous and lagged 
order imbalance variables (in Eq. (3.3)) as represented by �3,1 and �3,2 , respectively, we see that 
lagged order imbalance maintains its negative sign. The McFadden R2 increases only margin-
ally when estimating Eq. (3.3) for both the logistic and GEV regressions. When we integrate 
the lagged conditional variance of order imbalance, �2

{
OIt−1

}
 , as shown in Eq. (3.4), we see 

a small rise in the McFadden R2 for both the logistic (0.337) and the GEV (0.336) regression 
models. As mentioned, �2

{
OIt−1

}
 is intended to capture the uncertainty component associ-

ated with buy and sell orders. Postulating on its sign, a priori, may not be entirely possible, as 
it is for traditional asset classes (Chordia et al. 2019), given the speculative forces that under-
lie bitcoin’s price movements. In our case here, �4,2 bears a negative sign, meaning that rises 
in the conditional variance of limit orders actually reduces the probability of a bitcoin price 
crash. This result is an interesting one and merits further investigation; but a possible explana-
tion is that the variance in the order book may be linked to speculative behaviors and price 
appreciations. The pairwise correlation (not tabulated for brevity) between �2

{
OIt−1

}
 and bit-

coin returns and the range volatility (RV) in bitcoin prices is, respectively, − 0.06 and − 0.08. 
While its correlation with returns merits more investigation, it does appear, at first glance, that 
there is some negative relation with bitcoin’s price volatility.

In Eqs. (3.5) and (3.6), we expand our model with all the variables; whereby the difference 
between these two equations is that (3.5) also contains lagged order imbalance, OIt−1 , whereas 
(3.6) does not. We see that the McFadden R2 estimates are highest for Eq. (3.5) and are 30.740 
and 29.953 for the logistic and GEV regressions, respectively. When examining some of the 
other microstructure variables, we see interesting relations unfold. As postulated in Table 3, 
we see, for example, that rises in range volatility (RV) , trading volume (VOL) , and block count 
(BLOC) , are linked to a rise in the probability of a bitcoin price crash. Conversely, and, as 
mentioned, similarly to order imbalance in its contemporaneous and lagged form, as well as 
its conditional variance, rises in mining revenue (REV) are negatively related to the probability 
of a bitcoin price crash. The results in Eq. (3.6) for both the logistic and GEV regressions, 
respectively, yield somewhat similar qualitative conclusions, despite a lower McFadden R2 
than what was observed when compared with the estimation of Eq. (3.5).

When observing the goodness-of-fit statistics of all the models ( RMSE , MAE , MAPE , and 
U , respectively), we see that the logistic and GEV regressions performed similarly, with no 
indication of one significantly outperforming the other.

4.2  Nowcasting accuracy

If we turn our attention to Table  6 which shows the trade-off between the proportion 
of false positives, whereby Crash = 0 but the model predicted a price crash, and, false 
negatives, whereby Crash = 1 and the model did not predict a price crash, we see some 
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interesting dynamics emerge. First, and due to the explosive nature of bitcoin prices, 
the probability cutoffs, C , cannot be too high. While other studies which utilize binary-
type regression models for conventional assets may report results with probability cut-
offs at 0.50 or higher, this does not seem possible with bitcoin prices. In fact, and as 
shown in the table, when using a cutoff of 0.10 (i.e., C = 0.10 ), the false negative rate is 
estimated to be 90.26% (for Model 3.4 when using the logistic regression, as shown in 
Panel A). This is an important finding because it shows the explosive nature of bitcoin 
price changes makes them difficult to model empirically, or, classify, in early warning 
systems that use binary-type regressions.

While it is false negatives that can be more devastating than false positives, Table 6 
and Panel A (which shows results for Model 3.4) shows we need to be careful in trying 
to select an optimal cutoff threshold that can fit the data well. For example, and for both 
the logistic and GEV regressions in Panel A, a probability cutoff of 0.08 (i.e., C = 0.08 ) 
classifies 75% of crash days correctly and 25% of crash days incorrectly. While this is a 
promising result, we also see that, for C = 0.08 , we have a high degree of false positives 
(approximately 72%).

When looking at Panel B of Table  6 (which shows results for Model 3.6), we see 
that, relative to Model 3.4, there is a significant improvement in correctly classifying 
crash days across all the cutoff periods. For example, and for C = 0.07 , we see that the 
GEV regression correctly classified 88.96% crash days (Crash = 1) and 69.95% non-
crash days (Crash = 0).

Panel C of Table  6 summarizes all the marginal advantages (or, disadvantages) of 
using Model 3.6 over Model 3.4. Overall, the results strongly favor the extended model 
of 3.6.

These findings show that, due to the explosive nature of bitcoin prices, assigning a 
low probability cutoff maximizes the usefulness of our proposed models and increases 
the chance of successfully detecting trading days with bitcoin price crashes. The explo-
sive nature of bitcoin prices, as portrayed in Table 2, is well-documented in academic 
literature (Cheah and Fry 2015) and by regulators (United States Senate 2013).

Finally, and in an attempt to begin discourse on developing a fragility index for bit-
coin, Fig. 6 shows a time series plot of the probability of a bitcoin price crash, using 
Eq.  (3.6). For illustrative purposes, and using the logistic regression, the regression 
coefficients that are found to be significant are utilized for this purpose (as shown in 
Table 5). These estimates can be used to create a time series model of the probability 
of a bitcoin crash, as follows (transformation of variables, as mentioned, are found in 
Table 3):

The time series plot, with shaded regions denoting an actual crash, as defined in Eq. (1), 
show rises during periods when bitcoin’s prices experienced crashes. One notable example 
is the December 2017 period when bitcoin futures were introduced and bitcoin experienced 
consistent price declines over multiple trading days.

(7)

P
�
Crash =

1

X

�
=

⎡
⎢⎢⎣

exp(−0.8464OIt − 0.3175�2
�
OIt−1

�
+ 0.1731RVt

+1.7503VOLt + 0.4491TPMt − 0.8136COIN + 0.2324ADDR

−0.3286FEE − 0.6375REVt + 0.3405BLOCt)

⎤⎥⎥⎦
⎡⎢⎢⎣

1 + exp(−0.8464OIt − 0.3175�2
�
OIt−1

�
+ 0.1731RVt
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5  Concluding remarks

This study takes a step in developing a fragility index for bitcoin on the basis of its 
price crash risk. It utilizes logistic and GEV regression models in order to begin paint-
ing a clearer picture in terms of what variables are relevant in trying to forecast (or, 
nowcast) bitcoin price crashes. Using transaction level buy and sell orders (in bitcoin’s 
order book), among other key microstructure variables, this study makes the follow-
ing important findings. First, it shows the importance of order flow imbalance (buying 

Table 6  Predictive accuracy across probability cutoffs, C

This table shows the percentage of event days that are correctly classified by models 4 (panel A) and 6 
(panel B) from Eqs.  (3.4) and (3.6), respectively, across various probability cutoffs, C . Models 4 and 6 
are estimated using the logit and generalized extreme value (GEV) frameworks shown in Eqs. (4) and (2). 
A sample day with an event (when there is a bitcoin crash) is denoted by Crash = 1 while a day without 
an event (when there is no bitcoin crash) is denoted by Crash = 0 . Bitcoin crashes are defined in Eq. (1). 
In panels A and B, the %Correct and %Incorrect denote the percentage of sample days that are classified 
correctly and incorrectly, respectively. "False positive" classifications (type 1 errors) are shown for the 
%Incorrect when Crash = 0 . “False negative” classifications (type 2 errors) are shown for the %Incorrect 
when Crash = 1 . Panel C shows the gain in estimating model 6 (the full model) over model 4 (which only 
uses order imbalance as a variable). The sample period is from April 1, 2013 until January 15, 2023

C = 0.07 C = 0.08 C = 0.09 C = 0.10

Crash = 0 1 0 1 0 1 0 1

Panel A: Model 3.4
Logit P(Crash) ≤ C 443 18 911 77 1695 150 3102 278

P(Crash) > C 2825 290 2357 231 1573 158 166 30
Total 3268 308 3268 308 3268 308 3268 308
%Correct 13.56 94.16 27.88 75.00 51.87 51.30 94.92 9.74
%Incorrect 86.44 5.84 72.12 25.00 48.13 48.70 5.08 90.26

GEV P(Crash) ≤ C 468 20 904 77 1666 149 3098 277
P(Crash) > C 2800 288 2364 231 1602 159 170 31
Total 3268 308 3268 308 3268 308 3268 308
%Correct 14.32 93.51 27.66 75.00 50.98 51.62 94.80 10.06
%Incorrect 85.68 6.49 72.34 25.00 49.02 48.38 5.20 89.94

Panel B: Model 3.6
Logit P(Crash) ≤ C 2411 44 2505 53 2580 61 2650 69

P(Crash) > C 857 264 763 255 688 247 618 239
Total 3268 308 3268 308 3268 308 3268 308
%Correct 73.78 85.71 76.65 82.79 78.95 80.19 81.09 77.60
%Incorrect 26.22 14.29 23.35 17.21 21.05 19.81 18.91 22.40

GEV P(Crash) ≤ C 2286 34 2380 42 2466 48 2525 53
P(Crash) > C 982 274 888 266 802 260 743 255
Total 3268 308 3268 308 3268 308 3268 308
%Correct 69.95 88.96 72.83 86.36 75.46 84.42 77.26 82.79
%Incorrect 30.05 11.04 27.17 13.64 24.54 15.58 22.74 17.21

Panel C: Gain of Model 3.6 over Model 3.4
Logit Δ%Correct  + 60.22 − 8.45  + 48.77  + 7.79  + 27.08  + 28.89 − 13.83  + 67.86
GEV Δ%Correct  + 55.63 − 4.55  + 45.17  + 11.36  + 24.48  + 32.80 − 17.54  + 72.73
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relative to selling activity) as a variable that is linked to bitcoin price crashes. While 
order imbalance has received attention in the context of traditional asset classes (such as 
in Chordia et al. 2002, for example), more work is needed in determining its importance 
in the context of digital money such as bitcoin.

Second, this study shows that when trying to model bitcoin’s price behavior, it is 
important to incorporate factors that reflect shifts in Bitcoin’s blockchain. Much of the 
literature on this subject that is growing at a rapid rate, like some of the studies refer-
enced here, attempt to link bitcoin with shifts in economic and market variables that 
have been shown to explain the returns of conventional asset classes, such equities or 
commodities. However, and it discussed here, bitcoin’s microstructure and its clientele 
are very different than what is observed in traditional asset classes. In the words of Liu 
and Tsyvinski (2018, p.3), “…cryptocurrencies comprise an asset class which is radi-
cally different from traditional asset classes…”.

Third, and from an econometric perspective, our study makes the following two main 
contributions. First, we show that both the logistic and GEV regression approaches per-
form comparably in terms of nowcasting errors. This is an important observation that is 
relevant to all applications of probabilistic forecasting involving a binary-type outcome. 
This is because the logistic link function is symmetrical around the value of 0.50. This 
means that the probability of a binary event can approach zero at the same rate in which 
it can approach one. Czado and Santner (1992), among others, show that assuming such 
a logistic link function can lead to biases and inabilities in estimating accurate prob-
abilities. The GEV regression approach attempts to augment this shortcoming in logistic 
regressions because of its asymmetric link function that is based on the GEV distribu-
tion, which in extreme value theory, has shown to better model rare events in statis-
tics (Kotz and Nadarajah 2000; Wang and Dey 2010). However, we show that, given 
the explosive behavior of bitcoin prices, both the logistic and GEV regressions perform 
similarly and that we need to utilize a low probability cutoff in order for the models 
herein to be most effective.

Fig. 6  Forecasted probability of bitcoin crashes. This figure shows the forecasted probability of bitcoin 
crashes. This probability is estimated from model 6 (Eq.  (3.6)) using the logit approach. The shaded red 
lines correspond to an actual bitcoin price crash, as defined in Eq. (1). The probability model is expressed 
in Eq.  (7). The sample period is from April 1, 2013 until January 15, 2023. The data are sourced from 
the Bitstamp cryptocurrency exchange. Footnotes (14) and (15), respectively, discuss the data sample and 
sources in more detail
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Finally, this study aims to begin academic discourse on constructing a fragility index 
that can be used by academics, policy-makers and the private and public sector at large, to 
determine the degree of price crash risk present in the Bitcoin ecosystem. As is outlined 
in United States Senate (2013), bitcoin may pose opportunities but also several threats to 
investors, consumers and the financial system at large.
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