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Abstract
The market, earnings, and liquidity growth combine to form a proxy for wealth growth, 
allowing a recursive consumption model with a low risk aversion coefficient, a risk-free 
rate close to historical, a high equity premium, and a reasonable elasticity of intertem-
poral substitution. The empirical consumption model does well against major asset pric-
ing puzzles. Tested over 118  years it is not rejected while a forward-looking consump-
tion model using the market alone as a wealth proxy fails. Changing liquidity and earnings 
forecast consumption and their ‘crashes’ precede consumption declines. We also dem-
onstrate related stock level factors have similar economic magnitude and are significant. 
These models are consistent to the financial intermediary economic growth literature. Such 
consistency across approaches adds credence to common earnings and liquidity factors as 
important risks to investors.

Keywords  Consumption asset pricing model · Earnings · Liquidity

1  Introduction

If economic growth is related to changes in wealth, and liquidity and earnings are com-
ponents to both, we would expect to see evidence of this in a consumption model. We 
show strong evidence of liquidity and earnings components to wealth. We construct empir-
ical consumption-based models with earnings, liquidity, and market components in the 
stochastic discount factor that fits the data better than previous models and solves major 
asset pricing puzzles. Cochrane (2017) lists a half dozen features an asset pricing model 
should accommodate or address; (1) a high equity premium, (2) a high enough Sharpe ratio 
(which includes market volatility consistent with data), (3) a low and stable risk-free rate, 
(4) consumption growth with reasonable mean, volatility, and some predictability, (5) a 
positive discount factor and (6) low-risk aversion, all of which together “so far no model 
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has achieved…” [p. 952]. We would add to that list; (7) the model should readily tie to the 
cross-section, (8) have a defensible elasticity of substitution (EIS), (9) priced risk factors 
should be defensible economically, and (10) consumption should relate to stress in risk 
factors. Our main contribution is a model that meets all ten goals, referenced here forward 
as our ‘goals’ list. Some CCAPM models meet most of these goals, e.g., Semenov (2017), 
but we are unaware of another paper that meets all of these goals. We accomplish this by 
adding simple empirical earnings and liquidity growth measures to the stochastic discount 
factor in an Epstein and Zin (1989), (1991) and Weil (1989) framework (EZW from here 
forward). With 118 years of annual data, we show the EZW model with market as wealth 
fails, where our Consumption, Earnings, Liquidity, and Market (CELM) based model 
does not. Figure  1 previews the relationship between consumption growth and changes 
in earnings, turnover, and market that form our return on wealth construction, which we 
call ‘ETOM’, and define when we define our SDF. The attractive fit, enhanced by differ-
ent scales, is somewhat marred by the high consumption, coincident with high production, 
during the two world wars. Consumption is well forecast by these variables individually, 
and when combined in a vector autoregression.

A paramount goal of financial economics is a well working consumption model based 
on rational actors pricing risk that solves the above puzzles. The empirical model presented 
here accomplishes this. It does so in a manner consistent with the intermediation risk lit-
erature. Unlike Bai et al. (2019) and other researchers who construct a CCAPM with dis-
asters, ours is a standard CCAPM with recursive preferences. Also, we contribute to other 
researchers who have built theoretical models, empirically relating earnings and liquidity 
risk to consumption in a CCAPM framework.

Also, our consumption variables, when used as factors in a stock level cross-sectional 
factor model provide highly significant factors, as shown in Sect. 3. The magnitudes for 
factor premiums of the cross-sectional model for the market, earnings, and liquidity cor-
roborate the relative magnitudes used in our CELM consumption model. The economic 
motivation of investors concerned about the covariance of earnings, liquidity, and market 
risk to their utility of consumption provides an attractive connection of consumption and 
cross-sectional modeling.

Fig. 1   Consumption growth time t with ln(ETOM) t − 1
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Concerning liquidity as a part of our wealth composite; Levin (1991), Holmstrom and 
Tirole (1993), Bencivenga et al. (1995), model liquidity externalities1 arising from projects 
undertaken in the real economy and management monitoring which materially impact eco-
nomic growth and by implication the growth in wealth. If these really are a risk concern 
of investors, we should be able to bring liquidity into the stochastic discount factor (SDF); 
part of what we test here. Levine (1991) relates liquidity to economic growth. Levine and 
Zervos (1998) proxy liquidity with turnover using international data to find evidence of a 
relationship to growth.

Acharya and Pedersen (2005) build a stock level liquidity augmented CAPM and pro-
vide empirical evidence of the existence of liquidity premiums in stock prices and flight 
to liquidity behavior. Lo and Wang (2006) use volume for their “portfolio that is used to 
hedge the risk of changing market conditions” [p. 2805] and Lagos and Zhang (2020) 
model a “turnover-liquidity mechanism,” in their intermediary model. Many have found 
volume or turnover as useful descriptors of stock level prices including, Blume, Easley and 
O’Hara (1994), Brennan et al. (1998), Lo and Wang (2006) for the U.S. and Rouwenhorst 
(1999) and Dey (2005) internationally.

Intermediary’s credit is an input to the financial sector’s production of a market: we 
can loosely think of this as a supply side argument, as in Levine et al., (2000). We make 
a complementary contribution by studying investors’ demand concerns in a consumption 
framework. Volume is important to investors. Market participants have followed volume 
information in newspaper’s daily quotes for over 100 years and developed communications 
technology to report both price changes and volume changes, e.g., Field (1998). Daley and 
Green (2016) “develop a theory in which equilibrium prices and liquidity are jointly deter-
mined and vary over time with the market belief” [p. 814], with an important role for vol-
ume of trade.

Human capital as a component to economic growth has a rich literature. Recent finan-
cial economics theoretical treatments include Heaton and Lucas (2000) and Santo and 
Veronesi’s (2006) human capital risk that cannot be hedged, and Sylvain (2014), and Munk 
(2000) and Schwartz and Tebaldi’s (2006)2 illiquidity of earnings streams’ impact on asset 
pricing.

Regarding the risk of companies with high earnings exposure, quoting Sylvain [2014, 
p. 3] “if the stock of human capital (or alternatively labor income and labor/leisure choice) 
is a state variable of concern to agents in the economy and there is significant co-variation 
between the shocks to the human capital and the shocks to firm physical capital (and hence 
the firm value and its security returns), in equilibrium human capital will have important 
effects on expected returns of claims to the firm’s profits.” Schwartz and Tebaldi give 
this salient example: “Two individuals with the same wealth, the same preferences and 
the same horizon would invest in the same portfolio using the traditional asset allocation 
framework. However, if one of the individuals is a stock broker with his human wealth 
highly correlated with the stock market, and the other is a tenured university professor with 
his human wealth independent of the stock market, it would be reasonable to expect that 
they would have different allocations.3” Consistent to such models, Betermier et al. (2017, 

1  Such externalities may not necessarily benefit individual firms. Fang, Tian, and Tice (2014), for example, 
find increased firm liquidity leads lower individual firm patent activity.
2  Sylvain (2014) and Schwartz and Tebaldi (2006) review an extensive literature on human capital and 
asset pricing, some of which predates the SDF framework.
3  For this example, they cite a speech by Robert Merton.
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p. 5) find empirically “investors with high human capital and high exposure to macroeco-
nomic risk tilt their portfolios away from value.” We employ an EZW framework with the 
addition of earnings and liquidity in the SDF, as the components that covary with investors 
illiquid human capital. Our empirical findings make such models’ motivation fit the data 
and meets our ninth goal–a defensive economic rationale.

Financial and other crisis are accompanied by shocks to employment and earnings. 
Investors monitor earnings shocks via earnings growth. Hedging earnings growth risk via 
a liquid market motivates our consumption-model. CELM ties asset prices to consumption 
and uses easy-to-measure changes in wealth.

Regarding a ready tie-in to the cross section, goal 8 from above, while others have built 
liquidity factor models, Snigaroff and Wroblewski (2021) work in these same variables to 
provide a powerful returns-based factor description of stock returns that performs better 
than other benchmark factor models and subsumes the momentum factors of Jegadeesh and 
Titman (1993) and Cahart (1997). In this study, we compare and relate their factors and 
their magnitude to the consumption model. This ‘micro model’ uses security level varia-
bles of earnings-to-price, growth of earnings to price, volume, and growth in volume; these 
combined with the market. The consumption ‘macro model’ uses the market combined 
with aggregate earnings growth and changes in turnover.4 This is advantageous as it is this 
change in liquidity that allows Snigaroff and Wroblewski (2021) to subsume momentum, 
which is a pernicious problem for rational pricing models. The change in turnover in the 
consumption model serves as a proxy for the changing state risk in liquidity as in Levine 
and Zevos (1998).

Equipped with this stochastic discount factor (SDF) construction along with a proxy 
for return on wealth, we can construct a consumption-based model that simultaneously 
exhibits a high equity risk premium, an upper bound for the Sharpe ratio that is consist-
ent with historical data, a low risk-free rate, a low-risk aversion coefficient (RRA), and a 
reasonable elasticity of intertemporal substitution parameter (EIS). Our model also obtains 
a maximum allowable Sharpe ratio that exceeds historical observation which addresses the 
well-known equity premium puzzle of Mehra and Prescott (1985). We show that earnings 
growth and liquidity growth are related to consumption growth, and display ability to fore-
cast consumption. We also note that when these variables are used to form a vector autore-
gressive system, one obtains significant coefficients on the market, earnings growth, and 
liquidity growth. The literature on liquidity in asset pricing has grown extensive and our 
contribution extends the EZW framework to incorporate liquidity risk in a working con-
sumption model.

1.1 � A consumption, earnings, liquidity, market, based model

Consumption asset pricing models in which return premiums are time varying or contin-
gent have had some success in utilizing the relatively smooth consumption series; however, 
there are recent challenges to these models. Muir (2017) finds that high international asset 
price volatility during financial crisis not accompanied by high consumption volatility cre-
ates a problem for most asset pricing models of these types. His evidence is consistent 

4  While changes in aggregate volume work interchangeably in our model, in the interest of space we do not 
show these results. In our preliminary work with international data turnover is more available than aggre-
gate volume, hence our use of turnover here.
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with financial intermediation models, or liquidity models. Putting liquidity into the SDF 
helps us address goal ten, consumption related to risk factors, in our list.5 Also, Roussa-
nov (2014) is skeptical of conditional value premium models as value stocks’ conditional 
expected returns do not increase more than those for growth stocks during bad economic 
states as conditional models predict. He argues in favor of augmenting consumption-based 
models with an aggregate wealth growth factor, which we do here.

In Sect.  2 of this paper, we build an EZW model with wealth portfolio returns that 
depend on the market return and the growth in both earnings and liquidity. Changes in 
investor wealth from the market return alone need augmentation by investors who are 
concerned with hedging their illiquid earnings. Hence, changes in these variables define 
our wealth portfolio returns and enter our SDF to serve as agent’s forward-looking wealth 
proxy.

Liu et  al. (2016) model liquidity with an EZW model. However, in their return and 
wealth equations [(A-2) and (A-3) on pp. 139–140] and in their model conceptualization 
they subtract liquidity as a cost. Consistent to Levin’s (1991) liquidity externality, in the 
context of modeling liquidity as a component in an SDF, liquidity is a ‘risk premium to 
be added,’ which we do here, not a ‘cost to be subtracted’ as per their argument. The fairly 
large liquidity premiums in our consumption model are consistent to a liquidity externality 
as opposed to only a cost and are corroborated by the large stock level liquidity premium 
shown in Sect. 3.

Our findings do not definitively distinguish between a behavioral or rational view of 
asset prices. Changing volume could merely measure changes in sentiment (Baker and 
Wurgler (2006) use turnover as a sentiment indicator in a cross-sectional stock study), or 
be part state variable, part irrational behavior. The theoretical models herein cited relate 
volume and/or liquidity to asset prices. By featuring liquidity prominently, our work here 
is consistent with the financial intermediation view, where the finance sector is especially 
important. Large liquidity factor premiums have puzzled researchers who assume rational 
actors setting prices, but large liquidity premiums that vary through time are also consist-
ent with market’s condition being an important risk to investors and we demonstrate this 
empirically at the aggregate macro level.

2 � Liquidity adjusted consumption model and puzzles

2.1 � Forward looking CELM

In this section we build our recursive, or forward looking, consumption, earnings, liquidity, 
and market–CELM–based model by defining the SDF under our assumed utility prefer-
ences. This ‘macro’ aggregate time series model will then be used, with different param-
eters, to quantify important asset pricing parameters and to address asset pricing puzzles 
stated in our goals. The empirical data is described in Sect. 2.4, with the resulting param-
eter estimates shown in 2.5.

The assumption of a stochastic discount factor (SDF), M, allows one to compute 
expected future returns through the following pricing equation:

5  Exhibit 1 hints at larger declines in asset prices relative to consumption especially recently. This is stud-
ied in Sect. 2.6.
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with ri,t+1, being the securities’ return in-excess of the risk-free rate Rf  . We follow EZW, 
in which we have the consumption process at time t, and the recursive utility function:

where U is utility, C is consumption, β is the investor’s subjective time discount factor, 1−α 
is the coefficient of relative risk aversion and 1

1−�
 is the elasticity of intertemporal substitu-

tion. An attractive feature of the EZW framework is the separation of risk aversion and the 
elasticity of intertemporal substitution. In this model utility is contingent on long-run 
future consumption growth which is related to the return on wealth. A proxy for the agent’s 
wealth W is defined by:

with Rw,t+1 defined as the return on all invested wealth. Epstein and Zin (1989) use the 
market return for the return on wealth. We also incorporate earnings and liquidity’s influ-
ence on investor’s total return on wealth. We proxy the liquidity of the market by a turnover 
variable TOt, which denotes the sum of the daily ratios of dollar volume to market capi-
talization, over year t. This measure allows us to capture the ‘state’ or level of aggregate 
liquidity and introduces an empirical variable to dynamically measure liquidity by con-
sidering the percentage growth of the underlying turnover series. We denote the earnings 
accruing to the market index over year t by Et and measure the annual percentage growth in 
Et. Our premise is investors’ own earnings risk motivates an interest in company earnings. 
But investors may be concerned about dividend flows’ relation to their income, therefore 
we also show results from replacing changing earnings with changing dividends.

These three terms; market return, liquidity growth, and earnings growth, all contribute 
to an investor’s return on wealth. The price of a security includes the earnings or expected 
earnings of a company and the level of liquidity in the financial instrument. We start with 
an equal weighted average of these three measures to compute the return on wealth. This 
naïve ex ante weighting is compared with other weightings in Sect. 2.5 and tested at the 
security level in Sect. 3. For the CELM model we define a proxy for the return on wealth 
process, which we denote by ETOM, as:

where RM denotes the return series of the market portfolio. The influence of changing 
liquidity on asset prices and the macroeconomy has an early macro theory literature includ-
ing Keynes (1937) and Tobin (1958). ‘Rational view’ theorists have proposed a money 
value for stocks, e.g., Cochrane (2002). Other authors tie bank health to the economy, 
Shleifer and Vishny (2010), or model intermediary and credit theories, which can be 
viewed as institution’s input for their production of liquidity. ‘Behavioral view’ theorists 
make exuberance arguments including Shiller (2015), or the ‘animal spirits’ of Keynes 
(2018, 1936), Farmer and Guo (1994) and others. Edmans et al. (2015) model firm’s value 
as partly endogenous to trading. Our goal here is not to differentiate between these views 
but to build a working consumption model that solves asset pricing puzzles. In order to 
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succeed at this task, using the market return alone as a proxy for the return on wealth as 
per Epstein and Zin (1989) does not suffice. Nor will using earnings or a turnover variable 
alone. As we demonstrate, two or three of these terms are simultaneously needed as it is 
how their covariance behaves that empirically aids in solving various puzzles and in pric-
ing securities. This covariance is consistent with the theoretical research cited earlier.

Utilizing this proxy for the return on wealth as well as the utility assumption of Eq. (2) 
one may show, following Mehra (2012), and Epstein and Zin (1991), that the pricing kernel 
is given by:

with Δct+1 ∶= ln
(

Ct+1

Ct

)
. This SDF also includes the consumption CAPM by letting α 

equal ρ, as well as the case of an SDF which only depends on ETOM, when one lets α 
equal zero. This latter case also corresponds to the CAPM in the EZW SDF when consid-
ering log returns. Armed with this explicit stochastic discount factor representation we are 
then able to address difficult asset pricing puzzles. The equity premium puzzle of Mehra 
and Prescott (1985) relates the excess return of stocks relative to the risk-free rate and the 
notion that the coefficient of relative risk aversion must be very large in magnitude to jus-
tify such out-performance by equities; so large in fact in the power utility case that the utili-
zation of consumption pricing generally fails. Our wealth proxy rectifies this by allowing 
for a much more reasonable risk aversion parameter, we find an RRA with a value close to 
one. This is an order of magnitude improvement over most estimates implied by the power 
utility model, Cochrane (2001, 2005). We show the values of the parameters we calculate 
in Sect. 2.5, Table 1.

A second important implication of our model is the related puzzle that many expres-
sions for obtaining a reasonable upper bound for the ex-post Sharpe ratio approximation 
require a very large risk aversion parameter. Typically, this is seen to be a problem for the 
consumption process, as it is not volatile enough to allow for a larger upper bound without 
making the RRA parameter extremely large. By using ETOM in the SDF, our approxi-
mation for the upper bound on the Sharpe ratio depends not only on the variance of the 
consumption process but also on the variance of ETOM and the covariance between the 
consumption process and ETOM.

2.2 � The risk‑free rate

Using the CELM framework can also potentially solve the risk-free rate puzzle of Weil 
(1989). The risk-free rate puzzle revolves around the idea of needing a very large risk-
free rate in-order to justify a reasonable value of the risk-aversion coefficient. We show in 
Appendix 4 that the following expression for the risk-free rate holds:

This implies that:
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This allows us to approximate the risk-free rate by estimating the pair (α, ρ).Since alpha 
need not equal rho, the fourth term on the right-hand side includes the variance of ETOM 

(7)Rf = exp

{
− ln � + (1 − �)�Cg

−
1

2

(
�(� − 1)2

�

)
�2
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+
1

2

(
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�

)
�2
ETOM

}
− 1.

Table 1   Return on wealth models with parameter values

(A) Model rejected if ’UB Sharpe’ value is below historical Sharpe ratio value: 0.353
β = 1/(1 + Rf) = 0.9583 and Rf rate is 1-Year Treasury Bill rate = 4.35% for all models
Equal weights: w1 = w2 = 1/2 in two variable, and w1 = w2 = w3 = 1/3 in three variable models
† w1 = 1/2, w2 and w3 = 1/4
(B) Model rejected if ’UB Sharpe’ value is below historical Sharpe ratio value: 0.428
β = 1/(1 + Rf) = 0.9522 and Rf rate is 1-Year Treasury Bill rate = 5.02% for all models
Equal weights: w1 = w2 = w3 = 1/3 in three variable models
Table shows the return on wealth models labeled A-N and described in second column. RM, Eg, TOg, and 
Dg are the market return, earnings, turnover, and dividend growth (see Data) and E/P is the level. The mean 
return and standard deviation are shown in columns 3 and 4. Columns 5–7 show the EIS, RRA, and UB 
Sharpe parameter values implied by Eqs. (7), (9) and (10), respectively. These parameter values are found 
by using the EIS as the independent variable and then substituting the historical time-series of stock returns, 
risk-free rates, and the return on wealth model series into the equations described in Sect. 2.5 and in Appen-
dix 5. We show the solution that corresponds to a positive EIS in all cases. Values outside our restricted 
bounds, discussed in Sect. 2.5, are italicized and non-rejected models are in bold. Panel A uses data from 
1901 to 2018, while Panel B uses data from 1950 to 2018. In Panel A all of the one-variable models are 
rejected, two-variable models E and F are not rejected, and three-variable models J, L, M and N are not 
rejected. In Panel B models L and N are not rejected, while the RM model is rejected. Models in Panel B are 
identical to that of Panel A, hence same letter labels are used

Return model x̅ σ EIS RRA​ UB Sharpe

Panel A: 1901–2018, 118 Years
A (1 + RM) 1.11 0.19 1.580 1.346 0.346
B (1 + Eg) 1.10 0.35 0.402  − 2.003 0.928
C (1 + TOg) 1.04 0.35 0.487  − 0.972 0.823
D (1 + Dg) 1.05 0.11 0.645  − 17.158 3.780
E (1 + w1RM + w2Eg) 1.10 0.22 1.070 1.092 0.472
F (1 + w1RM + w2TOg) 1.08 0.23 1.122 1.146 0.459
G (1 + w1RM + w2Dg) 1.08 0.11 2.390 2.609 0.387
H (1 + w1Dg + w2TOg) 1.05 0.19 0.789  − 0.216 0.904
I (1 + w1Eg + w2TOg) 1.07 0.27 0.662  − 0.105 0.719
J (1 + w1RM + w2Dg + w3TOg) 1.07 0.16 1.474 1.790 0.483
K (1 + w1RM + w2Dg + w3TOg)† 1.08 0.15 1.735 1.804 0.405
L (1 + w1RM + w2Eg + w3TOg) 1.08 0.21 1.122 1.176 0.483
M (1 + w1RM + w2Eg + w3TOg)† 1.09 0.19 1.372 1.380 0.416
N (1 + w1E/P + w2Eg + w3TOg) 1.07 0.18 0.993 0.975 0.717

Return model x̅ σ EIS RRA​ UB Sharpe

Panel B: 1950–2018, 69 Years
A. (1 + RM) 1.12 0.16 1.666 1.690 0.417
L. (1 + w1RM + w2Eg + w3TOg) 1.09 0.15 1.427 2.104 0.597
N. (1 + w1E/P + w2Eg + w3TOg) 1.08 0.13 1.039 1.324 1.026
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in the calculation, and thus allows for an adjustment in the level of the risk-free rate not 
only based on the current state of the markets’ levels but also based on the current state of 
the market’s earnings and liquidity.

2.3 � The equity premium

Assuming a standard power utility function of consumption, an upper bound on the expected 
equity risk premium is given by the product of the risk aversion coefficient, the standard 
deviation of the consumption growth process, and the standard deviation of the excess return 
series. Using 3 for risk aversion, and respective historical values of 5% and 20%, bounds 
the equity risk premium at approximately 3 · 5% · 20% = 3%. However, empirically equities 
have returned closer to 7% per annum over the risk-free rate. Our model raises this upper 
bound to a more reasonable level by incorporating ETOM. In Eq. (24), of Appendix 1, we 
can express the equity risk-premium via the following closed form solution:

We display this relationship graphically in Fig.  2. We can solve for the risk-aversion 
coefficient in Eq. (8) in order to obtain the following expression for the RRA (see Appen-
dix 1) for a given expected excess return as:

(8)
Et
[

ri,t+1
]

≅
− (1 + Rf )

�
[

�(� − 1)Covt
(

Δct+1, ri,t+1
)]

−…

(1 + Rf )
�

[

(� − �)Covt
(

ln
(

ETOMt+1
)

, ri,t+1
)]

.

Fig. 2   Equity risk premium. We display the equity risk premium (ERP) forecast for differing values of the rela-
tive risk aversion (RRA) coefficient and the elasticity of intertemporal substitution (EIS). The surface reperesents 
the ERP as a funtion of the RRA parameter and the EIS. For each pair of EIS (x-axis) and RRA coefficient 
(y-axis) we can approximate an expected future excess return (z-axis). To match the historical ERP, we use EIS 
of 1.122 and an RRA of 1.176. this is denoted by the red dot lying on the expected return surface. Under thbese 
reasonable parameters the historical ERP matches the estimate from out model at 6.71% per annum
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Many expressions for obtaining a reasonable upper bound for the Sharpe ratio approxi-
mation require a very large risk aversion parameter. Typically, this is seen to be a prob-
lem for the consumption process, as it is not volatile enough to allow for a larger upper 
bound without making the risk aversion parameter extremely large. This again is rectified 
by using ETOM in the SDF. Our approximation for the upper bound on the Sharpe ratio is 
given by (see Appendix 3):

Importantly, (10) depends not only on the variance of the consumption process but also 
on the variance of ETOM and on the covariance between the consumption process and 
ETOM. This expression, using historical index data, allows one to approximate the upper 
bound on the Sharpe ratio with a much more reasonable level, relative to historical stock 
returns, of close to 0.48. Compared to a power utility model of consumption this is a tre-
mendous improvement over the estimate [given on p. 946] in Cochrane (2017). Cochrane 
(2017) points out that the consumption growth standard deviation is 2% and pairing that 
with a risk-aversion coefficient of three implies a 0.06 Sharpe ratio, much too low of an 
upper bound to match historical data.

2.4 � Consumption model data

CELM is a forward-looking total wealth model where representative consumption is not 
time separable, hence corresponding consumption data includes non-durables. Consump-
tion cyclicality and earlier time data availability motivate our use of annual total consump-
tion and annual asset data. Ferson and Harvey (1992) provide a good overview of consump-
tion seasonality issues and Parker and Julliard (2005) show multi-quarter consumption 
measurement provides better model fits. The specific consumption series for Ct we use is 
A794RC0A052NBEA, Personal consumption expenditures per capita,  Dollars,  Annual,  
Not Seasonally Adjusted as reported by FRED Economic Data Service from the Federal 
Reserve Bank of St. Louis (using their updated July 27, 2018 data series). Prior to 1930 we 
use Shiller consumption data and calculate nominal growth. S&P 500 data for the earnings 
and dividends series: Et, Dt, and the 1-year Rf, are all from Robert Shiller’s annual data 
link “data long term stock, bond, interest rate and consumption data”.6 Market returns, 
RM, are via calculation from Shiller’s price and dividend data. For TO, turnover data is 
from the Center For Research in Security Prices, Graduate School of Business, University 
of Chicago via WRDS (Wharton Research Data Services) and we calculate annual dollar 
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6  Available at: http://​www.​econ.​yale.​edu/​~shill​er/​data.​htm. Some data points in later years are not updated, 
but are obtainable with care to match, in his “U.S. Stock Markets 1871-Present and CAPE Ratio” link. We 
updated some later missing risk-free rate information from Bloomberg.

http://www.econ.yale.edu/~shiller/data.htm
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volume and annual dollar turnover as the sum over daily: $Volumet / Market Capt.7 For 
turnover data prior to 1926 we used NYSE Factbook data for which share volume turnover 
was available.8 The correlation of share with dollar turnover from our overlapping data 
1926-2003 is 0.99. NYSE was closed for much of 1914 when other international exchanges 
closed. There were very large consecutive declines in earnings and turnover during WWI 
and WWII but very large increases in consumption (high wartime production) and we do 
not make adjustments for this in our study. We use total consolidated volume which means 
trading volume on all exchanges, but with volume restricted to NYSE-listed ordinary com-
mon stocks which excludes closed-end funds, ETFs, REITs, and ADRs. For the market 
return we use the total return of the NYSE. 

2.5 � Parameter values and puzzles

We now bring the data to the model. Using Eqs. (7), (9), and (10) we can calculate the 
parameters implied by the EZW model and the CELM model for a fixed risk-free rate by 
using the following approach. We use historical sample moments for index returns, the 
return on wealth, and consumption growth in Eq. (9) which allows us to solve for α as a 
function of ρ and the risk-free rate so that � = G

(
�,Rf

)
. We can then use Eq. (7) and again 

substitute the historical sample moment estimates along with our approximation of α to con-
struct a function H such that following relationship holds: Rf = H(�, �) = H

(
G
(
�,Rf

)
, �
)
. 

We may then solve this equation, via inverting this function composition, for the parameter 
ρ0 and then use that particular ρ0 to obtain an α0 by inverting � = G

(
�,Rf

)
. The parameters 

(α0, ρ0) then allow us to estimate both the RRA and the EIS for a given model. We also 
substitute the pair (α0, ρ0) along with the return on wealth, and consumption growth into 
Eq. (10) in order to approximate the upper bound of the Sharpe ratio for a given model. We 
display these empirical estimates in Panel A of Table 1, by setting as the risk-free rate to 
the historical sample mean of the 1-year rate of 4.35% during the sample years 1901–2018. 
We list the return on wealth model form in the second column, following its correspond-
ing letter label in the first column. We also display the sample mean and sample standard 
deviation of the corresponding return on wealth approximations in columns three and four. 
We list the EIS parameter, RRA coefficient, and the upper-bound on the Sharpe ratio in 
columns five, six, and seven respectively. The solution to the function inversion described 
above is given by the roots of a quadratic function of ρ. We show this computation explic-
itly in Appendix 5. There are two solutions to this equation. However, upon restricting each 
model to have a positive EIS we have a unique solution.

We also show several models repeated in Panel B that span 1950–2018.9 As shown in 
Table 2 and as can be seen in Fig. 1, the standard deviation of consumption fell after WWII 
to 0.025, about half its 0.060 level for the entire span of 118 years and is 1/3 of its level of 
0.088 from 1901–1949. Although long time series are attractive for sampling and parame-
ter estimation, investor behavior may be categorically different in the modern period. Asset 
pricing literature often uses post-war data. A possible critique of this study is we simply 

7  We cross-checked our annual NYSE dollar volume calculation results with a well-known micro-market 
researcher’s independent calculation and aggregation.
8  Which we downloaded for a previous published research paper in 2011. It appears such data is no longer 
free but is available at: https://​www.​nyse.​com/​market-​data/​histo​rical#​volume.
9  For modeling conservatism, we leave out of our modern period the high consumption volatility periods of 
1946 – 1949.

https://www.nyse.com/market-data/historical#volume
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add the highly volatile early consumption period to obtain a working consumption model. 
As we will show, this is not the case.

Table 1, Panel A presents results for the different models which are labeled A–N. The 
models in bold are models that do not fall outside the bounds of permissible constraints for 
our various parameters; they ‘solve’ puzzles 1–6 and 8 listed in the introduction. The first 
four models are single variable models that include as the annual return on wealth proxy 
growth rates from either;

A: the total return of the market, with variable labeled RM,
B: earnings growth, labeled Eg,
C: turnover, labeled TOg, and.
D: dividends growth, labeled Dg.
The models E–I have two variables and represent an equally weighted average of growth 

rates to form the proxy for the return on wealth. The models J–N have different weights w, 
assigned to each of the three variables used for that particular return on wealth. One ver-
sion includes the growth of dividends, the other the growth of earnings. The final version 
N, replaces the market return, RM in Eq. (4), with the ratio of earnings to price. The mean 
return for the four single variable models (column heading x̅) are shown and the single 
variable returns for A: the market has an average return of 11% (subtracting the 1-year risk-
free rate of 4.35% gives a 6.71% premium, and a standard deviation of returns of 19%). The 
annual growth rates for the other variables are smaller; Eg is 10%, TOg is 4% and Dg is 5%, 
but Eg and TOg have materially higher volatility. Dg volatility is low, indicative of firms’ 
smooth payout policies.

While the model investors use for the return on wealth may ultimately be unknowa-
ble, and while theory arguments so cited use the market, earnings, and liquidity, we do 
not know the relative weights investors may assign to these components. Our default is an 
equal weighting to each, it is the base case of the two variable models E–I, and the three 
variable models J, L and N. Epstein and Zin (1989) use equity returns as a return on wealth 
proxy and RM has a higher mean return than Eg, TOg, or Dg. We find that in the two vari-
able models RM is always needed for a model to not be rejected. Hence, we also consider 
three variable model candidates where RM receives a higher weight, models K and M. In 

Table 2   Decriptive statistics of CELM variables with contemporaneous correlation

Table shows the descriptive statistics for the log of consumption growth, market returns, and the earnings, 
turnover, and dividend growth variables: RM, Eg, TOg. and Dg, respectively. Full sample (1901–2018) sta-
tistics as well as the subsample (1950–2018) statistics shown. We display the arithmetic mean, the sample 
standard deviation, and the sample correlation coefficients

1901–2018, 118 years 1950–2018, 69 years

Cg RM Eg TOg Dg Cg RM Eg TOg Dg

x̅ 0.047 0.111 0.096 0.042 0.051 0.052 0.122 0.104 0.056 0.059
σ 0.060 0.185 0.347 0.351 0.110 0.025 0.160 0.351 0.181 0.064
ρ Cg RM Eg TOg Dg Cg RM Eg TOg Dg

Cg 1.000 1.000
RM  − 0.054 1.000  − 0.140 1.000
Eg 0.010 0.282 1.000  − 0.179 0.245 1.000
TOg 0.015 0.358 0.184 1.000 0.098 0.165  − 0.138 1.000
Dg 0.376 0.023 0.205 0.105 1.000 0.279  − 0.022  − 0.272 0.194 1.000



513Consumption with earnings, liquidity, and market based models﻿	

1 3

K and M the market receives a weight of 0.5 and the other variables are both weighted 
0.25. In Panel A, all of the models have the same assumed level for β, investor’s subjective 
time discount factor used in Eq. (5), which is 1/(1 + Rf), with Rf = 4.35% gives β = 0.9583. 
In Panel B with data starting 1950, with Rf = 5.02% the calculated β used for all models is 
0.9522.

For the first ‘Return Model’ labeled by ‘A’ we show the standard EZW model that uses 
the market return as the return on wealth proxy and is labeled (1 + RM). We find an EIS 
value of 1.580 and an RRA of 1.346 when we fix the Rf at 4.35% (the historical mean rate 
for our time period 1901–2018). We do not show a column with the Rf rate values as in 
all the Return Models we use a Rf rate equal to the historical average, i.e., all are equal 
to 4.35% in Panel A, and 5.02% in Panel B. We also find for Return Model A that the 
UB Sharpe is 0.346 which exceeds the value implied by historical observation; that is, in 
this parameter the model fails. While the addition of the market return to a pricing kernel 
consisting of consumption growth alone, allows for more volatility of stock prices and pro-
vides some resolution to the equity premium puzzle of Mehra and Prescott (1985) it does 
not reconcile the fact that the model violates the upper bound of the Sharpe ratio (UBS) 
test, also viewed as a violation of the Hansen-Jagannathan (1991) bound. Indeed, as Weil 
(1989) immediately noted with respect to the EZW model, we simply transfer the equity 
premium puzzle to a risk-free rate puzzle. We see that more is needed in the pricing kernel 
than the market alone to overcome this.

Indicated in italics in Table 1 are parameters that we disallow. The EIS and the RRA 
must have reasonable values. Mehra and Prescott’s (1985) influential paper argued for risk 
aversion “to be a maximum of ten” [p. 154]. In the results we show in Table 1, the RRA for 
some models is negative, which we assume to be outside the bounds of reasonable parame-
ters. The RRA is larger than 10 for a few models and less than 0 in some others; we assume 
model failure for such values. Regarding EIS, Bansal and Yaron’s (2004) influential EZW 
consumption model has an EIS of 1.5 (and a risk aversion of 10). Cochrane ([2017] pp. 
955–959) gives a review of the problems of this class of EZW models. They rely on a long-
run risk to forward consumption that is hard to square with investor activity during actual 
crisis. Investors seem relatively nervous about the short-term. Barro (2009) points out dif-
ficulties of an EIS below 1, and Epstein et al. (2014) map difficulties of too low or high an 
EIS in such models. Regarding an EIS of 1.5 they comment: “Would you give up 25 or 30 
percent of your lifetime consumption in order to have all risk resolved next month? Keep 
in mind that it is risk about consumption that is at issue rather than risk about income or 
security returns. Thus, early resolution does not have any apparent instrumental value” [p. 
2686]. In Table 1 we reject models with an EIS lower than 0.5 or greater than 1.5. A low 
EIS is also always accompanied by negative RRA, causing double rejections. Note one 
useful contribution of this study is we show the EZW model with the market as a return 
on wealth proxy, fails both for too high an EIS and too low an upper bound on the Sharpe 
ratio, with data starting either 1901 or 1950.

The compelling results, shown in bold, of Table 1 are obtained via a combination of the 
market return with earnings growth and/or liquidity growth. As mentioned, all the single 
variable models A–D are rejected. Of the two variable models E and F with RM and Eg or 
TOg, are not rejected. The model RM with Dg fails. Also, the two variable combinations 
without the RM term fail. In our three variable candidates, J, L, M, and N are not rejected. 
The proximity of EIS to unity of E, F, L, and N make them interesting models. These mod-
els also have pleasing economic interpretation, investors are concerned about the market, 
but also concerned about the covariance of changing earnings and liquidity. Individuals 
care about covariance of wealth with their own earnings risk, but institutional investors 
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care about earnings and liquidity risk as well. “But the primary concern of an endowments 
or foundation CIO is having adequate liquidity to meet operating expenses” [interview with 
endowment and foundation consultant Chen, by Williamsen (2020)]. Investors have always 
rationally seen through firms’ dividend policy, and care more about the ultimate ability of 
firms’ ability to make distributions via earnings. In addition to the 1/4 weights used for TOg 
in model L and M, we tried weights of 1/8 each for Eg and TOg, and 1/8 for TOg and 1/4 
for Eg, but do not show as these models’ EIS value are above our upper bound of 1.5. With 
respect of the models labeled N, which replaces RM with E/P, neither of these are rejected 
in Panels A or B. Indeed, their performance is quite good. The level of earnings scaled by 
prices has the economic interpretation of investors concerned about the levels of earnings 
risk as well as changes in earnings. These attractive results for a consumption model are 
better than any competitor models that we are aware of.

So far, we have addressed goals 1–8 except for discussion on goal 4, consumption 
growth with reasonable mean, volatility, and some predictability. All the models A–N use 
the historical consumption series, i.e., its mean and volatility are not transformed in our 
models. Table 2 gives descriptive statistics used previously in Sect.  2.5, and in the next 
sections where we address their relation and predictability of consumption. Regarding goal 
7, the model’s tie to the cross-section, the Fama and French (2015) model has five fac-
tors, one is the market and two are related to earnings. Snigaroff and Wroblewski (2021) 
provide a cross-sectional model that uses five factors even more closely related as dis-
cussed in Sect. 3. Their factors consist of the market, earnings to price, earnings growth to 
price, liquidity, and liquidity growth. Their work is interesting in that their liquidity growth 
(which is related to our turnover growth)10 is instrumental in helping the model subsume 
well-known momentum factors.

Table 3   Next period consumption change (%C) after RM, Eg, and TOg crashes

Table has consumption growth for the period following poor outcomes of the state variables of RM, Eg, 
TOg. The p-value is shown for a one-tailed t-test, in which we do not assume equal variances, that the mean 
for corresponding next period consumption change [(Ct+1–Ct)/Ct] during the crash years (5th, 10th, 20th 
percentile lowest values) is lower than the non-overlapping mean of %C during all other years (ends 2017 
for %C lag). The %C means for non-overlapping years is not shown. One set of tests starts in 1901 the other 
1950

Pecentile %C RM p-value %C Eg p-value %C TOg p-value

1901
5th  − 0.069  − 0.293 0.016  − 0.065  − 0.520 0.014  − 0.026  − 0.430 0.028
10th  − 0.007  − 0.228 0.036  − 0.006  − 0.374 0.038 0.008  − 0.371 0.068
20th 0.017  − 0.154 0.022 0.019  − 0.257 0.032 0.033  − 0.300 0.159
1950
5th 0.039  − 0.253 0.352 0.019  − 0.511 0.118 0.039  − 0.244 0.003
10th 0.056  − 0.175 0.574 0.036  − 0.314 0.100 0.037  − 0.205 0.008
20th 0.049  − 0.112 0.302 0.045  − 0.204 0.124 0.045  − 0.159 0.111

10  They use dollar volume and its growth for their liquidity proxies. We studied the growth of volume in 
place of TOg here as well, see footnote 6.
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2.6 � Economic stress

Goal 10 requires consumption growth that relates to risk factor stress. While this could be 
subsumed in the combination of goals in obtaining a consumption model with working 
RRA, EIS, and other parameters–we add this intuitive requirement. When risk factors have 
crashes, they should negatively impact consumption, e.g., Allen et al. (2012). We test the 
hypothesis that the mean of consumption growth outside of economic stress periods for 
the market, earnings, or liquidity is equal to the mean of consumption growth conditional 
on RM, Eg, or TOg having their worst 5th, 10th, and 20th percentile outcomes. In Table 3 we 
use familiar percentage changes and display the results of these tests. In the 1901–2018 
period RM has its lowest 5th percentile return average of –0.293, and the corresponding 
percentage consumption growth, defined as %C = [(Ct+1–Ct)/ Ct], for the next period aver-
ages –0.069. This consumption level is well below average, the associated p-value for a 
one-tailed test that this particular %C is lower than average is 0.016, i.e., we can reject the 
null that this %C is equal to mean consumption growth at 5 percent significance. If a ‘true 
crash’ is defined as the 5th percentile worst outcome, all of the three state variable candi-
dates’ 5th percentile bins have consumption levels means such that we can reject the null 
that they are equal to the %C mean for non-crash years for the period of 1901–2018. This 
provides evidence that the three variables proxy for states that influence consumption. We 
cannot always reject the null of equal means for the 10th and 20th percentile crashes. In the 
1950–2018 period RM does poorly. All the percentile bins for RM have corresponding next 
period consumption levels fairly similar to mean consumption growth outside the crash 
years and consequently high p-values. But Eg, and especially TOg, have lower p-values. 
Note that TOg has low p-values with higher %C means than those for Eg; this is helped by 
its low variance during its crash periods. In this sense Eg and TOg provide stronger candi-
dates for a macro-relation between consumption growth and proxy state variables, than the 
market.

This is encouraging as Muir (2017) finds that financial crisis are special… “the facts 
instead appear more consistent with the idea that risk premia are correlated with credit 
conditions and the health of the financial sector” [p. 767]. Our model proposes the addi-
tional state variable TOg as a proxy for changing liquidity, consistent with financial inter-
mediation models that, by definition, have problems in financial crisis. Changing liquidity 
is proxied by the change in turnover and when there are turnover crashes, consumption 
does fall, consistent to Muir (2017).11 However, large negative TOg is a simple definition 
of financial crisis, and financial crisis are not easy to disentangle from other macro events.

2.7 � Forecast consumption

We forecast year t consumption growth: Cg, with t-1 single variable regressors Cg, RM, 
Eg, TOg, Dg, E/P and show results in Panel A of Table 4. These variables are the natu-
ral logs of one plus their rates of growth and span the years 1901–2018. The effect of 
wealth on consumption has a large and complex literature. Case et al. (2005) and Bostic 
et al. (2009) investigate the relative size of housing (large) and financial wealth (smaller) 
on consumption. Steindel and Ludvigson (1999) find the response of consumption to 

11  Muir finds market returns are also lower during financial crisis than other market declines. The contem-
poraneous market declines during TOg crashes are well below their mean.
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changes in wealth are largely contemporaneous, while Poterba and Samwick (1995) dis-
entangle responses to consumption from stock changes (for less than a year) and while 
they find a relation, they attribute it to the stock rise as a leading indicator of economic 
activity. Poterba (2000) surveys the ‘stock market wealth and consumption’ literature 
and points out various difficulties. As we forecast consumption changes from past year 
changes in the market, earnings, and liquidity; if these are part of investors’ wealth, 
much of the relationship may be contemporaneous, or be apparent at periods of longer 
than 1 year. Recognizing that consumption and our wealth proxy are jointly determined 

Table 4   Forecast consumption univariate OLS regressions: Cg,t = a + b ln(1 + X t-1) + ε

Panel A–C; Cg,t is consumption growth and RM, Eg, TOg, Dg, E/P and ETOM are market return, earnings, 
turnover, and dividend growth, earnings-to-price level, and ETOM as per Eq. (4). All data are annual fre-
quency
Panel A and B are univariate OLS forecasting regressions of consumption growth by the various RHS pre-
dictor variables shown. We show the coefficient for the intercept a, the slope b, their t-stats, and R2

Panel C displays the statistics from multivariate forecasting regressions of consumption growth with data 
beginning 1901. The intercept a and three RHS variables include RM, Eg, TOg, in the first equation and Eg, 
TOg, E/P in the second; X refers to either RM or E/P. Another set of these same regressions but with starting 
data of 1950 are directly below. In Panel C, R2 is Adjusted R2, considering additional regressors

X variable %C RM Eg TOg Dg E/P ETOM

Panel A: t is 1902–2018, 117 yearly observations
Coefficient: a 0.026 0.033 0.044 0.047 0.044  − 0.017 0.038
t-stat 4.124 5.912 8.286 8.844 7.420  − 1.170 7.240
Coefficient: b 0.438 0.153 0.066 0.063 0.070 0.860 0.151
t-stat 5.230 5.454 3.858 3.279 1.434 4.687 5.644
R2 0.192 0.206 0.115 0.085 0.018 0.160 0.217

X variable %C RM Eg TOg Dg E/P ETOM

Panel B: t is 1951–2018;  68 yearly observations
Coefficient: a 0.015 0.048 0.051 0.051 0.049 0.020 0.047
t-stat 2.958 13.188 16.932 16.531 12.138 2.799 13.620
Coefficient: b 0.714 0.040 0.022 0.031 0.048 0.463 0.054
t-stat 8.274 2.038 2.185 1.689 0.974 4.829 2.316
R2 0.509 0.059 0.067 0.041 0.014 0.261 0.075

Variables Begins a RM Eg TOg E/P R2

Panel C: Forecast consumption multivarite OLS regressions
Cg,t = a + b ln(1+X t-1) + c ln(1+Eg,t-1) + d ln(1+TOg,t-1) + ε; t begins 1902 or 1951
Coefficient: 1901 0.035 0.113 0.039 0.025 0.233
t-stat 6.252 3.570 2.253 1.325
Coefficient: 1901 −0.003 0.041 0.042 0.642 0.228
t-stat −0.185 2.436 2.326 3.454
Coefficient: 1950 0.047 0.018 0.022 0.037 0.105
t-stat 13.393 0.855 2.046 2.007
Coefficient: 1950 0.022 0.016 0.026 0.398 0.278
t-stat 3.164 1.753 1.608 4.023
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as we have shown in Sect. 2.5, and that our data is annual, notwithstanding, the below 
evidence indicates that our variables forecast lagged 1-year consumption.

Previous Cg is known to forecast consumption, here its t-stat is 5.23, with much higher 
R2 than with the other variables. However: RM, Eg, and TOg all have significant coefficient 
t-stats and a similar magnitude R2, while dividends, Dg, is not significant and has a low R2. 
The composite variables E/P and ETOM have highly significant slope t-stats. As before, 
because of lower Cg volatility and a potential different regime for the post war period we 
show the same OLS regressions for the period of 1950–2018. Except for Cg itself, most of 
slope coefficients t-stats fall, with TOg no longer significant and Dg of even lower signifi-
cance; the latter consistent with dividends becoming less important in the post war period. 
These results are the part of goal 4 for obtaining “some predictability” of consumption.

We also ran one lag vector autoregressions for a dynamic analysis. In the interest of 
space, we do not show results. We are more interested in the forecast of consumption, 
which we can see in this case with the OLS regressions. All variables pass 1 percent signif-
icance levels with augmented Dicky Fuller tests for unit roots (indicating they are station-
ary) except E/P, which passes at 5 percent. In the VAR, when the included regressors are 
Cg, RM, Eg, and TOg with data from 1901 to 2018 the model shows Cg is affected by its own 
lagged change. With data after 1950, in addition to that same result, the model also shows 
Eg is significantly affected by lagged Cg, RM and TOg. In a VAR with data 1950–2018 when 
the regressors are Cg, Eg, TOg, and E/P (which replaces the market return, RM) the Cg equa-
tion has significant coefficients on lagged Cg, E/P, Eg and TOg, with further significant rela-
tionships between other variables as well. When data is restricted to 1950–2018 in the Cg 
equation lagged Cg and Eg are significant, and E/P’s relationship with prior E/P is highly 
significant, and Eg is significantly influenced by TOg. Note that all of these variables, except 
E/P, are differences, and the appropriateness of a VAR or VEC specification is contingent 
on such issues as whether investors are influenced by levels or changes. If investors make 
consumption decisions based on aggregate earnings, a changes-in-earnings variable may 
shear a more complex relationship. Our implicit assumption is investors are primarily con-
cerned about changes, not the levels of economy wide share turnover, volume, or earnings.

Panel C of Table 4 shows multivariate regressions with these same regressors, with Cg 
as dependent, with data starting either 1901 or 1950. Panel C now shows the Adjusted R2 
as a penalty for the additional regressors. We show multivariate forecasts with either RM or 
E/P, and the coefficient on Eg is significant in all but one forecast model, while the coeffi-
cient on TOg is significant in two of the four forecast models. This section indicates that in 
general, not only is the market an important forecasting variable for next period consump-
tion, but so are the variables we use in our consumption model: Eg, TOg, and in an alterna-
tive version, E/P.

3 � Stock level factor evidence

3.1 � Stock characteristic definitions and factor construction

A potential critique of the CELM model concerns the ad-hoc nature of Eg, an earnings 
growth proxy, and TOg, a liquidity growth proxy. While these measures are imminently 
reasonable to the authors, other researchers could well have chosen other measures. To 
address this, this last section of our paper studies related stock level variables in the context 
of a cross-sectional factor model. The CELM model includes the growth of wealth which is 
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modeled from the combination of the market, earnings growth, and liquidity growth. If that 
description represents a reasonable proxy for wealth, then similar variables, when used to 
construct cross-sectional factors, should produce highly significant, factors, and in combi-
nation, a factor model with small comparative pricing error.

The data used in this section is from Compustat’s Research Insight interface. The sam-
ple period covers the 604 months from February 1968 through May 2018. We use stocks 
listed on the NYSE, NASDAQ, or the AMEX exchanges as portfolio constituents. How-
ever, for universe breakpoints we use only the NYSE stocks. Sorting first on NYSE is 
standard in cross-sectional literature as this allows the factors to not be unduly influenced 
by difficult to trade, very small stocks.

At the stock level we construct variables for the Market, Earnings-to-Price, Liquid-
ity, Earnings-Growth-to-Price, and Liquidity Growth. These we label by MKT, E/P, LIQ, 
EG/P, and LIQG. The latter two growth variables play the role of Eg, and TOg in the CELM 
model. In the CELM model we considered changes in turnover but noted that changes in 
aggregate volume work interchangeably (see footnote 4). Both the cross-sectional factor 
model and the CELM model have a market return component, however, we also add an 
E/P and LIQ component to the stock level model. Also, the SDF of Eq. (5) uses the rate of 
change in consumption, and rates of change in the wealth variables which ties better eco-
nomically than that of levels.

For the earnings in the E/P variable we use the trailing 12-month diluted earnings per 
share that includes extraordinary items (Compustat data item EPSX12). We use a stand-
ard 6-month lag. We include positive and negative earnings firms. Price is also lagged 
by 6-months in E/P. EG/P is calculated as the 1-year earnings per share at t–6 minus the 
1-year earnings per share at t–18; this difference is divided by the price at t. LIQ is cal-
culated for month t by multiplying the number of shares traded in the month ending at 
time t by end of month t share price. These do not need lags to avoid look-ahead bias. 
LIQG, our liquidity growth variable, is calculated for each month t as the trailing 1-year 
percentage change in dollar volume, LIQGt = ($Volumet–$Volumet-12) / $Volumet-12 when 
the cumulative return from time t-12 to time t-1 (11 months), for a stock is greater than or 
equal to zero or as LIQGt: = –1 ×  | ($Volumet–$Volumet-12) / $Volumet-12)  | if the return 
from time t-12 to time t-1 is less than zero. It is well known by investment practitioners 
and by researchers (e.g., Blume, Easley and O’Hara (1994)) that large price changes either 
up or down, are associated with large volume. The multiplication by –1 distinguishes vol-
ume associated with good news from volume associated with bad news. We ‘linearize’ the 
v-shaped relationship between volume growth and returns. For LIQG, we also winsorize 
the cross-sectional dollar volume at 1%.

Equipped with the relevant stocks’ characteristic definitions we then form the factor returns 
similarly to that of Fama and French (2015), although as noted previously we include the neg-
ative earnings firms, we weight all portfolios on dollar volume, and we rebalance monthly 
instead of annually. Stocks are sorted each month on LIQ combined with either E/P, EG/P, 
or LIQG. Each month all NYSE stocks on Compustat are ranked on LIQ. The median NYSE 
LIQ is used to divide the full universe of NYSE, AMEX, and NASDAQ stocks into illiquid 
and liquid. We also divide the full universe of stocks into either of three groups based on 
NYSE breakpoints. The bottom 30% are ‘Low,’ the middle 40% are ‘Neutral,’ and the top 30% 
are ‘High’ for either E/P, EG/P, or LIQG. These portfolios are formed each month and their 
returns are calculated as averages and labeled using the subscript R. As an example, the port-
folio return E/PR (high earnings to price minus low earnings to price) is the risk factor return 
related to E/P and is the difference, each month, between the average returns for the two high 
E/P portfolios (illiquid-high E/P and liquid-high E/P) and the average return for the two low 
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E/P portfolios (illiquid-low E/P and liquid-low E/P). E/PR is a time series of a difference of 
average returns on high and low E/P portfolios with similar average liquidity. The other fac-
tors EG/PR and LIQGR. are calculated similarly. This is a common 2 × 3 sort design made well 
known by Fama and French’s body of research. Note that each of these three variables has its 
own corresponding LIQ factor, since there are different intersections involved with illiquid and 
liquid for each of the other variables. The LIQR factor we use is the average of these three; this 
follows Fama and French’s (2015) averaging to obtain their SMB factor. We also form 25 test 
portfolios along these same dimensions using quintiles and as such, we have three sets of 25 
test portfolios sorted on LIQ along with E/P, EG/P and LIQG. We also define the market fac-
tor return as MKTR, the dollar volume weighted monthly in excess of the monthly treasury bill 
return. There is no reason to restrict individual stock’s weighting to be capitalization based. 
Indeed, in addition to being a component to the SDF, liquidity weighting is motivated by 
investors’ ability to establish and trade positions in their portfolios. We also constructed mar-
ket cap versions of our factor model (not shown) and the market cap versus liquidity weighting 
are not the primary driver of our results. The five-factor model description is then given by:

3.2 � Factor model statistics

The historical factor premiums are shown in Table  5, Panel A. There are several things 
to note in Panel A. First, the t-stats for all of the factors are significant at the 95% level. 
Second, the non-market factor’s monthly arithmetic mean return ranges from 0.26 to 0.58, 
as compared to the market premium of 0.55. These are higher than for Fama and French’s 

(11)
Ri,t − RF,t = �i + �i ⋅MKTR,t + �i ⋅ LIQR,t + �i(E∕P)R,t

+ �i(EG∕P)R,t + �i ⋅ LIQGR,t + �i,t.

Table 5   Factor return summary for data 1968–2018

Panel A reports the monthly mean, standard deviation, and t-statistic for the five factors described in Sect. 3
Panel B reports model performance tests for the factor model given in Eq. (11) under three different test 
portfolio sorts. The first column indicates the partitioning structure of the twenty-five test portfolios, e.g., 
LIQ-E/P portfoios indicates factor model results from test portfolios based on the intersections of two uni-
variate sorts on LIQ and E/P. The GRS–statistic and its corresponding p-value are displayed in columns two 
and three, respectively. The lower GRS with a higher GRS p-value indicates the factor model as tested with 
25 portfolios under the first sort is not rejected at 99% confidence, whereas in the other two sorts the model 
is rejected. Column four is the average of the absolute values of each of the twenty-five portfolio regression 
intercepts, measuring the error of the factor model. Column five is the average adjusted r-squared statistic

MKTR LIQR E/PR EG/PR LIQGR

Panel A: Return statistics for the five factors
Arithmetic mean (%) 0.55 0.32 0.30 0.26 0.58
Standard deviation (%) 5.56 2.76 3.76 2.31 3.26
t-statistic 2.41 2.88 1.97 2.74 4.34

Test Portfolio Sorts GRS GRSp-value Aǀaiǀ A(R2)

Panel B: GRS tests for five factor model. 25 test portfolios with three different sorts
LIQ-E/P portfolios 1.656 0.024 0.086 0.89
LIQ-EG/P portfolios 2.904 0.000 0.092 0.90
LIQ-LIQG portfolios 2.845 0.000 0.114 0.89
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(2015) non-market factor means which range from 0.25 to 0.33 as shown on Table 4; [p. 
7, Panel A refers to the 2 × 3 sorts over a generally similar time period] and are a lower 
0.18–0.33 for the time periods that exactly overlap this study.12 An important point we 
seek to make here is the relative magnitude of the factors is roughly consistent with the 
consumption model of Sect. 2 shown in Table 1. There, RM, the market return variable was 
most prominent. Weights for RM ranged from 1/3 to 1/2 for models that were not rejected. 
The range for Eg and TOg for non-rejected models each were 1/4 to 1/2. The EG/PR and 
especially the LIQGR factor premium have quite large magnitudes. We do not think it 
unwarranted to give TOg a material weighting, more than only a trading cost weight of say, 
1/8, in Table 1. This stock level factor’s magnitude is consistent to a liquidity externality, 
as also found in the consumption model results. The level factors of E/PR and LIQR do not 
have corresponding level consumption variables. Our earnings and liquidity growth vari-
ables have large economic magnitude and are significant at the 95% level. They are consist-
ent to the variables and results of Table 1. Liquidity appears to be an important concern of 
investors as empirically demonstrated in both the consumption and the factor models.

The last question in this section we address is ‘how well do these factors combine to 
form an asset pricing model?’ A common measure of these kinds of factor models is the 
GRS test, so named from Gibbons et al. (1989). The GRS statistic tests the null hypoth-
esis that all the intercepts of N time series regressions are simultaneously zero: H0: ai = 0; 
i = 1,2,3, …, N. We form N = 25 test portfolios by sorting the universe of stocks on LIQ 
with one of either E/P, EG/P, or LIQG. Table 5, Panel B, column two shows the GRS sta-
tistics for the five-factor model in (11) when each of the three sets of 25 test portfolios are 
considered. Column three shows the corresponding GRS p-value. A low GRS statistic and 
a high p-value are preferred. Usually, in these kinds of factor model designs, GRS statistics 
cause easy rejection for proposed factor models. In our model, this is the case with two of 
the sorts. However, when the test portfolios are sorted by LIQ and E/P the GRS p-value is 
0.024; the model’s test statistic does not cause model rejection at the 99% level. Under the 
other two sorting methods the p-value rounds to 0.000 and the model is rejected.

The absolute value of the average of the intercepts and R2’s for the regressions of the 
test portfolios onto the five-factor model are shown in columns four and five of Panel B. 
These GRS statistics and p-values compare quite well to Fama and French (2015) and other 
models of this type.

The relation of E/PR and LIQR factors to HML and SMB of Fama and French (1993, 
2015) is discussed in Snigaroff and Wroblewski (2018, 2021).13 The main point here is the 
model in (11) has very competitive factor premiums and GRS-statistics in relation to other 
leading factor models. This gives stock level evidence that the variables used in the con-
sumption model are risks investors price. The results in Table 5 indicate a five-factor model 
that not only uses factors related to our aggregate variables but also performs quite well 
as compared to the state-of-the-art stock level models. This corroborates our consumption 
model variables and helps us meet our seventh listed goal.

12  Data is from the Kenneth R. French data library at: https://​mba.​tuck.​dartm​outh.​edu/​pages/​facul​ty/​ken.​
french/​data_​libra​ry.​html#​Resea​rch.
13  Snigaroff and Wroblewski (2018) give evidence showing SMB and LIQR are different in the time series, 
and Snigaroff and Wroblewski (2021) discuss similarities and differences in these factors. Their similarity 
or difference makes no difference to our work here as (1) if they are different measures of the same under-
lying risk then we can use either to construct the best working factor model, and (2) we are, at any rate, 
focused here on the growth factors EG/PR and LIQGR.

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#Research
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#Research


521Consumption with earnings, liquidity, and market based models﻿	

1 3

4 � Conclusion

We build a working consumption model that ‘solves’ asset pricing puzzles. We have 
accomplished this with simple, robust, well-known variables that investors have cared 
about for over 100 years. In our CELM model the variable ETOM is a very simple meas-
ure of wealth that allows for a well fitted consumption model. A working consumption 
asset pricing model is a top agenda item for asset pricing theory. Our empirical model is 
motivated by investors who consider as part of their wealth, changes in the market price of 
their assets, but also earnings and liquidity changes. Earnings are important to investors 
because whether they are individuals, pension funds, or endowments, they have a special 
interest in managing the covariance of their investments’ earnings to their own earnings 
streams. Liquidity can be important as investors’ ability to readily buy or sell wealth is 
contingent on market’s condition, as in Lo and Wang (2006), the liquidity externality of 
Levine (1991), or for other reasons. Liquidity may become particularly scarce just when 
investors most need it, hence its premium.

A consumption model that includes the market, with changes in earnings and liquidity, 
meets well-known consumption parameter restrictions. The CELM model is highly intui-
tive and much simpler than most other consumption models, e.g., Bansal and Yaron (2004). 
When our proxy variables ‘crash’ subsequent consumption is lower–more so than when the 
market itself crashes. Our variables forecast consumption. We provide evidence that earn-
ings and liquidity are important. Although a working consumption model can be obtained 
in our framework with the market along with either one of our variables, using both earn-
ings and liquidity is consistent to human capital and intermediation theory. Also, it is when 
using both earnings and liquidity along with the market that these variables together tie 
well to a five-factor security level time series model. The factor model demonstrated here 
has the market, earnings-to-price, earnings-growth-to-price, liquidity, and liquidity growth. 
The consumption models here combine either the market or E/P with earnings growth and 
liquidity growth. We tie the consumption asset pricing framework to a stock-level factor 
model—with both showing significant importance to the market, earnings, and liquidity. 
This stock level evidence, and non-rejection under important model parameters, gives cre-
dence to our consumption model.

Appendix 1: Bivariate lognormal distribution facts

Define the following log normally distributed random variables:

This implies that:

And that the variance is given by:
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Let a and b be constants then and further assume that the pair (ln(X), ln(Y)) is bivariate normal 

then we have that: a ln(X) + b ln(Y)
d
=N

(
a�X + b�Y , a

2�2
X
+ b2�2

Y
+ 2abCov(ln(X), ln(Y))

)
. 

This implies:

Appendix 2: RRA coefficient computation under the recursive utility 
assumption

Assume we have a SDF M so that:

where P, and X are the price and payoff processes respectively. Then let (1 + Rt+1) =
Xt+1

Pt

, 
denote the return of an asset. From this we may conclude that:

Since it holds for all payoffs, it must also hold for the risk-free rate Rf  and thus after 
subtracting:

That orthogonality implies that:

with ri,t+1, being the excess return. We now follow Epstein and Zin (1989), (1991) in 
which we have the consumption process at time t, Ct , and the recursive utility function:

where 1−α is the coefficient of relative risk aversion and 1

1−�
 is the elasticity of intertempo-

ral substitution. In this model the agent’s wealth W is defined by:

with Rw,t+1 defined as the return on all invested wealth. We model this return by the fol-
lowing measure which encompasses not only the market return but also is compensated by 
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the growth in earnings and the growth in liquidity. We define this proxy for the return on 
wealth by:

This idea being that the agent is compensated by not only the market return but also by 
increases in earnings and liquidity. Let Δct+1 ∶= ln

(
Ct+1

Ct

)
, and under this utility assump-

tion Mehra (2012), and Epstein and Zin (1991), demonstrate that the pricing kernel is given 
by:

Using the Taylor series approximation for ex centered at 0 and substituting into Eq. (19) 
we obtain:

This implies that the coefficient of relative risk aversion is given by:

Rewriting also yields the following approximation for �:

Appendix 3: Equity premium puzzle inequality

We show details for a closed form expression for the upper bound of the Sharpe-Ratio. We 
begin with Eq. (19) and bound the expected excess return:
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which also uses the fact that 1

Et[Mt+1]
= (1 + Rf ) > 0. This then implies:

If the portfolio also happens to lie on the mean-standard deviation frontier then this 
inequality becomes an equality. We now compute the right-hand side of Eq. (28) which is 
also known as the Hansen-Jagannathan bound, Hansen and Jagannathan (1991). We now 
compute the expectation and the variance of the stochastic discount factor as defined in Eq. 
(23) by making the following assumptions:

We suppress the t in the expectation for convenience and compute the expected value of 
M via Eq. (15) is as:

We next compute the variance by again using Eq. (15) to obtain:
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Therefore upon substituting Eq. (30) and Eq. (31) we have found that:

Then using the Taylor series for ex centered at 0 on the exponential function we may 
approximate to obtain:

as an approximate upper bound on the Sharpe Ratio which we note depends on ETOM 
and on the consumption process. This we may conclude by returning to Eq. (28) that the 
following approximation holds:
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Appendix 4: Risk‑free rate puzzle

We show a closed form expression for the risk -free rate under the following preferences. 
We follow Epstein and Zin (1989, 1991) and use ETOM as a proxy for the wealth portfolio. 
This then leads, as before, to the SDF given by:

Since 1 = Et

[
Mt+1 ⋅ (1 + Rt+1)

]
, for all returns we may apply this identity to the wealth 

portfolio ETOM while using the three distributional assumptions made in that of Eq. (29), 
the log-normal facts from Appendix 1, as well as Munk (2013) to obtain:

Taking logs and then dividing by −�
�

 implies that:

We now consider the log of the risk-free rate:
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by the bivariate expectation formula given in Appendix 1. Now we use Eq. (37) to write 
(38) as:

Simplifying further yields:
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We have therefore shown that:

Appendix 5: Quadratic polynomial of Table 1

In order to obtain estimates for the EIS, RRA, and UBS given in Table 1 we use Eqs. (9) and 
(6) in order to compute a quadratic function of ρ that leads to an EIS. Substituting the solutions 
to this polynomial into Eq. (9) leads us to an RRA and utilizing Eq. (10) a UBS. Here we show 
that we have at most two solutions to these equations. Empirically, for all our models shown in 
Table 1, we can restrict the EIS to be positive and thus obtain a unique solution. Define the fol-
lowing for notational simplicity:

Using these definitions Eqs. (9) and (6) become:

Substituting α from Eq. (43) into Eq. (44), some algebra, and the assumptions that 
� ≠ 0 and � ≠ 1 −

G

H
, we obtain the following polynomial equation in ρ:

From this we can use the quadratic formula to find the roots and thus compute the 
required EIS, RRA, and UBS of Table 1.
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