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Abstract
We propose our quarterly earnings prediction (QEPSVR) model, which is based on epsi-
lon support vector regression (ε-SVR), as a new univariate model for quarterly earnings 
forecasting. This follows the recommendations of Lorek (Adv Account 30:315–321, 2014. 
https​://doi.org/10.1016/j.adiac​.2014.09.008), who notes that although the model developed 
by Brown and Rozeff (J Account Res 17:179–189, 1979) (BR ARIMA) is advocated as 
still being the premier univariate model, it may no longer be suitable for describing recent 
quarterly earnings series. We conduct empirical studies on recent data to compare the pre-
dictive accuracy of the QEPSVR model to that of the BR ARIMA model under a multitude 
of conditions. Our results show that the predictive accuracy of the QEPSVR model signifi-
cantly exceeds that of the BR ARIMA model under 24 out of the 28 tested experiment con-
ditions. Furthermore, significance is achieved under all conditions considering short fore-
cast horizons or limited availability of historic data. We therefore advocate the use of the 
QEPSVR model for firms performing short-term operational planning, for recently founded 
companies and for firms that have restructured their business model.
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1  Introduction

The quarterly earnings reported by a company is an accounting figure of great signifi-
cance. Quarterly earnings can be used to track performance in the context of manage-
ment and debt contracts (Dechow et al. 1998), and are reflective of corporate govern-
ance (Chen et  al. 2015). Isidro and Dias (2017) also show that earnings are strongly 
related to stock returns in volatile market conditions, while Zoubi et al. (2016) consider 
disaggregated earnings to better explain variation in stock returns. Furthermore, differ-
ences between forecasted and actual earnings have been used to calculate a firm’s mar-
ket premium (Dopuch et al. 2008).

The prediction of future quarterly earnings using univariate statistical models has been 
the subject of extensive research. Lorek and Willinger (2011) and Lorek (2014) claim that 
the autoregressive integrated moving average (ARIMA) model proposed by Brown and 
Rozeff (1979), denoted by BR ARIMA, is the premier univariate statistical model for the 
prediction of quarterly earnings. Its functional form is

where Yq is the earnings of a company for a quarter q , � is an autoregressive parameter, � is 
a moving average parameter and �q is the disturbance term at q.

While the BR ARIMA model has been praised for its predictive accuracy on historic 
data, Lorek (2014) expresses concerns about its ability to describe more recent quarterly 
earnings. This is because research suggests that the time series properties of quarterly earn-
ings have changed significantly since the development of the BR ARIMA model four dec-
ades ago. For instance, Baginski et al. (2003) note an apparent decline in the persistence of 
quarterly earnings from 1967 to 2001. This could be explained by the increased prevalence 
of high-tech firms (Kwon and Yin 2015). Lorek and Willinger (2008) also find that for 
an increasing number of companies, the quarterly earnings series no longer exhibit any 
significant seasonality. Furthermore, Klein and Marquardt (2006) highlight an increasing 
frequency of negative quarterly earnings, which according to Hayn (1995) disrupts auto-
correlation patterns. Lorek (2014) therefore advocates research towards developing a new 
univariate model for the prediction of quarterly earnings.

In this paper we introduce a new model based on epsilon support vector regression 
(ε-SVR) (Smola and Schölkopf 2004; Vapnik 1995), termed the quarterly earnings predic-
tion (QEPSVR) model. We choose ε-SVR as a supervised learning algorithm because of (1) 
the guarantee of finding a globally optimal solution, (2) a sparse solution space, meaning 
only some training points contribute to the solution, and (3) the use of dot products to 
facilitate efficient computation of nonlinear solutions (Thissen et al. 2003). Furthermore, 
ε-SVR has been shown to generally perform well in many real-world applications (Hastie 
et al. 2009). Initial trials were also conducted using random forests (Breiman 2001), gra-
dient boosting (Friedman 2001), and gaussian processes (Rasmussen and Williams 2006) 
as base supervised learners for the QEPSVR model. However, utilizing ε-SVR yielded the 
highest predictive accuracy.

Our QEPSVR model retains the univariate character of the BR ARIMA model, mean-
ing all predictive features are derivable from historic quarterly earnings series. Unlike the 
BR ARIMA model however, the QEPSVR model is fitted using the historic quarterly earn-
ings of multiple firms. The objective of this paper is to analyze and compare the predictive 
accuracy of the QEPSVR model to that of the state-of-the-art BR ARIMA model under a 
multitude of conditions.

Yq = Yq−4 + �
(
Yq−1 − Yq−5

)
+ �q − �

(
�q−4

)
,
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The rest of the paper proceeds as follows. Section 2 familiarizes the reader with the basics 
of ε-SVR. Section 3 then describes the QEPSVR model in detail. This is followed by an expla-
nation of the research method for comparing the QEPSVR model to the BR ARIMA model 
in Sect. 4. The experimental results are discussed in Sect. 5, while Sect. 6 offers concluding 
remarks.

2 � Epsilon support vector regression (ε‑SVR)

ε-SVR (Smola and Schölkopf 2004; Vapnik 1995) is an integral part of the QEPSVR 
model; its key ideas are introduced in this section. Consider training data of the form {(
x1, y1

)
,… ,

(
xn, yn

)}
⊂ X ×ℝ , where X  is the input space (e.g. X = ℝ

d ), i.e. xi ∈ X  and 
yi ∈ ℝ for i = 1,… , n . The goal of ε-SVR regression is to fit a model, f (x) , to the training 
data, such that (1) the maximum deviation of each training point yi from f

(
xi
)
 is ε, and (2) 

f (x) is as flat as possible. The procedure for achieving this is introduced for cases where f (x) 
is linear first, followed by an extension to nonlinear models.

A linear function is stipulated as

where w ∈ X, b ∈ ℝ , and ⟨w, x⟩ denotes the dot product of w and x. For this function, flat-
ness refers to w being small. ε-SVR fits a linear function to training data by solving the fol-
lowing convex optimization problem:

where ∥w∥2 = ⟨w,w⟩ . Since satisfying these constraints may be infeasible, slack variables 
�i and �∗

i
 are introduced:

Here, deviations only contribute to the total error when |||f
(
xi
)
− yi

||| > ε . The trade-off 
between attaining a flat f  and not allowing deviations greater than ε is controlled by the con-
stant C > 0 . However, the above optimization problem is usually solved in its dual formula-
tion. The involves the construction of a Lagrange function, L:

f (x) = ⟨w, x⟩ + b,

minimize
1

2
∥w∥2

subject to

�
yi − ⟨w, xi⟩ − b ≤ ε

⟨w, xi⟩ + b − yi ≤ ε

minimize
1

2
∥w∥2 + C

n�
i=1

�
�i + �∗

i

�

subject to

⎧⎪⎨⎪⎩

yi − ⟨w, xi⟩ − b ≤ ε + �i⟨w, xi⟩ + b − yi ≤ ε + �∗
i

�i, �
∗
i
≥ 0

L =
1

2
∥w∥2 + C

n�
i=1

�
�i + �∗

i

�
−

n�
i=1

�
�i�i + �∗

i
�∗
i

�

−

n�
i=1

�i
�
ε + �i − yi + ⟨w, xi⟩ + b

�
−

n�
i=1

�∗
i

�
ε + �∗

i
+ yi − ⟨w, xi⟩ − b

�
,
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where the variables �i, �∗
i
, �i, �

∗
i
≥ 0 are Lagrange multipliers. To find the optimal solution, 

the partial derivatives of L with respect to the variables w, b, �i and �∗
i
 are set to 0:

The substitution of these equations into L gives the dual optimization problem, in which �i 
and �∗

i
 vanish:

The optimization problem can therefore be stipulated in terms of dot products between the 
training data. This observation is key for the subsequent extension of ε-SVR to nonlinear f (x) . 
Since rearranging �wL gives

it follows that f (x) can be rewritten as a linear combination of the training inputs, xi:

ε-SVR is also capable of fitting nonlinear f (x) to training data. This requires a mapping 
of the input space X  to another space, X∗ . The dual optimization problem specified above 
could then be solved for the modified training data, 

{(
x∗
1
, y1

)
,… ,

(
x∗
n
, yn

)}
⊂ X

∗ ×ℝ . 
However, computing dot products in X∗ may be computationally infeasible. Instead, a ker-
nel function K can be used to compute the dot products ⟨x∗

i
, x∗

j
⟩ specified in the optimi-

zation problem from X  directly—avoiding the explicit transformation X ↦ X
∗ . The dual 

optimization problem is thus rewritten as

�bL =

n∑
i=1

(
�∗
i
− �i

)
= 0

�wL = w −

n∑
i=1

(
�i − �∗

i

)
xi = 0

��i L = C − �i − �i = 0

��∗
i
L = C − �∗

i
− �∗

i
= 0

maximize −
1

2

n�
i,j=1

�
�i − �∗

i

��
�j − �∗

j

�
⟨xi, xj⟩ − ε

n�
i=1

�
�i + �∗

i

�
+

n�
i=1

yi
�
�i − �∗

i

�

subject to

⎧⎪⎨⎪⎩

n∑
i=1

�
�i − �∗

i

�
= 0

�i, �
∗
i
∈ [0,C]

w =

n∑
i=1

(
�i − �∗

i

)
xi,

f (x) = ⟨w, x⟩ + b =

n�
i=1

�
�i − �∗

i

�⟨xi, x⟩ + b.

maximize −
1

2

n�
i,j=1

�
�i − �∗

i

��
�j − �∗

j

�
K
�
xi, xj

�
− ε

n�
i=1

�
�i + �∗

i

�
+

n�
i=1

yi
�
�i − �∗

i

�

subject to

⎧⎪⎨⎪⎩

n∑
i=1

�
�i − �∗

i

�
= 0

�i, �
∗
i
∈ [0,C],
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where flatness of f (x) is maximized in X∗ rather than in X  . The fitted nonlinear function is 
stipulated as follows:

Finally, the variable b can be estimated using the Karush–Kuhn–Tucker conditions 
(Karush 1939; Kuhn and Tucker 1951), which are not discussed further.

3 � The QEPSVR model

The notation used in the description of the QEPSVR model is as follows. Firstly, quarterly 
earnings series are assigned relative integer indices. For example, if Yq|q ∈ ℤ denotes the 
fourth quarter (Q4) earnings for 2015 in a series Y  , then Yq−5 denotes the Q3 earnings for 
2014. The unmodified quarterly earnings series are referred to as original ( orig) series. 
However, differenced ( diff ) and quarterly differenced ( qdiff ) series are also considered in 
order to expose quarter-by-quarter and quarter-to-quarter earnings relationships, respec-
tively (Lorek and Willinger 2011). Their derivation from orig series is shown below.

This means that for a continuous orig series of length n , the derived diff and qdiff series 
have lengths n − 1 and n − 4 , respectively.

At a high level, the QEPSVR model can be thought of as a sequence of data manipulation 
steps. Given a historic quarterly earnings series, the QEPSVR model first extracts several 
explanatory variables (features). Next, a heuristic is used to estimate the predictive power 
of each feature – only the top features are selected. The retained features are subsequently 
scaled to normalize their range. An ε-SVR model is then applied to the scaled features, 
yielding a (scaled) one-step-ahead quarterly earnings prediction. Finally, depending on the 
configuration of the ε-SVR model, this prediction is scaled back into the range of the origi-
nal series. This gives the true one-step-ahead quarterly earnings prediction.

The BR ARIMA model and the QEPSVR model always return one-step-ahead predic-
tions when evaluated. We therefore obtain multi-step-ahead predictions via a series of 
one-step-ahead predictions. For example, making a two-step-ahead prediction for a his-
toric series of length AvailableSeriesLength(ASL) ∈ ℕ

+ , orig−ASL,… , orig−1 , requires (1) 
evaluating a model for orig−ASL,… , orig−1 to obtain the one-step-ahead prediction of orig0 , 
denoted by orig∗

0
 , then (2) evaluating the same model again for orig−ASL+1,… , orig∗

0
 , yield-

ing the desired two-step-ahead prediction of orig1 , denoted by orig∗
1
 . Note that the model 

parameters are the same in (1) and (2), i.e. the BR ARIMA and QEPSVR models are not 
refitted during multi-step-ahead predictions.

The QEPSVR model has two operations: fit and predict. Fitting is the process of estimat-
ing the QEPSVR model’s parameters from a set of historic quarterly earnings series, while 
the predict operation uses the model parameters to make one-step-ahead quarterly earnings 
forecasts. We describe the QEPSVR model in the context of these two operations for the 
remainder of this section, hereby refining the high-level approach outlined in the previous 
paragraph.

f (x) =

n∑
i=1

(
�i − �∗

i

)
K
(
xi, x

)
+ b.

diffq = origq − origq−1

qdiffq = origq − origq−4.
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We define both the fitting and prediction operations of the QEPSVR model in pseu-
docode. The notation i[c] refers to an item i in a collection c . Furthermore, the notation 
x ← e denotes the assignment of the value of an expression e to a variable x . All refer-
enced functions are prefixed by the name of the module they belong to. There are four 
modules, Extraction , Selection , Scaling and SVR , each of which encapsulates a specific 
type of data manipulation. While the predict operation is explained first, some functions 
and parameters referenced by both operations are explained more closely in the subse-
quent description of the fit operation.

The input origSeriesCollection of the predict operation is a set of m con-
tinuous orig series. All series in origSeriesCollection are of equal length 
AvailableSeriesLength(ASL) ∈ ℕ

+ and have the form orig−ASL,… , orig−1 . The first 
step of the predict operation is to extract the diff and qdiff series corresponding to 
each of the m orig series in the input. This is done via the fTransform function of the 
Extraction module, yielding an output matrix X1 ∈ ℝ

m×(3⋅ASL−5) . Each of the m rows of 
X1 contains the 3 ⋅ ASL − 5 elements of the orig , diff and qdiff series for a single input 
series. Since the elements of each row are aligned, the column indices of X1 are the set {
orig−ASL,… , orig−1} ∪

{
diff−ASL+1,… , diff−1

}
∪ {qdiff−ASL+4,… , qdiff−1

}
 . These indi-

ces are also referred to as features.
The next step is to remove columns from X1 corresponding to features with low 

predictive power. This is done using the transform function of the Selection module. 
It requires a model parameter, selectedFeatures , that specifies the set of k features to 
retain. Note that all model parameters in the modelParams collection are determined 
using the QEPSVR model’s fit operation. Subsequently, each of the remaining columns 
in X2 ∈ ℝ

m×k are scaled by the transform function of the Scaling module. This produces 
a scaled matrix, X3 ∈ ℝ

m×k . The scaling of each column is controlled by the model 
parameter scaleParamsX.

Next, the predict function of the SVR module uses the model parameter svrParams to 
estimate the value of a specific target variable for each row of X3 . The result, Y1 ∈ ℝ

m×1 , 
is then subject to inverse scaling by the invTransform function of the Scaling module to 
produce Y2 ∈ ℝ

m×1 . Note that for a given matrix X and constant scaling parameters P , 
the application of Scaling.invTransform to the output of Scaling.transform(X,P) (and vice 
versa) yields the original matrix, X.

The final step of the predict operation is the application of the Extraction mod-
ule’s invTTransform function to Y2 . This ensures that the output, Y3 ∈ ℝ

m×1 , consists 
of one-step-ahead predictions for the m input orig series in origSeriesCollection , since 
the SVR.predict function may have returned (scaled) predictions for the corresponding 
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diff or qdiff series instead. The Extraction.invTTransform is notified of this through the 
model parameter targetVar , and uses the previously determined X1 ∈ ℝ

m×(3⋅ASL−5) to 
compute the following:

where the notation Xorig−q

1
 denotes the column of X1 corresponding to the feature orig−q.

The fit operation determines model parameters for a specified orig series length, ASL , for 
which one-step-ahead forecasts are to subsequently be made via the predict operation. Fit-
ting is controlled by hyperparameters ( hyperParams ). As for the predict operation, the input 
origSeriesCollection is a set of continuous orig series. For the fit operation however, each 
series must have a length of at least ASL + 1 and lengths are not required to be equal.

The first step of the fit operation is to decompose the series in origSeriesCollection . 
Conceptually, this is done by sliding a window of length ASL + 1 along each input series, 
one step of a time. For example, given ASL = 6 , a single input series orig1 … , orig8 would 
be split into two series: orig1,… , orig7 and orig2,… , orig8 . Assume this yields a total of 
s series, each of the form orig−ASL,… , orig0 . Next, the first ASL elements of each of these 
series are assigned to a row of the matrix X1 ∈ ℝ

s×ASL , while the last element of each series 
is assigned to the corresponding row in Y1 ∈ ℝ

s×1 . This decomposition is performed by the 
Extraction.windowTransform function.

The fTransform function of the Extraction module also accepts orig series in matrix 
form (in addition to set form, as in the predict operation). It uses X1 to create a feature matrix 
X2 ∈ ℝ

s×(3⋅ASL−5) . The target matrix Y2 ∈ ℝ
s×1 is computed by the Extraction.tTransform 

function using X2 , Y1 and the hyperparameter targetVar as follows

where Xorig−q

2
 denotes the column of X2 corresponding to the feature orig−q . Note that since 

targetVar is also required as a model parameter by the predict operation, it is added to the 
modelParams collection returned by the fit operation.

Y3 =

⎧
⎪⎨⎪⎩

Y2, if targetVar = orig

X
orig−1
1

+ Y2, if targetVar = diff

X
orig−4
1

+ Y2, if targetVar = qdiff ,

Y2 =

⎧
⎪⎨⎪⎩

Y1, if targetVar = orig

Y1 − X
orig−1
2

, if targetVar = diff

Y1 − X
orig−4
2

, if targetVar = qdiff ,
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The next step is to choose the k ∈ ℕ
+ features in X2 with the highest estimated explana-

tory power for predicting Y2 . This is performed by the fit function of the Selection mod-
ule. A heuristic for explanatory power is the mutual information score (Cover and Thomas 
1991) of a feature with the target variable. It is defined as

where A and B are continuous random variables, P(A,B) denotes the joint probability density 
function of A and B , and P(A) and P(B) are the marginal probability density functions of 
A and B , respectively. Intuitively, mutual information describes the degree of uncertainty 
reduction in A through knowledge of B . A higher mutual information score therefore sug-
gests greater explanatory power. Once the set of features selectedFeatures is determined, 
Selection.transform removes all unimportant features from X2 to produce X3 ∈ ℝ

s×k.
Subsequently, the columns of X3 and Y2 are scaled. The type of scaling is determined 

by the scaleTypeX and scaleTypeY  hyperparameters, respectively. These are either set to 
none, Gaussian or quantile Gaussian. The fit function of the Scaling module determines the 
scaling parameters scaleParamsX and scaleParamsY  , which are specific to the chosen scal-
ing type ( scaleParamsX contains scaling parameters for each of the k columns of X3 ). The 
Scaling module’s transform function infers the scaling type from the scaling parameters 
and applies the scaling to produce X4 ∈ ℝ

s×k and Y3 ∈ ℝ
s×1.

If the scaling type is none, the scaling parameters are an empty set. Applying this type 
of scaling has no effect on the input matrix. In the case of Gaussian scaling, the scal-
ing parameters are the sample mean and sample standard deviation of each column. The 
transform function of the Scaling module uses these parameters to replace each element of 
an input matrix X , with the z-score

where xi,j is the element in the ith row and jth column of X , and x̄j and sj are the sample 
mean and sample standard deviation of the jth column of X , respectively. Conversely, call-
ing the Scaling.invTransform function (referenced in the predict operation) with Gaussian 
scaling parameters has the effect of replacing each element xi,j with sjxi,j + x̄j.

Since Gaussian scaling depends on sample means, it is susceptible to outliers. Quantile 
Gaussian scaling uses a deterministic rank-based inverse normal transformation (Beasley 
et al. 2009), which is much more robust in the presence of outliers. The scaling parameters 
are a set of functions, 

{
Qj

}
 , where Qj ∶ [0, 1] ↦ ℝ is a quantile function for the jth column 

of the matrix to be scaled. In this case, applying Scaling.transform replaces each element 
of an input matrix X , xi,j , with �−1(Q−1

j

(
xi,j)

)
 , where Q−1

j
 is the inverse quantile function for 

the jth column and �−1 is the inverse cumulative distribution function of a standard normal 
distribution. The application of Scaling.invTransform replaces each xi,j with Qj

(
�
(
xi,j

))
.

After the completion of scaling, the svrParams model parameter is determined using the 
fit function of the SVR module. The SVR module performs ε-SVR, which was introduced 
in Sect.  2. In this case X4 and Y3 are considered as training data of the form {(

X
(1)

4
, Y

(1)

3

)
,… ,

(
X
(s)

4
, Y

(s)

3

)}
⊂ ℝ

k ×ℝ , where the notation X(i)

4
 denotes the ith row of 

X4 . ε-SVR fits a model, f ∶ ℝ
k
↦ ℝ , to this training data, i.e. it learns the mapping from 

each row of X4 to the corresponding element of Y3 . In the context of the QEPSVR model, f  
has the functional form

I(A;B) = ∫
B

∫
A

P(A,B)(a, b) log2
P(A,B)(a, b)

P(A)(a)P(B)(b)
dadb,

zi,j =
xi,j − x̄j

sj
,
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where X ∈ ℝ
k , �i and �∗

i
 are Lagrange multipliers associated with the ith training point and 

b is a constant. The kernel function K is chosen to be the squared exponential (Rasmussen 
and Williams 2006), stipulated as

where X,X� ∈ ℝ
k , ∥X − X�∥ denotes the Euclidean norm of X − X� , and the hyperparameter 

� ∈ ℝ is included in the hyperParams collection provided as an input to the fit operation. 
As specified in Sect.  2, the value of b can be estimated using the Karush–Kuhn–Tucker 
conditions (Karush 1939; Kuhn and Tucker 1951), while the Lagrange multipliers are 
found by solving the reformulated dual optimization problem:

Recall that the constant C > 0 controls the trade-off between attaining a flat f  and not 
allowing deviations greater than ε. Both ε and C are hyperparameters that must be passed 
to the fit operation. The set of Lagrange multipliers 

{(
�i, �

∗
i

)|i = 1, 2,… s
}
 , the training 

points {X(i)

4
|i = 1, 2,… s} and the constant b are assigned to the collection svrParams.

Finally, selectedFeatures , scaleParamsX , scaleParamsY  , svrParams as well as the 
hyperparameter targetVar are returned by the fit operation as the set of model parameters 
required by the predict operation of the QEPSVR model.

4 � Research method

At any point during their practical application, the BR ARIMA model and the QEPSVR 
model are in one of two phases: development or operation. When in operation, a model 
can be evaluated. Evaluating a model means passing it a continuous historic orig series, 
orig−ASL,… , orig−1 , for which it returns a one-step-ahead prediction of orig0 , denoted by 
orig∗

0
 . As mentioned previously, both models consider an iterative approach to making 

multi-step-ahead predictions, during which a model is not refitted. Model parameters there-
fore cannot be modified during operation.

The development phase consists of any activities that prepare a model for operation. In the 
case of the BR ARIMA model, the values of � (the autoregressive parameter) and � (the mov-
ing average parameter) are firm-specific. This means that they are estimated from the single 
orig series for which predictions are to be made (Lorek and Willinger 2011). Once � and � 
are determined, the BR ARIMA model is immediately evaluated to obtain predictions. Con-
versely, the hyperparameters and model parameters of the QEPSVR model are estimated from 
the historic data of a collection of firms. The model can then be evaluated for multiple firms 
before entering another development phase.

f (X) =

s∑
i=1

(
�i − �∗

i

)
K
(
X
(i)

4
,X

)
+ b,

K
(
X,X�

)
= e−�∥X−X

�∥2 ,

maximize −
1

2

s�
i,j=1

�
�i − �∗

i

��
�j − �∗

j

�
K
�
X
(i)

4
,X

(j)

4
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The predictive accuracy of the QEPSVR model is compared to that of the BR ARIMA 
model under different experiment conditions. A condition is described by two variables: 
available series length ( ASL ) and prediction steps ( PS ). ASL is the length of the series for 
which predictions are made during operation, while PS specifies how many quarters into the 
future earnings should be predicted (i.e. given orig−ASL,… , orig−1 , the element origPS−1 is 
to be predicted). A total of 28 experiment conditions, (ASL,PS) ∈ {6,… , 12} × {1,… , 4} , 
are considered. The chosen measure of predictive accuracy is mean absolute percentage error 
(MAPE) (Makridakis et al. 1982). It is defined as

where n is the number of predictions, and F and A denote the forecasted and actual quar-
terly earnings. As in Lorek and Willinger (2011), prediction errors exceeding 100 percent 
are truncated to 100 percent. This is done to avoid the effects of explosive prediction errors.

The data used for the experiment consists of the orig quarterly earnings series of 117 
companies across the German DAX, MDAX, SDAX and TecDAX stock market indices.1 
Each series contains 24 consecutive quarterly earnings from Q1 2012 to Q4 2017, giving a 
total of 2808 quarterly earnings. Table 1 summarizes the distribution of quarterly earnings 
and yearly book value of total assets of the companies in the experiment data. All values 
are in millions of Euros, to the nearest hundred thousand.

The main industries of companies in the experiment data are highlighted in Table  2. 
Industry classification is performed according to the International Standard Industrial Clas-
sification of All Economic Activities (ISIC) system (United Nations, 2008).

The MAPE values of the QEPSVR model are calculated for all considered experiment 
conditions by executing GetQEPErrors . This operation implements tenfold cross-valida-
tion. The input S is therefore a set of 10 disjoint subsets (folds), 

{
S1,… , S10

}
 , of the 117 

MAPE =
1

n

n∑
i=1

||||
Ai − Fi

Ai

||||,

Table 1   Distribution of quarterly 
earnings and book value of total 
assets

Mean 1st quartile Median 3rd quartile

Quarterly earnings 104.1 5.3 20.3 62.0
Yearly book value 

of total assets
34,785.8 941.9 2288.5 7792.8

Table 2   Industries of companies 
in the experiment data

ISIC section Number of 
companies

Manufacturing 51
Information and communication 16
Financial and insurance activities 13
Real estate activities 8
Wholesale and retail trade 8
Transportation and storage 6
Professional, scientific and technical activities 5
Other (sections with less than 5 companies) 10
Total 117

1  All data is obtained from publicly available sources. The data and code for the experiments is accessible 
at the following GitHub repository: https​://githu​b.com/fisch​ja/quart​erly-earni​ngs-predi​ction​s.

https://github.com/fischja/quarterly-earnings-predictions
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series in the experiment data. Each fold is of roughly equal size. The superscript notation 
(a ∶ b) slices all series in a set by removing earnings at quarters before a and after b . All 
MAPE values are calculated for predictions of quarterly earnings in predYear only.

Figure  1 illustrates four steps of how GetQepErrors makes predictions for 
predYear = 2016 at ASL = 8 and fold = 10 , assuming each fold Si were to consist of a sin-
gle series. In the first step, one to four-step-ahead predictions are made for S10 , while only a 
one-step-ahead prediction can be made for S10 in the fourth step.

Fig. 1   How the GetQepErrors operation makes predictions
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The hyperparameters required by the fit operation of the QEPSVR model are determined 
once for all experiment conditions. This is done by minimizing the MAPE values for pre-
dictions of quarterly earnings in 2016:

The set of optimal (lowest) MAPE values found during hyperparameter optimization are 
referred to as validation errors:

However, a more accurate estimate of the QEPSVR model’s predictive accuracy is 
obtained by using the optimized hyperparameters to make predictions for quarterly earn-
ings in 2017. This is because the data for 2017 is not observed during hyperparameter opti-
mization. These errors are referred to as testing errors and are obtained as follows:

The MAPE values for the BR ARIMA model are also calculated for predic-
tions of quarterly earnings in 2016 and 2017. These are obtained by calling 
GetBrArimaErrors(experimentData, 2016) and GetBrArimaErrors(experimentData, 2017) , 
where experimentData denotes the set of all 117 orig series. The BR.fit function determines 
the values of � and � by minimizing the sum of squared disturbance terms.

MAPE values are compared on a per-company basis. This means that the errors returned 
by GetBrArimaErrors and GetQepErrors are aggregated such that there are 117 MAPE 
values for the BR ARIMA model and the QEPSVR model under each of the 28 experi-
ment conditions. Hypothesis testing is then performed to asses if the 117 MAPE values 

optimalHyperParams ← argmin
hyperParams

GetQepErrors(S, 2016, hyperParams).

validationErrs ← GetQepErrors(S, 2016, optimalHyperParams)

testingErrs ← GetQepErrors(S, 2017, optimalHyperParams)
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calculated for the QEPSVR model are significantly lower than those calculated for the BR 
ARIMA under each condition, i.e. if the QEPSVR model has a significantly higher predic-
tive accuracy than the BR ARIMA model. Since this involves paired samples, the paired 
t test (Kim 2015) and the Wilcoxon signed-rank test (Wilcoxon 1945) are used. In both 
cases, the one-tailed test is considered.

For a given condition, let �BR and �QEP denote the mean of the 117 MAPE values 
calculated for the BR ARIMA and QEPSVR models, respectively. Similarly, let MBR and 
MQEP denote the median of the 117 MAPE values for each model. The null and alternative 
hypotheses of the paired t-test, HT0

 and HT1
 , are stated as

while the null and alternative hypotheses of the Wilcoxon signed-rank test, HW0
 and HW1

 , 
are

5 � Results

The hyperparameter values that minimize the validation errors are shown in Table  3. 
Table  4 shows the results of comparing the validation and testing errors of the QEPSVR 
model to the corresponding prediction errors of the BR ARIMA model under each of the 
28 experiment conditions.

Table 4 shows that 51 out of the 56 p-values calculated using the paired t-test lie below 
a significance level of 0.05, while 52 out of the 56 p-values calculated using the Wilcoxon 
signed-rank are below 0.05. We assume statistical significance under a condition if the 
p-values for a statistical test lie below 0.05 for predictions in both 2016 and 2017. The 
results in Table 4 therefore provide evidence for the rejection of HT0

 and HW0
 in favor of 

HT1
 and HW1

 , respectively, under 24 of the 28 experiment conditions. The four conditions, 
( ASL , PS ), with insufficient evidence for rejection are (9, 3) , (9, 4) , (11, 4) and (12, 4).

The 24 significant conditions include all those where PS ∈ {1, 2} (i.e. having short 
forecast horizons). This leads to the first result: The predictive accuracy of the QEPSVR 
model significantly exceeds that of the BR ARIMA model for short forecast horizons. 
This means the QEPSVR model is particularly suitable for companies considering short-
term operational planning.

HT0
∶ 𝜇QEP ≥ 𝜇BR HT1

∶ 𝜇QEP < 𝜇BR,

HW0
∶ MQEP ≥ MBR HW1

∶ MQEP < MBR.

Table 3   Optimal hyperparameter 
values

Hyperparameter Optimal value

targetVar qdiff

k 4
scaleTypeX Quantile Gaussian
scaleTypeY Quantile Gaussian
� 0.04
C 0.2
� 0.25
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Furthermore, the 24 significant conditions also include all those where ASL ∈ {6, 7, 8} 
(i.e. having limited historic data availability). The second result is thus stated as fol-
lows: The predictive accuracy of the QEPSVR model significantly exceeds that of the 
BR ARIMA model when only limited historic quarterly earnings data is available. Situ-
ations of limited data availability arise in start-ups, as well as in companies that have 
recently made structural changes to their business model.

The selection of predictive features by the QEPSVR model is also investigated. As shown 
in Table 3, the optimal value for the hyperparameter k is found to be 4. This means the 
fit operation of the QEPSVR model selects the four predictive features which have the 
highest mutual information score with the chosen target variable ( qdiff0 ). Table 5 shows 

Table 4   Results of comparing the predictive accuracy of the QEPSVR model to that of the BR ARIMA 
model

Conditions Validation (2016) Testing (2017)

ASL PS p value Mean MAPE p value Mean MAPE

t test Wilcoxon QEPSVR BR ARIMA t test Wilcoxon QEPSVR BR ARIMA

6 1 0.000 0.000 0.447 0.587 0.000 0.000 0.438 0.594
6 2 0.000 0.000 0.440 0.615 0.000 0.000 0.453 0.617
6 3 0.000 0.000 0.460 0.665 0.000 0.000 0.485 0.672
6 4 0.000 0.000 0.477 0.653 0.000 0.000 0.535 0.725
7 1 0.000 0.000 0.443 0.514 0.000 0.000 0.438 0.530
7 2 0.000 0.000 0.439 0.526 0.000 0.000 0.454 0.527
7 3 0.000 0.000 0.458 0.548 0.000 0.000 0.487 0.583
7 4 0.000 0.000 0.485 0.591 0.011 0.005 0.540 0.608
8 1 0.000 0.000 0.434 0.508 0.000 0.000 0.429 0.500
8 2 0.000 0.000 0.423 0.491 0.000 0.000 0.441 0.512
8 3 0.000 0.000 0.445 0.523 0.000 0.000 0.473 0.559
8 4 0.002 0.001 0.486 0.571 0.008 0.004 0.536 0.597
9 1 0.005 0.014 0.442 0.472 0.001 0.000 0.429 0.468
9 2 0.013 0.028 0.429 0.462 0.019 0.023 0.437 0.468
9 3 0.079 0.105 0.451 0.476 0.005 0.002 0.469 0.514
9 4 0.158 0.097 0.494 0.522 0.088 0.018 0.543 0.567
10 1 0.000 0.000 0.433 0.575 0.000 0.000 0.430 0.524
10 2 0.000 0.000 0.444 0.587 0.000 0.000 0.440 0.554
10 3 0.000 0.000 0.483 0.566 0.000 0.000 0.465 0.581
10 4 0.001 0.000 0.439 0.568 0.045 0.045 0.546 0.586
11 1 0.000 0.000 0.434 0.549 0.000 0.000 0.425 0.506
11 2 0.000 0.000 0.444 0.532 0.000 0.000 0.434 0.517
11 3 0.000 0.000 0.483 0.556 0.001 0.000 0.468 0.530
11 4 0.000 0.000 0.438 0.575 0.055 0.056 0.540 0.577
12 1 0.000 0.000 0.438 0.507 0.000 0.000 0.431 0.491
12 2 0.000 0.001 0.439 0.507 0.000 0.000 0.438 0.503
12 3 0.000 0.000 0.455 0.539 0.001 0.000 0.471 0.535
12 4 0.018 0.001 0.481 0.539 0.095 0.106 0.543 0.575
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the probability of features being selected (i.e. a probability of 1 implies that a feature is 
always selected) across all predictions of quarterly earnings in 2016 and 2017. Features are 
arranged from left to right in descending order of mean selection probability across all ASL 
values.

The features orig−4 and diff−3 have the highest mean selection probabilities and have 
a selection probability of at least 0.95 across all conditions. After becoming available for 
selection at ASL = 8 , the feature qdiff−4 is selected with a probability of at least 0.88 under 
all conditions with ASL ≥ 8 . The feature qdiff−1 is never selected for ASL ≥ 10 . Only 7 
different features have selection probabilities exceeding 0.1, despite the pool of available 
features increasing from 13 (when ASL = 6 ) to 31 (when ASL = 12 ). The fact that 6 out of 
these 7 features are already available for selection at ASL = 6 suggests that increasing ASL 
may have little effect on the predictive accuracy of the QEPSVR model.

6 � Conclusion

Following the recommendations of Lorek (2014), we propose our QEPSVR model as a new 
univariate statistical model for the prediction of quarterly earnings. Empirical evidence 
shows that under 24 out of 28 tested conditions, the predictive accuracy of the QEPSVR 
model is significantly higher than that of the state-of-the-art BR ARIMA model. Further-
more, the significant conditions include all those considering one and two-step-ahead pre-
dictions ( PS ∈ {1, 2} ), as well as those for which only limited historic data is available 
( ASL ∈ {6, 7, 8} ). The experimental results therefore advocate using the QEPSVR model 
instead of the BR ARIMA model for short-term operational planning, for recently founded 
companies and for companies that have recently made fundamental changes to their busi-
ness model.

Since the hyperparameters and model parameters of the QEPSVR model are determined 
from the historic data of multiple companies, further research is needed to understand how 
the choice of these companies affects predictive accuracy. Factors of interest include the 
industry, size, and diversity of companies, as well as their relationship to those companies 
for which predictions are to be made. Other areas of research include studying the effect of 
condition-specific hyperparameter optimization and exploring methods for combining the 
QEPSVR model with other forecasting methods. As an example, predictions of the QEPSVR 

Table 5   Feature selection 
probabilities

ASL Selection probability

orig−4 diff−3 diff−4 qdiff−4 qdiff−1 orig−2 orig−1

6 1.00 1.00 0.91 0.00 0.58 0.43 0.09
7 1.00 1.00 0.95 0.00 0.44 0.40 0.16
8 1.00 1.00 0.83 1.00 0.05 0.03 0.10
9 0.99 1.00 0.65 1.00 0.20 0.00 0.16
10 0.96 0.95 0.84 1.00 0.00 0.00 0.00
11 0.98 0.95 0.83 0.96 0.00 0.05 0.06
12 0.98 0.96 0.80 0.88 0.00 0.08 0.20
Mean 0.99 0.98 0.83 0.69 0.18 0.14 0.11
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model could be combined with analysts’ forecasts, building upon the research of Elgers 
et al. (2016).
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