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IGF-1  Insulin-like growth factor
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OGTT  Post-oral glucose tolerance test
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PGM1-CDG	 	Phosphoglucomutase	1	deficiency
PTH  Parathyroid hormone
QUS  Quantitative Ultrasound
rhGH  Recombinant human growth hormone
SGLT2  Sodium-glucose co-transporter 2
SHBG  Serum sex hormone-binding globulin
T2D  Type 2 diabetes
UCCS  Uncooked corn starch
VLDL  Very-low-density lipoprotein
11βHSD1	 	11β-hydroxysteroid	dehydrogenase	type	1

Abbreviations
GSDs  Glycogen storage diseases
BMD  Low bone mineral density
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Abstract
Hepatic glycogen storage diseases constitute a group of disorders due to defects in the enzymes and transporters involved 
in glycogen breakdown and synthesis in the liver. Although hypoglycemia and hepatomegaly are the primary manifesta-
tions of (most of) hepatic GSDs, involvement of the endocrine system has been reported at multiple levels in individuals 
with hepatic GSDs. While some endocrine abnormalities (e.g., hypothalamic-pituitary axis dysfunction in GSD I) can be 
direct consequence of the genetic defect itself, others (e.g., osteopenia in GSD Ib, insulin-resistance in GSD I and GSD 
III) may be triggered by the (dietary/medical) treatment. Being aware of the endocrine abnormalities occurring in hepatic 
GSDs is essential (1) to provide optimized medical care to this group of individuals and (2) to drive research aiming 
at understanding the disease pathophysiology. In this review, a thorough description of the endocrine manifestations in 
individuals with hepatic GSDs is presented, including pathophysiological and clinical implications.
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1 Introduction

Glycogen storage diseases (GSDs) are rare inherited meta-
bolic	disorders	due	to	a	specific	defect	in	enzymes	or	trans-
porters involved in glycogen breakdown and synthesis. 
More than 12 GSD types are recognized causing various 
symptoms depending on the location of the defect in the 
glycogen metabolic pathway. Hepatic GSDs (collective 
estimated incidence of ~ 3:100,000 newborns) are caused 
by	a	specific	defect	in	the	liver	and	include	GSD	type	0a,	Ia,	
Ib, III, IV, VI, IX, and XI. Based on the ability to perform 
mitochondrial fatty acid oxidation for ketone body produc-
tion,	hepatic	GSDs	are	further	classified	as	ketotic	(GSD	0a,	
GSD III, GSD VI, GSD IX, GSD XI) or non-ketotic (GSD 
Ia and GSD Ib). The major symptoms and signs in individu-
als with (most of the) hepatic GSDs are fasting intolerance, 
hepatomegaly, growth retardation, elevated transaminases 
and hyperlipidemia [1–4].	Additional	findings	characterize	
specific	hepatic	GSD	types	(Table	1). Clinical, biochemical 
and imaging features are traditionally employed for moni-
toring individuals with hepatic GSDs.

Dietary management including frequent feedings, regu-
lar uncooked corn starch (UCCS) intake, gastric-drip feed-
ing is the cornerstone of the treatment for hepatic GSDs [5, 
6]. Pharmacological therapy (e.g., lipid-lowering drugs, 
granulocyte colony-stimulating factor, ACE-inhibitors) can 
correct secondary metabolic disturbances and/or prevent/

delay disease complications. Additional treatment options 
(e.g. radiofrequency ablation, liver transplantation) can be 
considered	when	previous	options	are	not	sufficiently	effec-
tive [1].

Despite the treatment, individuals with hepatic GSDs 
can experience metabolic decompensation [7] and develop 
a number of (long-term) complications, including liver ade-
nomas and renal failure [8, 9]. Among those, disruption of 
the endocrine system has been extensively reported at mul-
tiple levels in hepatic GSDs [10–14]. An overview on the 
involvement	of	 the	different	endocrine	axes	 in	 individuals	
with hepatic GSDs is provided, including pathophysiologi-
cal and clinical implications. A summary of major endocrine 
manifestations observed in hepatic GSDs is presented in 
Fig. 1; Table 2.

1.1 Hypothalamic-pituitary axis

Failure	 to	 thrive	and	short	 stature	are	 frequent	findings	 in	
children with hepatic GSDs [8, 15]. Their prevalence spans 
from 10% in GSD 0a [16] and GSD III [17] to 17% in GSD 
IXb [18], 27% in GSD Ia [19], 30% in GSD IXa [18], 38% in 
GSD Ib [19], 52% in GSD VI [20], 57% in GSD IV patients 
[21] and up to 90% of GSD XI individuals [22–25]. Ini-
tial growth retardation together with a late growth spurt are 
common features. A subsequent catch-up growth is usually 
observed when proper (dietary) treatment is initiated [26]. 

Type OMIM Gene Locus Protein defect Major distinguishing features
0a 240,600 GYS2 12p12.2 Glycogen synthase - Post-prandial hyperglycemia and 

hyperlactatemia
- Absence of hepatomegaly

Ia 232,200 G6PC1 17q21.31 Glucose 
6-phosphatase-α	
catalytic subunit

- Elevated lactate and uric acid
- Non-/hypo-ketotic hypoglycemia
- Renal disease
- Liver adenomas may develop

Ib 232,200 SLC37A4 11q23.3 Glucose 6-phos-
phate transporter

- Same as GSD Ia + neutropenia 
and IBD

IIIa/IIIb 232,400 AGL 1p21.2 Glycogen deb-
ranching enzyme

- Usually markedly elevated liver 
transaminases
- (Cardio)myopathy (GSDIIIa)
- Liver cirrhosis may develop

IV 232,500 GBE 3p12.31 Glycogen branch-
ing enzyme

- Lack of severe hypoglycemia 
until end-stage liver disease
- Liver cirrhosis may present early 
in infancy

VI
IXa
IXb
IXc

232,700
306,000
261,750
613,027

PYGL
PHKA2
PHKB
PHKC

14q22.1
Xp22.13
16q12.2
16q11.2

Liver glycogen 
phosphorylase
Phosphorylase 
kinase	α	subunit
Phosphorylase 
kinase	β	subunit
Phosphorylase 
kinase	γ	subunit

- Hypoglycemia is usually mild

XI1 227,810 SLC2A2 3q26.2 GLUT2 - Post-prandial hyperglycemia
- Renal tubular disease (Fanconi 
syndrome)

Table 1 Major genetic and clini-
cal features of hepatic glycogen 
storage diseases (GSDs). Fast-
ing intolerance, hepatomegaly 
(except GSD 0a), growth retarda-
tion, hyperlipidemia and elevated 
transaminases constitute common 
features of hepatic GSDs and 
are not shown. Most common 
findings	characterizing	each	GSD	
subtype	are	shown.	IBD:	inflam-
matory bowel disease

1 also known as Fanconi-Bickel 
syndrome
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However, some adult individuals can still experience short 
stature despite adequate treatment compliance [15, 27].

The underlying mechanism is only partly understood 
but it is assumed to result from the combination of chronic 
hypoglycemia, lactic/keto-acidosis, and abnormal hormonal 
response, including growth hormone (GH)-insulin-like 
growth factor (IGF-1) axis alteration [14, 28–30]. The extent 
of glucose metabolism derangement may explain why spon-
taneous catch-up growth can be observed even in untreated 
children with ketotic GSD types, while it only occurs in 
children with GSD I upon dietary treatment initiation [10, 
31]. In GSD I disruption of gluconeogenesis results in the 
accumulation of lactate with no (or little) increase in circu-
lating ketones. In ketotic GSDs gluconeogenesis is intact 
(thus preventing hyperlactatemia) and circulating ketone 
levels are increased; in these GSD subtypes ketones serve 
as an alternative energy substrate thus sparing glucose [17]. 
Nonetheless, chronic ketosis as well as amino acid depletion 
from gluconeogenesis could worsen growth pattern even in 
ketotic GSD types [32, 33]. Indeed, chronic hypoglycemia 
and metabolic (keto)acidosis can decrease the amplitude and 
frequency of GH pulses in experimental metabolic acidosis 
[34]. In humans, chronic metabolic acidosis is associated 

with decreased serum IGF-1 concentration and is related to 
a resistance to the hepatocellular action of GH [35]. Blunted 
GH response can also result from elevated circulating free 
fatty acids (FFA) [36], which is commonly observed in indi-
viduals with GSD I who display suboptimal glucose control 
[10, 37].

Besides	 the	 above-mentioned	 “functional”	 GH	 defi-
ciency, growth retardation may also arise from impaired 
GH	secretion.	This	“structural”	GH	deficiency	likely	results	
from (combination of) deranged glucose metabolism in 
the pituitary gland or disease-induced pituitary autoim-
munity [38].	 Indeed,	 GH	 deficiency	 has	 been	 variously	
reported in individuals with inherited metabolic disorders 
in which phosphorylated, simple carbohydrates accumu-
late, either due to the primary metabolic defect, or associ-
ated with dietary (over)treatment. Examples include GSD Ia 
[29, 39, 40], GSD Ib [38, 41, 42], GSD III [43], GSD IXa 
[44], GSD XI [45],	phosphoglucomutase	1	deficiency	(also	
called PGM1-CDG) [46] and Fructose-1,6-Bisphosphatase 
(FBPase)	deficiency	[47]. Interestingly, similar to the latter 
two disorders, the authors have observed that individuals 
with hepatic GSDs may display abnormal carbohydrate-
deficient	transferrin	testing.	The	question	is	to	what	extent	

Fig. 1 Endocrine manifestations of hepatic glycogen storage diseases 
(GSDs). For each endocrine component, clinical and biochemical fea-
tures	are	presented.	Specific	GSD	subtypes	are	indicated	in	brackets.	
BMD: bone mineral density; GH: growth hormone; IR: insulin-resis-

tance; MS: metabolic syndrome; OGTT: oral glucose tolerance test; 
PCOs: Polycystic ovaries; T2D: type 2 diabetes *only 1 individual 
reported
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as recovery of height potential has been reported in vari-
ous hepatic GSD types when proper treatment is initiated 
[11, 31, 48, 16, 55–59]. The goal of dietary treatment is to 
maintain normal blood glucose and ketone concentrations 
by providing appropriate amounts of complex carbohy-
drates. This can be achieved by (a combination of) frequent 
feedings, UCCS and (nocturnal) gastric-drip feeding [5, 33, 
48]. Children with ketotic GSDs should also be started on 
a high protein diet to sustain gluconeogenesis [51, 60]. A 
high-lipid	diet	may	be	of	benefit	 in	 individuals	with	GSD	
III [61]. Electrolytes, calcitriol, bicarbonate, and L-carnitine 
should be supplemented in individuals with GSD XI [48].

Growth hormone (rhGH) therapy is not routinely indi-
cated	 in	 hepatic	 GSDs	 unless	 GH	 deficiency	 has	 been	
proven and only after nutritional therapy has been opti-
mized. Although rhGH can ensure proper growth in GSD 
I [40, 41], GSD III [43] and GSD XI [45], this treatment is 
concerning due to the potential increased risk of develop-
ing liver adenomas [4, 5, 33, 51, 52]. The possible mecha-
nism remains unresolved but is likely related to promotion 
of tumor cell migration and/or energy rewiring in metaboli-
cally injured hepatocytes [27]. Furthermore, rhGH therapy 
may exacerbate (extreme) lipid [5, 43, 44] and ketone [4, 
33] elevation. Hence, treatment with rhGH should be cou-
pled with strict patient monitoring and use of lipid-lowering 
agents if needed [41]. Although liver transplantation is a 
potential treatment option in children with GSD I [6, 62, 64] 
and GSD IV [52] displaying growth failure, the results after 
liver transplantation reported in the medical literature point 
in variable directions [63, 64].

1.2 Thyroid gland

Thyroid involvement has only been reported in GSD I. 
Thyroid autoimmunity with overt or subclinical hypothy-
roidism has been described in individuals with GSD Ib [13, 
65]. Besides primary thyroid damage, enhanced thyrotro-
pin response to thyrotropin releasing hormone has been 
observed in both GSD Ia and GSD Ib [13], suggesting that 
concomitant damage at the level of the hypothalamus or 
pituitary gland may exist in GSD I. More recently, subclini-
cal hypothyroidism has been reported in one individual with 
GSD Ia [66].

Although the mechanism underlying the development 
of hypothyroidism in GSD Ib is not fully understood, it 
appears to be related to the increased risk of autoimmunity 
with abnormal T-cell function and neutropenia observed 
in this disorder [67]. As for GSD Ia, whether the occur-
rence of hypothyroidism is the result of enzymatic defect 
per se, chronic liver disease or incidental association 
remains unclear. Interestingly, decreased hepatic triglycer-
ides content was found in G6pc−/−-deficient	mice	 treated	

an overarching pathophysiology mechanism may play a 
(partial)	role	in	the	development	of	GH	deficiency.	Particu-
larly, in GSD Ib higher prevalence of anti-pituitary antibod-
ies has been detected, possibly resulting from immune cell 
dysfunction observed in this disorder [38].

Additional endocrine imbalance may also contribute 
to growth failure as an adaptation to glucose metabolism 
derangement. Indeed, individuals with GSD I and poor 
growth have been shown to exhibit low serum insulin con-
centration and higher mean 24-hour plasma cortisol levels 
as compared to better grown individuals [14].	These	find-
ings	suggest	that	chronic	hypoglycemia	may	affect	multiple	
endocrine axes in hepatic GSDs.

Both renal tubular dysfunction and impaired liver glu-
cose homeostasis may play a role in the development of 
growth failure in GSD XI [11, 22–24, 48]. Whether failure 
to thrive is the result of intestinal malabsorption by impaired 
glucose transport across enterocytes and/or impairment of 
monosaccharide transport in renal tubular cells together 
with hyperaminoaciduria is not fully understood [24]. Fur-
thermore, glucose is an important energy source for the 
metabolism and growth of chondrocytes. Perturbations of 
glucose	metabolism	affect	chondrocyte	maturation	and	car-
tilage matrix production, suggesting a key role for glucose 
metabolism	during	endochondral	ossification	[49]. Interest-
ingly, immunoreactivity of GLUT2 has been detected in the 
hypertrophic zone of the epiphyseal growth plate in grow-
ing rats [50]. However, the impact of pathogenetic GLUT2 
variants on cartilage development is yet to be elucidated.

In the medical care, besides traditional biomedical bio-
markers routinely employed for monitoring individuals 
with hepatic GSDs, the following anthropometric param-
eters should be regularly assessed: (i) height; (ii) weight; 
(iii) weight/height ratio or body mass index depending on 
age; v) head circumference in children [5, 51, 52]. Changes 
in	growth	trends	may	reflect	either	poor	metabolic	control/
overtreatment or disease progression prompting (dietary) 
treatment adjustments [5, 33, 48, 51, 52]. Close clinical 
and biochemical monitoring is particularly relevant during 
periods of rapid growth [33]. Regular evaluation of glucose 
homeostasis is recommended in patients with all hepatic 
GSD types. Assessment of baseline IGF-1 levels as well as 
provocative GH testing should be considered in individuals 
with unexplained failure to thrive and short stature. Addi-
tionally, pituitary autoimmunity should be investigated in 
individuals with GSD Ib displaying a growth defect [38]. 
Urine electrolytes and plasma carnitine should be monitored 
in individuals with GSD XI [48].

Overall, adequate metabolic control together with opti-
mization of dietary treatment are paramount to possibly 
ensure regular growth in individuals with hepatic GSDs [4, 
5, 8, 14, 17, 19, 23, 31, 33, 51–55]. Catch-up growth as well 
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[84, 85]. Yet, growing literature suggests that high-protein 
diet	may	not	have	adverse	effects	on	BMD	[86–88]. Endo-
crine imbalance may also contribute to decreased BMD. 
Decreased circulating parathyroid hormone (PTH), calcito-
nin and osteocalcin have been reported in individuals with 
GSD I and GSD III [12, 78].	Similarly,	GH	deficiency	[27, 
29, 38, 40, 43], hypogonadism [89] as well as chronically 
low insulin [14, 78] and/or elevated cortisol levels [90] may 
play a role in the development of osteopenia/osteoporosis. 
Furthermore, failure of glucose supply to the exercising 
muscle together with impairment of the (endocrine regula-
tion of the) muscle-bone unit appear to be major contribu-
tors to low BMD in GSD III [78]. In these disorder IGF-1/
Insulin-like growth factor-binding protein 3 (IGFBP3) ratio 
appears to be a reliable biomarker of reduced BMD [78]. 
A correlation between BMD and age at start and duration 
of granulocyte colony-stimulating factor (G-CSF) treatment 
was found in individuals with GSD Ib [12].

The	pathophysiology	of	bone	demineralization	is	differ-
ent in GSD XI, where patients are more prone to develop 
hypocalcemia and hypercalciuria, hyperphosphaturia with 
or without hypophosphatemic rickets in early childhood, 
osteoporosis and osteomalacia [23, 24, 91–94]. Ketosis, 
chronic metabolic acidosis with or without diarrhea, proxi-
mal renal tubular dysfunction, aberrant interplay among 
PTH, vitamin D and FGF23 are possible contributing fac-
tors [77, 91].

In the medical care, measurement of BMD together with 
circulating 25-OH vitamin D and dietary calcium and vita-
min D intake is recommended at the diagnosis in all indi-
viduals with hepatic GSDs [5]. Subsequent evaluations are 
usually performed every 3–5 years or as clinically indicated 
[1, 2]. Assessment of circulating 25-OH vitamin D levels 
is indicated annually, or more frequently as needed [1, 2, 
77]. Regular assessment of alkaline phosphatase, total cal-
cium, PTH, calciuria, and phosphaturia may be useful for 
treatment monitoring [95]. Additional endocrine work-up 
should be performed if clinically indicated. Dual-emission 
X-ray absorptiometry (DXA) is the gold standard technique 
for BMD assessment being usually performed at the hip. 
L1-L4 vetrebrae should be considered in growing children 
as the hip is not a reliable site. Being a safe, inexpensive and 
nonradiation method for bone density assessment, Quantita-
tive Ultrasound (QUS) has been proposed as an alternative 
method for low BMD diagnosis and follow-up in children 
[12, 78]. Signs of hypophosphatemic rickets should be regu-
larly	checked	and	promptly	 identified	 in	all	 children,	par-
ticularly those with GSD XI including: (i) swelling of joints; 
(ii) bowing of the legs; (iii) pathological fractures; (iv) teeth 
problems with a susceptibility to develop severe caries [24].

Good metabolic control, including adequate dietary 
compliance has been shown to improve BMD in individuals 

with	 VK2809	 (a	 liver-specific	 thyroid	 hormone	 receptor	
β-agonist	 [68]), suggesting that thyroid dysfunction may 
concur to the progression of liver disease in GSD I. Future 
studies elucidating the pathophysiology of hypothyroidism 
in GSD I are warranted.

Based	on	the	above-mentioned	findings,	early	diagnosis	
and treatment of thyroid disorders are paramount to improve 
the prognosis of individuals with GSD I [8]. This is par-
ticularly relevant as the risk of autoimmunity increases as 
patients progress into adulthood [69]. Annual monitoring of 
TSH and fT4 levels and thyroid hormone supplementation 
in case of hypothyroidism are recommended in individuals 
with GSD I [1]. When a pregnancy is possible, pre-concep-
tional fT4 and TSH should be assessed, taking into account 
the	 known	 influence	 of	 even	 subclinical	 hypothyroidism	
on early fetal brain development and long-term cognitive 
function [69, 70]. Overt hypothyroidism is associated with 
increased rates of spontaneous abortion, premature delivery 
and/or low birth weight, fetal distress in labor, and likely 
gestational hypertension, emphasizing the importance of 
thyroid balance before and during pregnancy [71].

1.3 Bone

Low bone mineral density (BMD) and higher risk of devel-
oping osteopenia (i.e. Z-score < 1.0) [72], osteoporosis (i.e. 
Z-score < 2.0) [73] and fractures have been reported in both 
children and adult individuals with GSD type 0a [16], I [1], 
III [2], VI [4, 33], IX [33, 74] and XI [23]. Fractures have 
been observed in up to 17% of individuals with hepatic 
GSDs [75, 76]. Hypoposphatemic rickets are commonly 
found in untreated patients with GSD XI between 3 and 
10 months of age [77]. Despite showing normal circulating 
calcium levels, studies performed in individuals with GSD 
I and GSD III suggest the presence of both reduced bone 
deposition and increased bone remodeling [12, 78].

The pathophysiology of bone involvement in hepatic 
GSDs appears to be multifactorial, stemming from the com-
bination of abnormal metabolic environment (e.g. elevated 
lactate,	 elevated	 ketones),	 nutritional	 deficiency,	 and	 pos-
sibly hormonal imbalance as well as altered muscle physi-
ology [76, 78]. Both ketosis and hyperlactatemia exert 
a	 detrimental	 effect	 on	 bone	 [79]. Hyperlipidemia is also 
known to blunt bone anabolism [80]. Indeed, a correlation 
between BMD and circulating lactate and/or triglycerides 
has been reported in patients with GSD I and GSD III [12, 
75, 78]. Notably, optimized metabolic control is associ-
ated with improved BMD [12]. Dietary treatment may also 
contribute to low BMD. Reduced dietary calcium intake 
[81, 82] as well as decreased circulating 25-OH vitamin D 
levels have been observed [18, 75, 83]. Historical studies 
reported that higher protein intake worsened bone health 
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GSD Ia [11, 104–107]. Type 2 diabetes (T2D) mellitus has 
been reported in individuals with GSD Ia [108–112] and 
GSD Ib [113, 114] and found in up to 9% of individuals 
with GSD III [17, 115–118]. However, diabetic ketoacido-
sis secondary to T2D has been observed in only one young 
girl with GSD Ia [112]. Historical studies have also reported 
increased glucagon levels in GSD I [60, 119–121]. Post-
prandial hyperglycemia and hyperlactatemia are common 
findings	in	individuals	with	GSD	0a	[16]. A combination of 
chronic glycosuria and postprandial hyperglycemia together 
with post-oral glucose tolerance test (OGTT) hyperglyce-
mia can be detected in GSD XI especially in the younger 
patients [22, 77, 122]. Individuals with GSD XI may also 
develop transient or permanent neonatal diabetes [123–127].

IR may result from the combination of several factors. 
Dietary overtreatment (i.e. high carbohydrate/UCCS intake) 
may lead to hyperglycemia, hyperinsulinaemia, obesity and 
rebound hypoglycaemia [6, 82, 128]. In GSD Ia IR may also 
develop	as	a	consequence	of	 the	G6Pase-α	deficiency	per 
se. G6P excess in endoplasmatic reticulum, may upregulate 
the	 activity	 of	 11β-hydroxysteroid	 dehydrogenase	 type	 1	
(11βHSD1)	which	results	in	increased	conversion	of	inac-
tive cortisone in active cortisol [90, 106]. Increased circulat-
ing cortisol levels may lead to metabolic syndrome [129]. 
Furthermore, mitochondrial dysfunction as well as accumu-
lation of lipid metabolism by-products may contribute to IR 
in GSD Ia [107, 130, 131]. Downregulation of the glucose 
receptor on the ß-cell membrane (GLUT2) as an adaptation 
to hypoglycemic events may also accur leading to blunted 
insulin secretion in response to transient elevations of blood 
glucose [114]. Although pathophysiology of T2D in GSD I 
and GSD III is strictly correlated to IR [108–110, 112, 114, 
116–118, 132], additional determinants may also contribute 
including (i) injured fatty liver [109, 110]; (ii) pancreatic 
islet	β-cell	insufficiency	as	a	results	of	recurrent	pancreatitis	
[109, 114] and (iii) liver cirrhosis in GSD III [133]. Notably, 
T2D has been observed in two siblings with GSD Ib even 
following liver transplantation, supporting this hypothesis 
[113]. Increased glucagon levels have been found in indi-
viduals with GSD I [119–121, 134] but not in GSD III 
[134].	This	finding	has	been	associated	to	hyperlactatemia	
[119, 120]	and	may	reflect	preserved	gluconeogenic	amino	
acids availability in GSD III [134].

Postprandial hyperglycemia in GSD 0a results from the 
inability to store glucose as glycogen in the liver (due to gly-
cogen synthase defect) rather than impaired insulin secre-
tion [16, 135]. Pathogenesis of postprandial/post-OGTT 
hyperglycaemia in GSD XI has been recently reviewed 
[136]. While fasting hypoglycemia is due to impaired glu-
cose transport out of the hepatocytes, postprandial hyper-
glycemia likely results from hypoinsulinemia secondary to 
altered sensitivity of pancreatic beta cells to glucose [122, 

with hepatic GSDs [2, 5, 96]. Given the restricted dietary 
regimen, supplementation with calcium and/or multivita-
mins is strongly recommended to prevent osteopenia/osteo-
porosis in GSD I [5, 97]. Recommendations for vitamin 
and mineral supplementation in other GSD types should be 
based on individual patient diet and nutrient needs [33, 51]. 
Calcium supplementation should be tailored based on renal 
function, given the risk of kidney stone formation [98]. If 
necessary, supplementation of vitamin D can be prescribed 
to ameliorate bone mineralization [2]. 1,25-dihydroxy vita-
min D is indicated in individuals with GSD XI [91, 92]. 
Particularly in individuals with GSD III, physical activity 
should be encouraged in order to protect the bone [51, 81].

In individuals with GSD Ib under G-CSF treatment, the 
risk of osteopenia/osteoporosis should be carefully moni-
tored. The demonstration of an association between osteo-
penia and G-CSF treatment suggests using the minimally 
effective	 G-CSF	 dose.	 This	 association	 also	 adds	 to	 the	
growing evidence pointing in favour of the use of empa-
gliflozin	as	a	first	line	treatment	for	neutropenia/neutrophil	
dysfunction in individuals with GSD Ib [99, 100]. In indi-
viduals with GSD XI sodium bicarbonate and phosphate 
supplementation are additionally indicated to prevent bone 
loss and hypophosphatemic rickets [24, 91] and to enhance 
growth velocity [22, 24, 77]. Alkali supplementation (e.g. 
in form of Shohl’s solution or bicarbonate solution) can be 
considered to minimize the hypercalciuria [24, 77]. Phos-
phate should be supplemented as oral Joulie’s solution [92].

In principle, low BMD can lead to (recurrent) fractures 
in both children and adults [101]. In the general population 
bisphosphonates (BP) are indicated in children with osteo-
porosis and pathological fractures or vertebral fractures 
regardless of Z-score [102]. However, an “acute phase reac-
tion” (e.g. fever, malaise, back pain, body pains, nausea, 
and vomiting) following initial dose of BP is commonly 
observed. Moreover, hypocalcemia can occur as a short-
term	side	effect	related	to	BP	therapy	[103]. Hence, the role 
of BP in asymptomatic individuals with hepatic GSDs and 
decreased BMD is still controversial and currently there is 
no recommendation for their use [78, 81]. However, there 
is evidence of improvement of BMD in single individuals 
with hepatic GSDs treated with BP [75, 76]. When con-
sidering whether to start a patient with hepatic GSD on 
BP therapy, the following factors should be considered: (i) 
individual’s age (currently there is no evidence-based data 
to support their use in children); (ii) evidence of increased 
bone destruction [75, 76].

1.4 Pancreas

Increased prevalence of insulin resistance (IR) and meta-
bolic syndrome (MS) has been reported in individuals with 
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a high-fat low-carbohydrate diet [61, 148]. Whether simple 
sugars (e.g. fructose, sucrose and galactose) should be life-
long restricted in GSD I to avoid rapid insulin secretion [5, 
6, 149] is still controversial.

The optimal pharmacological treatment for IR in individ-
uals	with	hepatic	GSDs	is	as	yet	undefined.	Hypoglycemic	
agents (e.g. insulin and insulin secretagogues) are not rou-
tinely indicated as they can precipitate hypoglycemia [16, 
77, 150]. Nonetheless, single patients successfully treated 
with voglibose [117], acarbose [110], insulin [112, 115, 
116, 118],	canagliflozin	[110]	and	luseogliflozin	[132] have 
been reported. The use of the sodium-glucose co-transporter 
2	 (SGLT2)	 inhibitors	 (e.g.	 empagliflozin,	 dapagliflozin)	
is widely spreading for treatment of neutropenia-related 
symptoms in GSD Ib [99, 100, 151–155]. Additionally, one 
adult	 patient	with	GSD	XI	 treated	with	 dapagliflozin	 dis-
played reduced glycogen content in shed urinary cells and 
improved serum potassium and phosphate concentrations 
[156].	 Notably,	 side	 effects	 of	 SGLT2	 inhibitors	 include	
elevated lactate and ketoacidosis, especially under stress 
conditions (e.g. intercurrent infections and major surgery) 
[157] prompting careful monitoring.

1.5 Adrenal cortex

Limited data on adrenal cortex hormones are available in 
hepatic GSDs. Two historical studies revealed an inverse 
correlation between plasma cortisol levels and growth 
parameters [10, 14] in GSD I. More recently, systematic 
adrenal cortex assessment has been performed in individu-
als with GSD I [90]. During normoglycemia, increased 
baseline and ACTH-stimulated serum cortisol levels were 
found in individuals with GSD Ia, while those with GSD 
Ib exhibited decreased baseline serum cortisol levels [90]. 
Furthermore increased plasma corticosterone and epineph-
rine levels have been found in fasted GSD Ia mouse model 
[158]. High midnight serum cortisol concentrations have 
been detected in one untreated boy with GSD IXa who pre-
sented with Cushing-like appearance [159].

The mechanism leading to imbalanced cortisol levels in 
GSD I is yet to be elucidated. Disrupted cortisol metabo-
lism may result from the G6P modulation of the ER-bound 
enzyme	 11β-HSD1,	 which	 activates	 cortisone	 to	 cortisol	
[160].	 11β-HSD1	 is	 typically	 expressed	 in	 glucocorticoid	
receptor-rich	tissues,	such	as	the	liver	(where	G6Pase-α	is	
also expressed), adipose tissue, lung and brain [161]. The 
otherwise preserved adrenal cortex function suggests that 
disrupted cortisol metabolism might be secondary to local 
deregulation rather than hypothalamic-pituitary-adrenal axis 
dysfunction. Increased cortisol regeneration may represent 
a potential mechanism to divert lipid excess in GSDIa [90]. 
Indeed, administration of glucocorticoid receptor- antagonist 

123]. As such, insulin response is decreased but not absent 
in these individuals [122]. Postprandial/post-OGTT hyper-
glycaemia has been especially observed in younger patients. 
Likely glucose transport improves in older patients through 
GLUT2-independent mechanisms (e.g. GLUT1, GLUT3) 
[122, 123, 137]. This may also explain transient or perma-
nent neonatal diabetes which has been rarely reported in 
GSD XI [123–127]. However it may be possible that some 
cases with transient neonatal diabetes remain undiagnosed 
[137]. More recently overexpression of circulating miRNAs 
correlated with type 1 diabetes mellitus has been found in 
one individual with GSD XI [136].

In the medical care, besides traditional biomedical 
monitoring biomarkers the following parameters should 
be regularly evaluated: (i) height; (ii) weight; (iii) weight/
height ratio or body mass index depending on age; ; (iv) 
circulating insulin levels. Evaluation of circulating cortisol 
and ACTH may be performed in individuals with GSD Ia 
who display IR despite dietary optimization [90]. For early 
detection and management of glucose intolerance an OGTT 
may be considered [118]. Yet, OGTT remains contraindi-
cated in women with hepatic GSDs due to the increased risk 
of hypoglycaemia [138].

Reaching appropriate diagnosis in a patient with hyper-
glycemia and glycosuria is essential. GSD 0a rather than 
diabetes	 mellitus	 should	 be	 considered	 in	 the	 differential	
diagnosis of postprandial hyperglycaemia when polyuria 
and polydipsia are absent [139]. Given the association of 
postprandial hyperglycaemia alternating with ketotic hypo-
glycaemia, GSD 0a and GSD XI could be reciprocally 
misdiagnosed. However, postprandial hyperlactatemia is 
observed in GSD 0a but not GSD XI [139].

Prevention of IR is paramount in hepatic GSDs. Due to 
the risk of iatrogenic hyperinsulinism, regular diet assess-
ment is recommended and excess feeding/UCCS intake 
should be avoided [5]. In this respect, a metabolic dietitian 
should	work	closely	with	 the	patients	 to	refine	the	dietary	
plan. Continuous glucose monitoring (CGM) appears partic-
ularly helpful in optimizing dietary treatment. Indeed, CGM 
allows unveiling both hypoglycemia and hyperglycemia 
which may be missed by traditional capillary glucose moni-
toring [108–110, 140–146]. Overall, adequate metabolic 
control together with regular reassessment of dietary plan 
aim to ensure optimal outcome in individuals with hepatic 
GSDs [6, 8, 17, 128]. Providing appropriate amounts of 
UCCS and complex carbohydrates is particularly relevant 
as glucose requirements decrease with age in individuals 
with hepatic GSDs [128]. IR may worsen (cardio)myopathy 
in GSD III by depleting energy substrates (i.e. fatty acids 
and ketone bodies) and promoting glycogen storage [147]. 
Hence, dietary treatment paradigm is being revised for this 
disorder	with	accumulating	evidence	indicating	a	benefit	of	
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displayed recurrent hypoglycaemia and elevated lactate 
levels, suggesting a possible relation with suboptimal meta-
bolic control [89]. Indeed, chronic recurrent elevations of 
cortisol in response to hypoglycemia may lead to suppres-
sion of gonadotropin-releasing hormone (GnRH), LH and 
FSH release [168].

PCOs are more commonly observed in women with GSD 
I, in whom they have been documented as early as 5 years of 
age [5, 11, 105, 163]. Less frequently PCOs are reported in 
other GSD types [11, 17, 33, 51, 105, 133]. Although PCOs 
are main features of Polycystic ovary syndrome together 
with hyperandogenism and irregular mensens, hyperan-
drogenism	 is	 an	 infrequent	 finding	 in	 hepatic	 GSDs	 [11, 
105] being hirsutism reported in some women with GSDIII 
[17, 51, 133]. Conversely, irregular menses and menor-
rhagia are commonly associated with PCOs in GSD type I 
[162, 163] and less frequently in other GSD subtypes [17, 
51, 133, 162].The mechanism underlying the development 
of PCOs in hepatic GSDs remains incompletely understood. 
Lower serum sex hormone-binding globulin (SHBG) levels 
have been reported in individuals with GSD Ia displaying 
an inverse association with intrahepatic lipid content, thus 
supporting a connection between metabolic (im)balance 
and circulating sex hormone levels [169]. Hyperinsulinism 
is commonly observed in suboptimally treated individuals 
[105] indicating a potential role for the diet in the develop-
ment	of	PCOs.	Whether	good	dietary	compliance	 is	 suffi-
cient to ensure adequate ovarian function in hepatic GSDs 
is, however, unclear [163]. Interestingly, PCOs are also 
observed in patients with Cushing’s syndrome [170]. There-
fore, imbalanced cortisol levels may also concur to PCOs 
development in hepatic GSDs [90]. Future studies elucidat-
ing the underling mechanisms of PCOs are warranted.

In the medical care, besides traditional biomedical moni-
toring biomarkers, the following assessments should be reg-
ularly performed: (i) pubertal development in children and 
adolescents; (ii) frequency and regularity of menses, uncov-
ering possible menorrhagia or irregular menstrual bleed-
ing; (iii) signs of hyperinsulinism and/or hypercortisolism 
(e.g. increased weight and/or waist circumference and 
altered systolic and/or diastolic blood pressure); (iv) signs 
of hyperandrogenism, (e.g. acne, alopecia, and hirsutism) 
[171]. Incorporating clinical and/or biochemical screening 
of the hypothalamic-pituitary–gonadal axis is be important 
in the management of hypogonadism in males with hepatic 
GSDs [89]. Women with hepatic GSDs should be made 
aware of the increasing risk of severe hypoglycaemia in the 
premenstrual and luteal phase [172]. Pelvic ultrasonography 
should be performed regularly in women with hepatic GSDs 
to document PCOs [133].

Overall, adequate metabolic control is paramount to pos-
sibly ensure regular gonadal function in hepatic GSDs [4, 5, 

mifepristone, has been shown to prevent Very-low-density 
lipoprotein (VLDL) accumulation in g6pc−/− mouse [158]. 
In addition, recurrent hypoglycemia may likely result in a 
“stress-induced Cushing syndrome” [159]. These observa-
tions warrant mechanistic studies, especially in light of the 
ongoing, experimental AAV8-mediated gene therapy treat-
ment, which is currently in phase 3, in which temporary 
treatment with corticosteroids is indicated (NCT05139316). 
Currently, there are no recommendations on monitoring 
of adrenal cortex function in patients with hepatic GSDs. 
Hence, the need for such assessments remains on an individ-
ual basis. Evaluation of adrenal cortex function in individu-
als with hepatic GSDs displaying poor metabolic control is 
worthy. Reaching good metabolic control may contribute to 
reverse hypercortisolism [159]. Future studies investigating 
the	effects	of	agents	modulating	glucocorticoid	metabolism	
are warranted.

1.6 Gonads

Gonadal involvement has been documented in GSD type I 
[89, 105, 162, 163], III [105, 133, 164], VI [11], IX [11] and 
XI [23, 24], including delayed puberty, hypogonadotropic 
hypogonadism and Polycystic ovaries (PCOs).

Functional delayed puberty is a recognized feature of 
untreated chronic diseases [165]. Consistently, delayed 
puberty has been reported in GSD type I, III, VI and IX and 
XI, likely due to suboptimal metabolic control secondary 
to poor dietary compliance [4, 5, 17, 22, 23, 31, 33, 51]. A 
relationship between dietary treatment and pubertal devel-
opment has been described in several individuals [31, 55, 
166, 167]. Failure to thrive together with delayed puberty 
has been reported in a boy with GSD Ia following volun-
tary discontinuation of UCCS [166]. Catch-up growth and 
pubertal development together with normalization of blood 
testosterone levels were noticed in a 16-year-old boy diag-
nosed with GSD Ia following institution of dietary treatment 
[167]. Although dietary treatment plays a role in growth and 
sexual development, the mechanism underlying delayed 
puberty in hepatic GSDs is still not fully understood. At 
least in theory, delayed puberty may also result from hor-
monal imbalance observed in hepatic GSDs, involving 
circulating insulin and cortisol levels [10]. A correlation 
between serum insulin and cortisol levels and growth has 
been demonstrated in individuals with GSD I [14]. Whether 
such hormonal imbalance results from the enzyme defect 
per se or is secondary to (poor) dietary treatment remains to 
be elucidated.

Hypogonadotropic hypogonadism has been described in 
males with GSD I, showing low luteinizing hormone (LH) 
and follicular stimulating hormone (FSH), and correspond-
ingly low total testosterone levels [89]. All individuals 

1 3



Reviews in Endocrine and Metabolic Disorders

2 Conclusions

Hepatic GSDs are complex disorders, requiring a highly 
specialized multidisciplinary team to achieve treatment 
goals [2, 5, 6, 20, 33, 51, 52]. Their multisystem involve-
ment	raises	significant	organizational,	logistic,	and	financial	
obstacles	for	affected	families	and	healthcare	providers.	The	
potentially life-threatening nature of hepatic GSDs symp-
toms and high variability in patients’ phenotypes, treat-
ment interventions and outcomes emphasize the need and 
urgency for improved monitoring options.

The progress in dietary treatment as well as the availabil-
ity of appropriate tools to manage acute metabolic decom-
pensation [7] has shifted the clinical focus from “mortality” 
to “morbidity”. As a result, a number of long-term compli-
cations	have	emerged,	 including	 those	affecting	 the	endo-
crine system. In this review we provided a comprehensive 
summary of endocrine involvement in hepatic GSDs. Being 
aware of the endocrine manifestations of hepatic GSDs 
would	have	two	main	benefits:	(i)	optimized	disease	man-
agement, improving patient outcome and possibly allowing 
standardization	of	clinical	care;	(ii)	earlier	identification	of	
hepatic GSDs in individuals displaying milder phenotypes; 
this appears particularly relevant as such individuals may 
first	come	to	the	(pediatric)	endocrinologist	attention	with-
out having been referred by a metabolic specialist.

Disruption of the endocrine system may occur at mul-
tiple levels in hepatic GSDs resulting in various (serious) 
clinical conditions. These include short stature, hypothy-
roidism, osteopenia/osteoporosis, IR and PCOs, among oth-
ers (Fig. 1; Table 2). Currently available evidence argues 
in favour of regular screening for endocrine function in 
individuals diagnosed with hepatic GSDs in order to start 
prompt treatment. Appropriate treatment stems from the 
exact knowledge of the mechanisms underlying each endo-
crine condition. Many endocrine manifestations (e.g. fail-
ure to thrive, osteopenia/osteoporosis, IR, delayed puberty) 
share a multifactorial pathogenesis, thus complicating the 
use of targeted approaches. In these cases, current manage-
ment strategy relies on optimization of (dietary) treatment 
for	hepatic	GSDs.	In	specific	cases	(e.g.	short	stature,	hypo-
gonadism)	a	distinct	hormone	deficiency	can	be	identified,	
supporting hormone replacement therapy. At least in theory 
additional mechanisms may concur to endocrine dysfunc-
tion in hepatic GSDs, including relationship between energy 
production	and	hormone	synthesis,	effect	of	toxic	metabolite	
accumulation or hormone/receptor glycosylation. Indeed, 
depletion of gluconeogenic amino acid precursors (which 
are employed for endogenous glucose production) may con-
tribute to growth failure in ketotic GSDs [134, 149, 193]. 
Nonetheless, (glycogen-derived) UDP-glucose is required 
for glycosylation of glycoprotein hormones such as TSH, 

17, 22, 23, 31, 33, 51, 163]. Indeed, puberty can be near nor-
mal with appropriate metabolic control [8, 31]. Sex hormone 
replacement is the most commonly employed treatment for 
delayed puberty in the general population [173]. Yet, estro-
gen therapy is not routinely indicated in women with GSD 
I as estrogens contribute to development of liver neoplasms 
[174]. Although testosterone replacement therapy allows 
development or maintenance of secondary sexual character-
istics in males with hypogonadotropic hypogonadism [89], 
patients with hepatic GSDs should be carefully monitored 
due to the stimulation of hepatocyte proliferation by andro-
gens [89, 174]. When indicated, transdermal estrogens are 
preferred	 over	 oral	 preparations	 due	 to	 hepatic	 first-pass	
metabolism [173]. Estrogen therapy in postmenopausal 
women may increase the risk of venous thromboembolism 
and stroke whereas reduces the risk of breast cancer and 
bone fractures [175]. Conversely, testosterone replacement 
therapy	has	not	been	associated	with	a	significant	elevation	
in the rates of venous thromboembolism and cardiovascular 
events [176, 177]. As oral testosterone may increase cardio-
vascular risk [178], intramuscular or transdermal adminis-
tration should be preferred [178].

Classical combined estrogen-progestogen contraception 
as well as oral estrogens should be avoided in young women 
with hepatic GSDs, given the high risk of adenomas onset 
[5, 51, 179]. Progestin-only contraceptives may be consid-
ered [5, 51]. However, clinicians should be aware of the risk 
for reduced BMD, which needs to be monitored [5, 51]. The 
use of an intrauterine device should be avoided in GSD Ib, 
given the high risk of infection [5].

Successful pregnancies have been reported in women 
with GSD 0a [180], GSD I [151, 181–185], GSD III [186–
189], GSD VI [190] and GSD XI [191] either spontaneously 
or after fertility treatment [190]. Male individuals with GSD 
I, GSD III [56] and GSD XI [192] who became fathers have 
been reported.

Pregnancy should be planned ahead of time and a care-
ful management by a multidisciplinary health care team 
is required [184]. Good metabolic control together with 
close blood glucose monitoring and regular adjustments in 
diet and UCCS dosing are required before conception and 
throughout pregnancy to ensure successful outcomes [138]. 
Indeed, maternal hypoglycemia may be associated with 
intrauterine growth restriction and low birth weight [189]. 
Increasing protein intake may be necessary to provide an 
alternate source for glucose via gluconeogenesis in ketotic 
GSD types [33, 51]. Given the association between high 
estrogen state during pregnancy and adenoma onset [179], 
women with GSD I should be made aware of the increased 
risk of enlargement and rupture of adenomas [163].
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