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Abstract

Gastrointestinal nutrient sensing via taste receptors may contribute to weight loss, metabolic improvements, and a reduced
preference for sweet and fatty foods following bariatric surgery. This review aimed to investigate the effect of bariatric
surgery on the expression of oral and post-oral gastrointestinal taste receptors and associations between taste receptor
alterations and clinical outcomes of bariatric surgery. A systematic review was conducted to capture data from both human
and animal studies on changes in the expression of taste receptors in oral or post-oral gastrointestinal tissue following any
type of bariatric surgery. Databases searched included Medline, Embase, Emcare, APA PsychInfo, Cochrane Library, and
CINAHL. Two human and 21 animal studies were included. Bariatric surgery alters the quantity of many sweet, umami,
and fatty acid taste receptors in the gastrointestinal tract. Changes to the expression of sweet and amino acid receptors occur
most often in intestinal segments surgically repositioned more proximally, such as the alimentary limb after gastric bypass.
Conversely, changes to fatty acid receptors were observed more frequently in the colon than in the small intestine. Significant
heterogeneity in the methodology of included studies limited conclusions regarding the direction of change in taste receptor
expression induced by bariatric surgeries. Few studies have investigated associations between taste receptor expression and
clinical outcomes of bariatric surgery. As such, future studies should look to investigate the relationship between bariatric
surgery-induced changes to gut taste receptor expression and function and the impact of surgery on taste preferences, food
palatability, and eating behaviour.
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PRISMA Preferred Reporting Items for System-
atic Reviews and Meta-analyses

NIH National Institute of Health

RYGB Roux-en-Y gastric bypass

LAGB Laparoscopic adjustable gastric
banding

qgPCR Quantitative polymerase chain reaction

DJB Duodenal-Jejunal bypass

SG Sleeve gastrectomy

EGA Entero-gastric anastomosis

SA-DJB Single-anastomosis duodenal-Jejunal
bypass

11pP lleal interposition

mRNA Messenger ribonucleic acid or messen-
ger RNA

LPARS Lysophosphatidic acid receptor 5

PPAR- Peroxisome proliferator-activated
receptor - alpha

OEA Oleoylethanolamide

3-OMG 3-O-methyl-D-glucose

1 Introduction

Taste perception serves mainly to identify nutrients and
avoid toxins. It is a multifaceted process, comprising sensa-
tion of the flavour of a substance as it comes into contact
with its corresponding taste receptor, followed by perception
of that sensation as enjoyable, unpleasant, or neutral. This
process is entwined with other sensory modalities, such as
smell, texture, and temperature detection which combine
to provide an overall perception of the flavour of a sub-
stance. Traditionally, five basic tastes have been described
in humans — sweet, sour, bitter, salty, and umami. More
recently, research has demonstrated that fats stimulate a dif-
ferent class of receptors in a similar manner [1].

Each basic taste is detected by specific flavour receptors
located on taste cell membranes in taste buds of the oral cav-
ity [1]. Three types of mammalian taste cells have been iden-
tified. Type I cells are the most abundant, comprising more
than half of all cells in each taste bud, and provide glial-
like support to other taste cells [2]. Type II taste cells are
the main chemosensory cells for the transduction of sweet,
umami, fatty, and bitter flavours. Type III taste cells make
up just 2-20% of cells in each taste bud and vary accord-
ing to anatomical position in the oral cavity [1]. Although
the specific receptors for sour and salt taste are still uncer-
tain, nerve conduction studies in rodents show that sour fla-
vours are sensed by type III taste cells [3], and salt taste is
likely transmitted via either type I glial-like support cells
[2] or a subtype of type II taste cells [4]. Each taste recep-
tor subtype is structurally and functionally distinct. Sweet
(T1R2, T1R3), bitter (T2Rs), and umami (T1R1, T1R3) taste
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receptors are G protein-coupled receptors (GPCRs). On lin-
gual taste cells TIR2 and T1R3 heterodimerise to detect
sweet flavours, and T1R1 and T1R3 heterodimerise to rec-
ognise umami flavours. Twenty-five T2R bitter taste recep-
tors have been discovered in humans, each functioning as a
monomer on lingual taste cells to recognise a wide variety of
bitter tasting compounds and potential toxins. These GPCRs
signal via a common intracellular signalling pathway involv-
ing a-gustducin, phospholipase C 2 (PLCp2), and transient
receptor potential cation channel subfamily M member 5
(TRPMS), leading to the release of adenosine triphosphate
(ATP) following stimulation by ingested nutrients [1]. Some
fatty acid taste receptors (G protein-coupled receptor 40
[GPR40]/ Free fatty acid receptor 1 [FFAR1] in mice and
G protein-coupled receptor 120 [GPR120]/ Free fatty acid
receptor 5 [FFAR4] in humans) are also GPCRs that trigger
TRPMS activation and intracellular calcium release to exert
their effects [5]. Candidate salt [6] and sour [3, 7] receptors
are ion channels, and other sweet (sodium-glucose trans-
porter 1 [SGLT1]) and fatty acid (cluster of differentiation
36 [CD36]) receptors are nutrient transporters, where the
presence of intracellular tastants triggers intracellular cal-
cium accumulation [8] or transient elevation of ATP [1] and
taste cell membrane depolarisation.

Stimulation of all taste receptors on lingual taste cells
eventually results in activation of sensory neurons within
branches of the facial, glossopharyngeal and vagus cranial
nerves [9]. In humans, these nerves transmit flavour signals
via the nucleus of the solitary tract to the gustatory cortices
in the anterior insula and frontal operculum and mesocor-
ticolimbic regions, such as the ventral tegmental area and
nucleus accumbens, resulting in taste perception and the
creation of taste preferences, which guide eating behav-
iours [9]. Lingual taste cells also secrete glucoregulatory and
appetite-related hormones, such as glucagon-like peptide-1
(GLP-1), glucagon, ghrelin, cholecystokinin (CCK) and
peptide YY (PYY), following stimulation of taste receptors
[10]. Although not completely understood, it is thought that
these peptides function as autocrine and paracrine signals
to modulate the sensitivity of taste perception at the taste
bud level [11].

The same taste receptors responsible for lingual taste
transduction of bitter (T2Rs), sweet (T1R2 and T1R3),
umami (T1R1 and T1R3), and fatty acid (CD36, GPR40/
FFAR1 and GPR120/FFAR4) tastants are also found in the
gastric, small bowel, and colonic mucosa [12]. While mon-
omers of the T1R class of taste receptors heterodimerise
in the oral cavity to detect sweet and umami taste, TIR1,
T1R2, and T1R3 exist and function individually in the gas-
trointestinal tract [12]. Stimulation of these receptors, as
well as bitter and fatty acid monomers leads to release of
incretins (GLP-1, Glucose-dependent insulinotropic poly-
peptide [GIP]) and other satiety hormones (PYY, CCK)
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[13-16]. Stimulation of sweet receptors also results in
the upregulation of glucose transporters SGLT1 and glu-
cose transporter 2 (GLUT2) on neighbouring enterocytes
[17-19]. Intragastric infusion of fats and sugars can induce
preference for different orally coupled flavoured solutions
in rodents [20-22]. Likewise, intragastric infusion of bitter
compounds can induce flavour aversions to orally-coupled
substances, even if the oral substance was initially pre-
ferred by the animal [23]. Furthermore, unlike wild-type
mice, SGLT1 gene knockout mice develop no preference
for oral flavours paired with intragastric glucose infusions
compared to those paired with water infusions in two-
bottle choice tests [24]. In vivo calcium imaging of vagal
neurons demonstrates attenuated activity in response to
intra-intestinal glucose or fat infusions in SGLT1 knock-
out and GPR40/120 double knockout mice, respectively
[20]. These studies suggest that gut taste receptors play
an important role in the development of food preferences.

Bariatric surgery results in sustained weight loss and
metabolic improvements [25-27]. Alterations of food
preferences and taste perception are frequently reported
[28-31]. This is supported by functional MRI studies,
which have demonstrated blunting of response in the mes-
olimbic reward pathway following ingestion of calorie-
dense foods in patients who have undergone gastric bypass
and sleeve gastrectomy [30-32]. Many of the changes
occurring after bariatric surgery, including increases
in post-prandial release of PYY and GLP-1, changes to
vagal signalling [33] and food preferences parallel known
or proposed functions of gastrointestinal taste receptors.
Furthermore, expression of gut taste receptors is altered
in states of metabolic dysfunction such as type 2 diabetes
[34, 35] and obesity [36—40] that are ameliorated by bari-
atric surgery. As such, a potential role for these receptors
in metabolic and food preference changes observed after
bariatric surgery is plausible.

This review aims to evaluate and synthesise the current
literature on the effect of bariatric surgery on the expres-
sion of oral and post-oral gastrointestinal taste receptors.
Its secondary aim is to explore the association between
these taste receptors and clinical outcomes of bariatric
surgery.

Table 1 Search string for Ovid (Medline) (searched March 10, 2022)

2 Methods
2.1 Study design

This review was designed in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-analyses
(PRISMA) 2020 explanation and elaboration guidelines
[41]. A search of electronic databases was conducted in
March 2022. Duplicate publications were excluded using
Endnote electronic reference manager [42]. Screening was
conducted by two independent reviewers using Covidence
[43]. Disputes regarding inclusion of studies were resolved
by consensus. The reference lists of relevant review arti-
cles were searched for potential additional studies. Data was
extracted by a single reviewer. Due to the heterogeneity of
the included studies conduction of a meta-analysis was not
possible.

2.2 Search strategy

A search of Medline (Ovid, 1946-2022), Embase (Ovid,
1974-2022), Emcare (Ovid 1995-2022), APA Psychlnfo
(Ovid, 1806-2022), Cochrane Library, and CINAHL
(EBSCOhost) electronic databases was performed on 10th
of March 2022 using a combination of keywords and MeSH
terms (Table 1). No date or language limits were applied.
Online software ‘Polyglot’ was used to translate search syn-
tax across databases [44].

The publication of research identifying the additional
function of the glucose sensor SGLT1 as a sweet taste recep-
tor occurred during the data extraction phase. A supplemen-
tary search of the aforementioned databases was conducted
on the 25th of May 2022 with the following search terms
added to the strategy detailed in Table 1: “SGLT*” or “glu-
cose absor*” or “GLUT*” or “glucose transport*”.

2.3 Eligibility criteria

Human or animal English-language studies were eligible for
inclusion. No date restriction was applied.
Inclusion criteria:

“bariatric surgery [MeSH]”;
OR

“bariatric surgery” OR “metabolic surgery” OR “obesity surgery” OR “gastric bypass*” OR “RYGB” OR “sleeve gastrectom*” OR “SG” OR
“single anastomos*” OR “one anastomos*” OR “OAGB” OR “SAGB” OR “gastric band*” OR “LAGB” OR *“vertical band* gastroplast*”
OR “duodenal switch*” OR “biliopancreatic diversion*” OR “BPD” OR “duodenal jejunal bypass*” OR “DJB”;

AND

“G-Protein-Coupled [MeSH]” OR “Taste [MeSH]” OR “Taste Buds [MeSH]”;

OR

“taste” OR “taste recept*” OR “chemosens*” OR “taste percept*” OR “taste detect*”” OR “nutrient sens*” OR “TASR”
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e Full text available in English

e Any type of bariatric surgery

e Reports data on tissue analysis of oral or post-oral gas-
trointestinal taste receptors

e Reports original data, including randomised controlled
trials, cohort studies, case reports and case series.

Exclusion criteria:

e Analysis of receptors not previously demonstrated to be
involved in taste signalling pathways, e.g. bile acid recep-
tors, non-SGLT1 glucose transporters.

e Artificial tissues — e.g. organoids

e Uncontrolled studies (those without a non-operated or
sham-operated group for comparison).

e Systematic reviews and meta-analyses, conference
abstracts, editorials, and letters-to-the-editor.

2.4 Data collection process

The following information was extracted from the included
studies: publication year, study type, population, sample
size, type of bariatric surgery performed, method of con-
trol, participant age, sex, baseline weight and diabetes sta-
tus, type and subclass of taste receptor analysed, anatomical
location of taste receptor, method of tissue analysis, change
(pre-/post-surgery) or difference (surgery vs non-surgery
control) in expression or function of taste receptor, time
between bariatric surgery and analysis, taste perception or
food preference test methods and results, change (pre-/post-
surgery) or difference (surgery vs non-surgery control) in
weight, fat mass, blood glucose and lipids and circulating
gastrointestinal hormone levels.

2.5 Outcomes

The primary outcome is magnitude of change in the tissue
expression of oral or post-oral gastrointestinal taste receptors
following bariatric surgery.

The secondary outcomes are associations between oral or
post-oral gastrointestinal taste receptors and the following
clinical outcomes of bariatric surgery; food preference, taste
perception, weight loss, fat loss, circulating lipid, glucose,
or gastrointestinal hormone levels.

2.6 Risk of bias assessment

The methodological quality and risk of bias of included
human studies were assessed using the National Institute
of Health (NIH) quality assessment tool for observational
cohort and cross-sectional studies [45], and the NIH tool for
before-after (pre-post) studies with no control groups [46].
Items #8 (concerning range of exposure) and #10 (repeated
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exposure assessment) were excluded from the cohort and
cross-sectional study assessment due to irrelevance to the
review question, as was item #12 (pertaining to statistical
analysis of interventions conducted on the group level) on
the pre-post study assessment tool.

Animal studies were assessed for internal validity using
the SYRCLE risk-of-bias tool, which uses 10 criteria to
assess six types of bias: selection, performance, detection,
attrition, reporting, and ‘other sources of bias’ [47]. For
the purpose of this review ‘other sources’ refers to possi-
ble biases resulting from funding sources and conflicts of
interest. When assessing selection bias (criterion #3) study
groups were considered to be similar at baseline if the spe-
cies, genotype, age, sex, body weight, and food intake did
not significantly differ between groups.

Quality assessments were carried out by two authors
independently and discrepancies resolved by consensus.

3 Results
3.1 Study selection and characteristics

The search identified 23 studies for inclusion (Fig. 1), com-
prising two human studies and 21 animal studies. The two
human studies included one longitudinal cohort [48] and one
cross-sectional study [49]. The key characteristics are out-
lined in Table 2. In total, 29 participants underwent Roux-
en-Y gastric bypass (RYGB) [48, 49] and 10 participants
underwent laparoscopic adjustable gastric banding (LAGB)
[48]. Participants had a mean age range of 42 to 52 years,
67% were female and none had diabetes. Time since surgery
ranged from four months to 12 years. Taste receptor expres-
sion was analysed by quantitative polymerase chain reaction
(qPCR) in oral (fungiform papillae) in one study [48], and
jejunal/proximal alimentary limb mucosa in the other [49].

Animal studies were conducted in rats (13 studies), mice
(seven studies) or both (one study). The bariatric procedure
was RYGB in nine studies [50-58], duodenal-jejunal bypass
(DJB) in four studies [59-62], sleeve gastrectomy (SG) in
seven studies [50, 63—-67], and entero-gastric anastomosis
(EGA) procedures [35], single-anastomosis duodenal-jejunal
bypass (SA-DJB) [68], and ileal interposition (IIP) [69] in
one study each. Five studies included analysis of animals
with diabetes or insulin resistance [54, 61, 62, 67, 69]. Time
between surgery and tissue harvest ranged between 11 days
and six months. Taste receptor quantification was carried
out using PCR for mRNA analysis in six studies [35, 50, 54,
57, 58, 61], protein analysis techniques (such as Western
blotting, immunohistochemistry, or mass spectrometry) in
another five [52, 53, 56, 68, 69], or both in 10 studies [51,
55, 59, 60, 62—67]. Key characteristics of animal studies are
outlined in Table 3.
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Fig. 1 PRISMA flow diagram illustrating the process of the literature search

3.2 Risk of bias

Quality and risk-of-bias assessments are presented in Fig. 2.
The overall quality of the human studies was rated as good.
The internal validity of the 21 animal studies was limited in
each case by lack of reporting on key bias reduction meas-
ures, therefore, most items in the risk-of-bias tool were
assessed as ‘high risk’ due to omission. Although 12 stud-
ies mentioned randomization of group allocation, no study
specified the method of randomisation. Similarly, three
studies reported using a form of ‘blinding’ to reduce bias
but provided minimal detail on the process. Most studies
provided sufficient detail regarding pre-intervention char-
acteristics of animals, and all studies adequately addressed
the risk of reporting bias (Fig. 2c). The risk of conflicting
interest was low for all articles.

3.3 Changes to the gene or protein expression
of taste receptors induced by bariatric surgery

3.3.1 Sweet taste receptors

Lingual taste perception of sugars, artificial sweeteners and
other sweet compounds occurs primarily through the activa-
tion of the TIR2/T1R3 heterodimer [70], although an alter-
native pathway utilising SGLT1 that is specific for glucose

detection also exists [71]. All three receptors have been co-
localised to enteroendocrine cells of the gastrointestinal tract
[21, 72], where SGLT1 transduces information regarding the
presence of glucose and its analogues [21, 24, 73] and T1R3
(with or without T1R2) responds only to artificial sweeten-
ers [21].

Two human [48, 49] and 15 animal studies [50-53, 55,
57-65, 69] examined the effect of bariatric surgery on the
sweet taste receptors SGLT1 (14 studies), T1R2 (four stud-
ies), and T1R3 (five studies).

SGLT1 One human study reported an increase in basal ali-
mentary limb SGLT1 mRNA expression after RYGB, which
was unchanged following a 30-min luminal glucose infusion
[49].

Of the animal studies, five reported an increase in SGLT1
mRNA and protein expression in the alimentary limb after
RYGB [50-52], and DJB [59] and in the interposed ileal
segment after IIP [69]. No change to mRNA levels were
observed in the alimentary limb of one study [58] or the
biliopancreatic limb [50, 58], or colon [57] after RYGB.
Two studies reported no change to SGLT1 mRNA in jejunal
mucosa after SG [50, 64]. However, one of these studies
did find a reduction in jejunal SGLT1 protein expression
[64]. Five studies observed a decrease in the mRNA or pro-
tein of SGLT1 after bariatric surgery (n=1 alimentary limb
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of dietary proteins [74, 75]. Of these, only lysophosphatidic
acid receptor 5 (LPARS, also known as G protein-coupled
receptor 92/93 [GPR92/93]) has been investigated for changes
following bariatric surgery (two studies) [57, 58]. After
RYGB, expression of LPARS mRNA increased in the bili-
opancreatic limb of obese wild-type mice and in the alimen-
tary limb of their a-gustducin-KO counterparts [58]. Colonic
LPARS mRNA levels were unchanged in mice after RYGB
compared to sham-operated, lean, and obese controls [57].

3.3.3 Fatty acid receptors

Taste perception of dietary fats has been proposed as a sixth
basic taste [1, 76] but the mechanism by which fatty acid
taste perception occurs is not fully elucidated [1]. Several
fatty acid receptors and intracellular signalling mediators
located on or in oral taste cells or enteroendocrine cells have
been proposed as candidate fat taste receptors. These include
fatty acid translocase (CD36), free fatty acid receptors 1 — 4
(FFAR1/GPRA40, free fatty acid receptor 2 [FFAR2]/ G pro-
tein-coupled receptor 43 [GPR43], free fatty acid receptor 3
[FFAR3]/ G protein-coupled receptor 41 [GPR41], FFAR4/
GPR120), G protein-coupled receptor 119 [GPR119], G
protein-coupled receptor 84 [GPR84], the nuclear receptor
peroxisome proliferator-activated receptor-alpha (PPAR- o)
and its ligand oleoylethanolamide (OEA) [77-79].

Unclear M High Risk

Low risk

(a)

Seven animal studies investigated the effect of bariatric
surgery on the mRNA or protein expression of gastroin-
testinal fatty acid receptors [54, 56-58, 66—68]. FFAR3
mRNA and protein levels were increased in the intestine
(location not specified) after SA-DJB [68] and in the colon
after RYGB [57]. FFAR2 protein levels were increased
following SA-DJB [68] but FFAR2 mRNA levels were
unchanged after RYGB [57]. Colonic FFAR1/GPR40,
GPR84 and GPR119 mRNA expression was increased
post-RYGB [57]. Conversely, one study found a reduction
in FFAR3 mRNA expression in the colon of wild-type and
a-gustducin-KO mice subjected to RYGB, and a reduction
in FFAR?2 expression in a-gustducin-KO mice alone [58].
No change to FFAR4 mRNA expression in the alimentary
or biliopancreatic limb [58] or colon [57] of RYGB mice
was observed.

Post-prandial levels of OEA increased in the alimen-
tary limb and common channel and decreased in the bili-
opancreatic limb of mice following RYGB [56]. Mice that
underwent SG had increased duodenal mRNA expression
of CD36, GPR119 and increased intracellular production
of OEA but no change to these molecules was found in
the jejunum or ileum [66]. PPAR-a mRNA expression
remained unchanged in the duodenum, jejunum, and ileum
post-SG [66]. SG decreased lingual CD36 mRNA and pro-
tein [67] and RYGB decreased jejunal CD36 mRNA [54]
1n rats.

Clear research question

Well-defined study population

Participation rate >50%

Uniform recruitment and eligibility

Inclusion of sample size justification, power calculation
or variance and effects estimates

Exposure of interest measured prior to outcomes NG

Timeframe allowance for association to occur

Clearly defined, valid, reliable exposure measures

Clearly defined, valid, reliable outcome measures

Outcome assessors blinded to the exposure status of participants

Loss to follow-up after baseline < 20%

Statistical adjustment of potential confounding variables S

0% 25% 50% 75% 100%

Fig.2 Summary of quality assessment results for: cross-sectional and cohort studies (a), pre-post observational studies without a control group

(b), and animal models (c)
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b) Clear research question

Well-defined study population

Study participants are representative of population

Enrolment of all eligible participants that meet the criteria

Sufficient sample size

Consistent intervention delivery

Reliable outcome measures assessed consistently across all patients

Loss to follow up <20% or accounted for in the analysis

Outcome assessors blinded to the exposure status of participants

Appropriate statistical methods with reporting of p-values

Outcome measures take multiple times before and after the intervention e

c) Random sequence generation

0% 25% 50% 75%

100%

Baseline characteristics described

Allocation conceatmen. [
Random housing

Blinding of personnel
Random outcome assessment

Blinding of outcome assessment

Incomplete outcome reporting

Selective outcome reporting

Other potential biases

Fig.2 (continued)

3.3.4 Alpha-gustducin & other G-protein-coupled receptor
(GCPR) intracellular taste signalling machinery

Alpha-gustducin is a primarily taste-specific G-protein alpha
subunit responsible for the coupling of sweet, bitter, and
umami GPCRs with intracellular second messenger enzyme
systems, leading to the opening of cation channels and cal-
cium influx necessary for the release of neurotransmitters
(e.g. the purinergic agonist ATP) and peptides (e.g. GLP-1,
GIP, PYY) from oral taste cells and enteroendocrine cells
[70, 74]. PLCP2 is an intracellular taste signalling molecule
involved in the same calcium influx pathway [70].

One human [48] and one mouse study [35] assessed
changes to mRNA expression of intracellular taste signalling
molecules. Both studies looked for changes to a-gustducin

@ Springer

0% 25% 50% 75% 100%

[35, 48], and one for changes to PLC2 [48]. One other study
assessed the function of a-gustducin after RYGB using gene
knockout mice, which is discussed in earlier sections [58].
Pepino et al. observed a threefold decrease of a-gustducin
mRNA and no change to PLCP2 mRNA in oral fungiform
papillae in humans after RYGB and LAGB [48]. In mice,
an increase in the abundance of a-gustducin mRNA in the
distal jejunum and ileum was reported following EGA [35].

3.3.5 Bitter, salty & sour taste receptors
No study has reported changes to the gene or protein expres-

sion of bitter, salty or sour taste receptors in the oral cavity
or gastrointestinal tract of humans or animals.
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3.4 Association between changes to the gene
or protein expression of taste receptors
and taste perception and food preference
after bariatric surgery

Of the 23 included studies, five assessed changes to taste
perception and/or food preference after bariatric surgery
alongside changes to the mRNA or protein expression of
taste receptors. One was conducted in humans after RYGB
and LAGB [48], with the other four assessing food prefer-
ence and taste detection thresholds in rodents after RYGB
[55, 56] and SG [66, 67].

All four studies that assessed differences in fat con-
sumption compared to non-surgical comparators observed
a reduced preference for and/or intake of fat after RYGB
[48, 56], SG [66, 67], and LAGB [48]. The two studies that
examined relationships between changes in fat preference
and taste receptor expression found that in mice after SG
[66] and RYGB [56], reduced preference for fat is associated
with increased intestinal production of intracellular OEA
[56] and mediated through PPAR-a activation [56, 66].
Knockout of CD36 attenuated the reduced preference for
fat observed in mice after SG whereas GPR119 knockout
did not influence eating behaviour [66].

Both studies analysing the impact of bariatric surgery on
sweet food intake in humans [48] and rats [55] observed a
decreased preference for, and intake of, sugar compared to
control groups but neither examined relationships between
changes in sweet preference and taste receptor expression.
No effect of surgery was found on sweet taste detection
thresholds [48].

Two studies assessed changes to intake or detection of
umami in humans [48] or rodents [66], two studies assessed
salty flavour [48, 55], and one study assessed sour flavour in
rats [55], but no changes after bariatric surgery were found,
and therefore associations with taste receptor changes were
not tested. Details of the studies are outlined in Table 4.

3.5 Association between gene or protein
expression of taste receptors and clinical
outcomes after bariatric surgery

Studies that investigated an association between expression
of gut taste receptors and weight loss, glycaemia and circu-
lating gut hormones after bariatric surgery are summarised
in Table 5.

Basal alimentary limb SGLT1 mRNA expression posi-
tively correlated with peak post-prandial serum levels of
glucose, as well as the non-metabolised glucose analogue
3-O-methyl-D-glucose (3-OMG), in humans after RYGB
[49]. The same study found no correlation between plasma
concentration of these sugars and TIR2 mRNA expression.

SG reduced weight and improved glucose tolerance in
mice with whole body knockout of downstream (PPAR)
and upstream (GPR119, CD36) signalling targets of OEA
[66]. Circulating GLP-1 levels after a mixed meal test
increased similarly after SG in both WT and GPR119KO
mice compared with respective sham control animals (58).
Due to differences in the effect of sham surgery between
a-gustducin gene knockout and wild-type mice, the effects of
gustducin-mediated taste receptor signalling on body weight,
glucose homeostasis and gut hormone secretion after RYGB
are unclear [58].

No studies examined relationship between taste receptor
expression and lipid profile after bariatric surgery.

4 Discussion

This is the first systematic review of the effect of bariat-
ric surgery on gastrointestinal taste receptor expression.
Overall, the data indicates that changes in mRNA or pro-
tein expression of the intracellular taste signalling mol-
ecule a-gustducin; sweet taste receptors SGLT1, T1R2, and
T1R3; amino acid receptor LPARS (GPR92/93); and fatty
acid receptors CD36, OEA, FFAR1-3, GPR119, GPR84,
occur after all types of bariatric surgery (Fig. 3). Changes
to a-gustducin and the sweet and amino acid taste recep-
tors are more commonly reported in intestinal segments that
have been surgically repositioned more proximally, such as
the alimentary limb after gastric bypass or the interposed
ileal segment after ileal interposition surgery. Conversely,
changes to fatty acid receptors were more often found in the
colon than in the small intestine. Limited data indicate that
levels of other taste receptors, including FFAR4, amino acid
receptor monomer T1R1; and intracellular taste signalling
molecules PLCP2 and PPAR-a are unaffected by bariatric
surgery.

Few studies have examined relationships between taste
receptor expression and clinical outcomes of bariatric sur-
gery. Those examining taste preferences have focused on
fat. The reduced fat preference observed in mice subjected
to SG and RYGB appears to be dependent on CD36 [66]
receptors, intracellular intestinal OEA production [56] and
PPAR-a activation [56, 66], as disruption of any of these
signalling processes by pharmacological blockade or gene
knockout negated the effects of bariatric surgery on prefer-
ence for fat. Conversely, fat receptor GPR119 is not neces-
sary for reduced fat preference after SG [66]. An association
between taste receptors and preference for fat has also been
reported in non-operated mice, where double-knockout of fat
receptors GPR40/FFAR1 and GPR120/FFAR4 prevented the
development of fat preference observed in their wild-type or
single gene knockout counterparts [20]. Interestingly, this
study found no role for CD36 in determining fat preference
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/N = increased expression, \, = decreased expression, <-> = no change or difference.
* a-gustducin knockout mice only

# = same result found following LAGB

Inconsistent results are presented as most frequently reported direction of change followed by other proposed changes in brackets.
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Fig.3 Overview of the changes to expression and translation of taste receptors throughout the gastrointestinal tract after sleeve gastrectomy (a),
Roux-en-Y gastric bypass (b), duodenojejunal bypass or enterogastric anastomosis (c) and ileal interposition (d)

[20]. A similar gut-brain feeding circuit involving the stimu-
lation of SGLT1 by sugars [20, 24] on CCK-enteroendocrine
cells [21] in mice has been reported to be essential in estab-
lishing and maintaining the innate mammalian preference
sugar over non-nutritive sweeteners. Given that gastrointes-
tinal expression of SGLT1 and CD36, FFAR1-3, GPR119,
and GPR&84 fatty acid taste receptors change following bari-
atric surgery, investigation into whether these changes con-
tribute to reduced preferences for sweet and fatty foods after
surgery is of interest.

The association between taste receptor expression and
post-surgical weight loss is unclear. It is as yet uncertain if
changes in taste receptor expression facilitate, result from, or
occur independently of changes in food intake, preferences
and weight loss. Both oral and post-oral gastrointestinal
sweet, fatty acid, umami and bitter taste receptor expres-
sion have been shown to correlate with BMI in humans
[38, 39, 80, 81], but not all studies agree [34]. No prior
study has reported the effect of diet-induced weight loss on
taste receptor expression but changes in nutrient intake can
acutely alter taste receptor expression. Observational stud-
ies in healthy humans have demonstrated that the presence
of glucose in the intestinal lumen can acutely alter duode-
nal expression of sweet taste receptor T1R2 [81]. Short and
longer-term consumption of a high-fat diet was associated
with reduced expression of oral fatty acid [82] receptors in
rodents, whereas humans who followed an 8-week low-fat

@ Springer

diet exhibited an increase in oral FFAR4 [83]. After bari-
atric surgery, most taste receptor expression changes occur
in bowel segments newly exposed to incompletely digested
nutrients (see Fig. 3) [35, 53, 61, 66], suggesting that
changes to taste receptor expression after bariatric surgery
are likely to result from altered nutrient exposure. Mecha-
nistic preclinical studies that separate changes in diet quality
from changes in body weight would further understanding
of the potential relationship between gastrointestinal taste
receptors and weight loss. Additional studies assessing food
preference changes following manipulation of gut taste
receptors would provide insight into the influence of the
gut mucosa on eating behaviours.

Association between taste receptor expression and gly-
caemia following bariatric surgery appears to be taste mono-
mer dependent. Fasting SGLT1 expression was reciprocally
associated with glycaemia in humans after RYGB [49], in
keeping with the known role of SGLT1 in sugar absorption.
The lack of association between basal sweet receptor TIR2
expression and glycaemia after bariatric surgery [49] is in
line with prior studies conducted in non-operated individuals
with and without diabetes [34].

There is substantial heterogeneity of methods between
the 23 included studies, including variations in surgery type,
interval between surgery and tissue collection, anatomical
location and type of receptor examined, and method of
receptor analysis. Hence, the variability in results between
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studies is not surprising. Different changes to mucosal mor-
phology and expression of sweet taste receptors and glucose
transporters observed between RYGB and SG indicates that
the intestine adapts differently to the two procedures [50].
Diurnal variation in the expression of oral and post-oral
gastrointestinal taste receptors has also been observed in
several rodent models [84, 85], yet reporting on the timing
of tissue harvest is not standard practice. Furthermore, just
as post-operative weight and metabolic benefits of bariatric
surgery plateau over time [26, 27], the same pattern may
occur for structural adaptations induced by these surgeries
[50, 63, 67]. Most of the included studies relied on analysis
of mRNA to make conclusions about the effect of bariatric
surgery on taste receptors, however this does not capture
post-transcriptional changes, such as those reported in three
studies that analysed both genes and proteins [51, 55, 64].
Further limitations are that several taste receptor mol-
ecules were only investigated by a single study, and many
have not been analysed in human tissue. No study has inves-
tigated the effect of SG on gastrointestinal taste receptors in
humans. By including only studies that utilised tissue analy-
sis, this review may have missed studies examining other
changes to taste receptors, including functional changes.

5 Conclusion

This review examines the effect of bariatric surgery on the
expression of taste receptors in the oral cavity and along
the gastrointestinal tract. While expressional differences in
bitter, sweet, fatty and amino acid receptors as well as intra-
cellular taste signalling molecules occur following bariatric
surgery, the results are inconsistent. Changes to the gene or
protein expression of intracellular a-gustducin, sweet and
amino acid receptors occur most often in intestinal segments
surgically repositioned more proximally whereas changes
to fatty acid receptors were reported more frequently in the
colon than in the small intestine. There is a lack of human
studies and paucity of data investigating associations
between expressional changes and clinical outcomes of bari-
atric surgery. Understanding the mechanisms that underlie
changes in eating behaviour seen in patients after bariatric
surgery will facilitate better understanding of the physiology
of these surgeries. It may also provide the opportunity to
replicate this effect via non-surgical treatments for obesity,
such as the development of medications targeting prefer-
ence for highly palatable foods or the design of effective
flavour agonists able to satisfy cravings for sweet or fatty
foods without the associated intake in energy.
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