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Abstract
In recent years, a growing number of studies have examined the relationship between thyroid pathophysiology and intestinal 
microbiota composition. The reciprocal influence between these two entities has been proven so extensive that some authors 
coined the term "gut-thyroid axis". However, since some papers reported conflicting results, several aspects of this correlation 
need to be clarified. This systematic review was conceived to achieve more robust information about: 1)the characteristics 
of gut microbiota composition in patients with the more common morphological, functional and autoimmune disorders of 
the thyroid; 2)the influence of gut microbial composition on micronutrients that are essential for the maintenance of thyroid 
homeostasis; 3)the effect of probiotics, prebiotics and synbiotics, some of the most popular over-the-counter products, on 
thyroid balance; 4)the opportunity to use specific dietary advice. The literature evaluation was made by three authors inde-
pendently. A five steps strategy was a priori adopted. After duplicates removal, 1106 records were initially found and 38 
reviews were finally included in the analysis. The systematic reviews of reviews found that: 1) some significant variations 
characterize the gut microbiota composition in patients with thyroid disorders. However, geographical clustering of most of 
the studies prevents drawing definitive conclusions on this topic; 2) the available knowledge about the effect of probiotics 
and synbiotics are not strong enough to suggest the routine use of these compounds in patients with thyroid disorders; 3) 
specific elimination nutrition should not be routine suggested to patients, which, instead have to be checked for possible 
micronutrients and vitamins deficiency, often owed to gastrointestinal autoimmune comorbidities.
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TIRADS	� Thyroid Imaging Reporting and Data System
TLR	� Toll-like receptor
T3	� Triiodothyronine
TPOAb	� Anti-thyroperoxidase autoantibodies

1  Introduction

The human gastrointestinal tract hosts about 1013 microor-
ganisms composed by bacteria, fungi, archaea, protozoa, and 
viruses, altogether known as gut microbiota (GM) [1]. This 
one represents about 70% of the whole microbiota associated 
with all the human microbial niches [2]. This set of microbes 
lives in the human gastrointestinal apparatus, sharing with 
the host organism different types of relationships, ranging 
from symbiosis to parasitism [3]. The composition of the 
microbiota differs in each part of the gastrointestinal tract, 
being influenced by the environmental pH, oxygen and anti-
microbial concentration that lead to the maximal microbial 
concentration within the large intestine [4]. The maintenance 
of intestinal barrier integrity, the digestion of nutrients, the 
metabolism of several drugs, as well as a pivotal role in 
immune system development and functioning, represent the 
main functions of gut microbiota [5]. Such a prominent role 
on whole body homeostasis is so extensive that gut micro-
biota has been defined as a “hidden organ” that makes the 
set of human being and its microbiota a “superorganism” [6].

The composition of GM is strongly influenced by envi-
ronmental determinants and individual behavior, beyond the 
shaping due to genetic background [7]. It tends to remain 
stable during adult life due to its resistance, also being able 
to come back to its initial composition due to its resilience. 
GM composition may even adapt to new conditions in the 
case of long-term perturbations; however, when the per-
turbations are substantial a dysbiotic state may ensue [8]. 
Despite the difficulties in defining a healthy composition 
of the microbiota, dysbiosis can be defined as an imbalance 
in the composition of the microbiota in favor of pathogenic 
species to the detriment of symbionts and commensals [8]. 
Several systemic and organ-specific disorders have been 
related to the presence of a dysbiotic state, being the evi-
dence stronger for metabolic diseases, allergy, autoimmun-
ity, central nervous system disturbances as well as for several 
types of cancer [9].

A link between GM and thyroid homeostasis has been 
hypothesized more than one century ago by the surgeon 
Harries [10]. In the following years, studies on this topic 
were limited due to the issues in cultivation and identi-
fication of the different bacterial strains. More recently, 
sequencing techniques and high-performance technolo-
gies increased exponentially the analysis of the composi-
tion of the human-associated microbiota in thyroid disor-
ders. A number of original papers and narrative as well 

as systematic reviews analyzed the composition of GM in 
patients with different thyroid disorders. Furthermore, some 
papers examined the relationship between gut microbiota 
and the micronutrients related to thyroid homeostasis, also 
evaluating the effect of microbiota modulation through pro- 
and prebiotics administration.

The present review is aimed at answering the following 
specific questions:—are there variations of GM in patients 
with thyroid autoimmune disorders and with thyroid can-
cers as compared to healthy subjects?—is there evidence 
of a causal relationship between variations in microbiota 
composition and thyroid disorders?—is there an impact of 
gut microbiota composition on micronutrients related to thy-
roid homeostasis?—should a specific diet be suggested to 
patients with thyroid disorders to modulate their GM?—is 
there a rationale for the routine use of probiotics, prebiotics 
or synbiotics in unselected patients with thyroid disorders? 
To answer these questions we designed a systematic review 
of reviews on these topics, we synthesized the conclusions 
of each review included, and we discussed the summary of 
the main findings.

2 � Methods and material

2.1 � Review conduction

The present systematic review was performed following the 
methodology proposed by Aromataris et al. [11].

2.2 � Search strategy

The literature was searched by three authors indepen-
dently (C.V., I.S. and M.C.). A 5-step search strategy was 
a priori adopted:

1) sentinel studies were sought in PubMed using mul-
tiple combinations of the following keywords: thyroid, 
Hashimoto’s thyroiditis, Graves’ disease, ophthalmopathy, 
goiter, thyroid carcinoma, gut microbiota, microbiome, 
probiotics, prebiotics, synbiotic; 2) keywords and MeSH 
terms were identified in PubMed; 3) PubMed, Web of Sci-
ence and Scopus were searched; 4) narrative reviews, sys-
tematic reviews and meta-analyses potentially eligible were 
identified; 5) reviews focused on the relationship between 
thyroid homeostasis and gut microbiota composition were 
directly included in the study, while those focusing on dif-
ferent endocrine glands were screened and included only 
when the section dedicated to thyroid disorders was signifi-
cant. A beginning date limit was not used, and the search 
was updated until July 13th, 2023. A language restriction 
was not applied to the research. To find possible addi-
tional studies extending the search, the reference list of 
the selected papers was also examined.
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2.3 � Data extraction

For each article included in the present analysis the follow-
ing information was extracted by three authors (C.V., M.C., 
I.S.) independently: authors, country, date of publication, 
journal, type of review (i.e., narrative review, systematic 
review, systematic review with meta-analysis), context of the 
review (i.e., focusing on specific thyroid pathophysiology 
aspects or on endocrinology in general), aim of the review, 
conclusions of the authors.

3 � Results

3.1 � Reviews retrieved

Applying the above search strategy, 1880 records were ini-
tially obtained. Once excluded the 774 duplicates, we ana-
lyzed 1106 papers; thirty-eight of them have been included 
[12–49] in the analysis since the others were excluded 
because they were not review articles, were not relevant to 

the analysis or did not contain a large section dealing with 
the above topics. In Fig. 1 is reported the search strategy and 
the flow of articles.

The reviews included in our analysis were published in 
the last twelve years (2012–2023). Both objectives and con-
clusions of the 38 reviews were clearly reported. Most of 
the reviews included were narrative, and so the pre-defined 
patient-centered questions (e.g., PICOS, participants, inter-
ventions, comparators, outcomes, and study design) were not 
reported. Table 1 indicates the main features of the reviews 
contained in the present systematic review.

3.2 � Findings of the reviews included

The aim and the main conclusions of the thirty-eight reviews 
were schematically reported in Table 2. In brief, these stud-
ies analyzed the GM composition in patients with thyroid 
autoimmune disorders, with or without functional impair-
ment as well as in those with thyroid cancer. Some of the 
included reviews reported the results of studies dealing 
with thyroid diseases and microbiota belonging to other 

Fig. 1   Search strategy and 
reviews’ selection
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Table 1   List of the reviews included in the present systematic review

FIRST AUTHOR COUNTRY​ DATE OF 
PUBLICATION

JOURNAL TYPE OF 
REVIEW

TOPIC (thyroid/
endocrinology)

Mori [12] Japan 27 November 2012 Discovery Medicine NR Hashimoto’s Thyroiditis
Kunc [13] Poland 26 October 2015 Acta Biochimica Polonica NR Endocrinology
Covelli [14] UK, Italy 7 January 2017 Journal of 

Endocrinological 
Investigation

NR Graves’ Disease and 
Orbitopathy

Virili [15] Italy 4 February 2017 Molecular and Cellular 
Endocrinology

NR Thyroid hormone 
metabolism

Köhling [16] UK, Germany 6 July 2017 Clinical Imuunology NR Thyroid Autoimmunity
Virili [17] Italy 8 October 2018 Reviews in Endocrine & 

Metabolic Disorders
NR Hashimoto’s Thyroiditis

Fröhlich [18] Germany 27 June 2019 Trends in Endocrinology 
& Metabolism

NR Thyroid Disorders

Ihnatowicz [19] Poland 2 October 2019 Annals of Agricultural 
and Environmental 
Medicine

NR Hashimoto’s Thyroiditis

Ejtahed [20] Iran 2020 Endocrine, Metabolic & 
Immune Disorders—
Drug Targets

NR Thyroid Disorders

Fenneman [21] The Netherlands, USA 15 May 2020 Biochemical Society 
Transactions

NR Endocrinology

Knezevic [22] Austria 12 June 2020 Nutrients NR Micronutrients pivotal in 
thyroid homeostasis

Masetti [23] UK 5 November 2020 European Thyroid Journal NR Graves’ Disease and 
Orbitopathy

Opazo [24] Chile, Belgium 23 November 2020 Critical reviews in food 
Science and Nutrition

NR Micronutrients pivotal in 
thyroid homeostasis

Docimo [25] Italy 4 December 2020 Frontiers in 
Endocrinology

NR Thyroid Diseases

Virili [26] Italy 17 February 2021 Best Practice & Research 
Clinical Endocrinology 
& Metabolism

NR Thyroid Autoimmunity

Qi [27] China 15 March 2021 Gut Microbes NR Endocrinology
Sturov [28] Russia May 2021 Archiv Euromedica NR Thyroid autoimmunity
Fernàndez-Garcìa [29] Spain 25 May 2021 Molecular and Cellular 

Endocrinology
NR Thyroid autoimmunity

Ferreira [30] Brazil 4 June 2021 Frontiers in Nutrition NR Micronutrients pivotal in 
thyroid homeostasis

Bargiel [31] Poland 16 August 2021 Journal of clinical 
medicine

NR Thyroid Dysfunction

Cao [32] China 17 November 2021 Graefe’s Archive 
for Clinical and 
Experimental 
Ophtalmology

NR Graves’ Orbitopathy

Gong [33] China 17 November 2021 Frontiers in 
Endocrinology

SR + MA Thyroid Autoimmunity

Hou [34] China, Canada 22 December 2021 Frontiers in Cellular and 
Infection Microbiology

NR Graves’ Disease and 
Orbitopathy

Bogulawska [35] Poland 1 January 2022 European Thyroid Journal NR Thyroid Autoimmunity
Zhou [36] China 4 January 2022 Frontiers in Cell and 

Developmental
Biology

NR Graves’ Disease and 
Orbitopathy

Wang [37] China 5 January 2022 Frontiers in 
Endocrinology

NR Graves’ Orbitopathy
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biological niches such as the oral or thyroidal (tumoral and 
peritumoral) ones. Moreover, the bidirectional relationship 
between microbiota composition and thyroid-related micro-
nutrients intake has been examined. Finally, the perspectives 
of gut microbiota modulation by probiotics, prebiotics or 
synbiotics, by dietary habit or by fecal microbiota transplan-
tation have been stressed (Table 3).

4 � Discussion

Owing to the several links between the gut, with microbial 
set its, and thyroid homeostasis, the term “gut-thyroid axis” 
has been recently proposed [50] and the principal elements 
involved are depicted in Fig. 2.

Thyroid hormones exert a key role in the development 
and differentiation of intestinal epithelium, thus actively 
participating in the intestinal barrier integrity. Among the 
intestinal effects of thyroid hormones, the more relevant are 
the regulation of intestinal epithelium turnover [51] and the 
induction of intestinal alkaline phosphatase. This latter is 
a brush-border enzyme that dephosphorylates the proin-
flammatory bacterial endotoxin lipopolysaccharide (LPS), 
thereby preventing its translocation into the systemic circula-
tion [52, 53]. This process has been correlated to the induc-
tion of autoimmunity in genetically- predisposed subjects, 

since the intestine hosts the 70% of the immune system 
(Gut Associated Lymphoid Tissue – GALT) [54]. Indeed, 
the entry into the systemic circulation of bacterial antigens 
and their epitopes, even through the molecular mimicry, 
may trigger auto-aggressive processes [55] by a local or 
by-stander activation. Furthermore, it represents a potential 
site for the activation of autoreactive cells and initiation/
propagation of autoimmune diseases, also involving organs 
far from the intestine [56]. To note, a condition of gut leaki-
ness has been also related to the growth and progression of 
cancers involving organs other than thyroid [54].

On the side of thyroid function variations, they have also 
been related to a different gut microbiota composition: in 
hypothyroid patients an increased prevalence of small intes-
tine bacterial overgrowth has been described [57] as well as 
a dysbiotic state in patients with thyroid hyperfunction [58]. 
Conversely, it was demonstrated that germ free (GF) mice, 
devoid of microorganisms colonization, have lower radioactive 
iodine uptake and 25% higher values of TSH than conven-
tionally reared ones [59]. To note, a direct binding of thyroid 
hormones to gut bacterial strains has been firstly demonstrated 
in the 60’s, suggesting the intestine to be a reservoir for thyroid 
hormones [60]. It has been also hypothesized a role for the 
intestine and the associated microbiota in thyroid hormones 
metabolism since:—some bacterial strains possess glucu-
ronidase and sulfatase activities, enabling thyroid hormone 

Table 1   (continued)

FIRST AUTHOR COUNTRY​ DATE OF 
PUBLICATION

JOURNAL TYPE OF 
REVIEW

TOPIC (thyroid/
endocrinology)

Liu [38] China 16 February 2022 Frontiers in Molecular 
Bioscience

NR Graves’ Disease and 
Orbitopathy

Danailova [39] Bulgaria 5 April 2022 International Journal of 
Molecular Science

NR Hashimoto’s Thyroiditis

Liu [40] China 27 May 2022 Cancers NR Thyroid Cancer
Jiang [41] China 18 August 2022 Frontiers in 

Endocrinology
NR Thyroid Diseases

Belvoncikova [42] Slovakia 14 September 2022 International Journal of 
Molecular Science

NR Thyroid Autoimmunity

Calcaterra [43] Italy 23 September 2022 Minerva Pediatrics NR Thyroid Autoimmunity
Sawicka-Gutaj [44] Poland, Italy 3 November 2022 International Journal of 

Molecular Science
SR + MA Thyroid Autoimmunity

Wu [45] China 18 December 2022 Microbiological Research NR Endocrinology
Macvanin [46] Serbia, Saudi Arabia 4 January 2023 Frontiers in 

Endocrinology
NR Thyroid Diseases

Fenneman [47] The Netherlands 6 January 2023 Thyroid NR Thyroid hormone 
metabolism/ Thyroid 
Autoimmunity

Stramazzo [48] Italy 28 March 2023 Advances in experimental 
medicine and biology

SR Thyroid Diseases

Zawadza [49] Poland, Iran 16 May 2023 Annals of Agricultural 
and Environmental 
Medicine

SR + MA Probiotic use in Thyroid 
Diseases
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w

s p
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r f
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 b
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 d
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 c
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-
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 o
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 su
pp
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 b
id
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oc
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 b
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nd
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l 
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 c
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 c
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 d
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 m
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a 
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d 
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 m
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y 
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t m
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n 

se
em
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 re
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s p
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 m
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s d
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[2
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t m
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 c
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, t
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 m
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l f
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 m
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f m
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e 
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G
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 d
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s b
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f m
ic

ro
bi
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 c
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 c
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 b
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 b
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t m
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 m
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 m

ic
ro

bi
ot

a.
 

B
ot

h 
th

yr
oi

d 
au

to
im

m
un

ity
 a

nd
 d
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To
 c
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ic
ro
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f d
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ro
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 p
ap

ill
ar

y 
th

yr
oi

d 
ca

nc
er

 p
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 c
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l m
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Ta
bl

e 
2  
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d)
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R
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O
R
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M
A
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 C
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N

C
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O
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 m
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 p
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e 
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t c
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se
d 
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 d
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 b
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 d
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 d
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s d
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na
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f p
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ie
nt
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Q
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 a
na

ly
ze

 th
e 

im
pa
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 o

f t
he

 g
ut

 m
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ot
a 

co
m

po
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tio
n 

on
 th

e 
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e 
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d 
m
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 e
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e 
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m

 e
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m
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in
g 

th
e 

ro
le

 o
f g

ut
 m

ic
ro

flo
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 o
n 

th
yr

oi
d 

di
so

rd
er

s

Th
yr

oi
d 

ca
nc

er
, h

yp
o-

 a
nd

 h
yp

er
th

yr
oi

di
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 a
re

 c
ha

ra
ct

er
iz

ed
 b

y 
pe

cu
lia

r m
ic

ro
bi

ot
a 

co
m

po
si

tio
n.

 T
he

 u
pt

ak
e 
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 io

di
ne

, s
el

en
iu

m
 ir

on
 a

nd
 z

in
c 

m
ay

 b
e 

af
fe

ct
ed

 b
y 

gu
t 

m
ic

ro
bi

ot
a 

co
m

po
si

tio
n

St
ur

ov
 [2

8]
To

 c
on

si
de

r t
he

 in
te

ra
ct

io
n 

be
tw

ee
n 

gu
t m

ic
ro

bi
ot

a 
an

d 
th

e 
de

ve
lo

pm
en

t o
f t

hy
ro

id
 

au
to

im
m

un
ity

 a
nd

 th
e 
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ac
te

ris
tic

s o
f m

ic
ro

flo
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 c
om

po
si

tio
n 

in
 p

at
ie

nt
s w

ith
 

th
yr

oi
d 

dy
sf

un
ct

io
n

C
ha

ng
es

 in
 m

ic
ro

bi
ot

a 
pr

of
ile

 is
 o

ne
 o

f t
he

 fa
ct

or
s i

nv
ol

ve
d 

in
 th

e 
de

ve
lo

pm
en

t o
f 

th
yr

oi
d 

au
to

im
m

un
ity

Fe
rn

àn
de

z-
G

ar
cì

a 
[2

9]
To

 re
vi

ew
 th

e 
pr

in
ci

pa
l k

no
w

n 
in

te
ra

ct
io

ns
 b

et
w

ee
n 

th
yr

oi
d,

 g
ut

 m
ic

ro
bi

ot
a 

an
d 

im
m

un
e 

sy
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m
Se

ve
ra

l m
ec

ha
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sm
s c

on
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lli
ng

 th
yr

oi
d 

ho
m

eo
st
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is

 m
ay

 b
e 
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fe
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ed

 b
y 

gu
t m

ic
ro

-
bi

ot
a 

co
m

po
si

tio
n

Fe
rr

ei
ra

 [3
0]

To
 su

m
 u

p 
th

e 
kn

ow
le

dg
e 

ab
ou

t t
he

 re
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tio
ns

hi
p 

be
tw

ee
n 

gu
t m

ic
ro

flo
ra

 a
nd

 
se

le
ni
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 st

at
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 w
ith

 a
 fo

cu
s o

n 
bi

oa
va

ila
bi

lit
y 

of
 se

le
no

co
m

po
un

ds
 a

nd
 th

yr
oi

d 
di

so
rd

er
s

Sp
ec

ifi
c 

ba
ct

er
ia

l s
tra

in
s b

el
on

gi
ng

 to
 g

ut
 m

ic
ro

bi
ot

a 
(e

. g
. b

el
on

gi
ng

 to
 L
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to
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ci

l-
lu

s g
en

us
) a
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e 

to
 p

ro
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de
 m
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e 
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ila
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e 
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s o
f s
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m
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 m
ic
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bi

ot
a 

m
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 o

n 
en
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m
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s
B
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 d
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e 
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e 
ev
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bo
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n 
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m
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ro
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 m
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d 
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un
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d 
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m
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m
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ro
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m
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ng
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 if

 d
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 c
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n 
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 o
f t
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ro
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 d
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w
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C
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 [3
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To

 e
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m
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e 
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e 
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e 
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t r
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k 
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s f
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 G
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th
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m
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A
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w
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n 
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t m
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G
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 b
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n 
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 b
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e 
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m
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 b
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es
s t

he
 d
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l m
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a 
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m
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tw

ee
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 p
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s m
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s b
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 d
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 th
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f t
he

 g
ut

 m
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 c
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 d
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G
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 d
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 d
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 c
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 m
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 m
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ra
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 b
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 re
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 d
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enterohepatic recycling;—in mice, intestinal wall possesses 
deiodinases isoforms and ornithine decarboxylase allowing 
the synthesis of thyroid hormones’ derivatives;—deiodinases 
activities, that have been detected in the intestinal content of 
rats, are inhibited by resident microbiota [17];—in animal 
models, LPS injection is able to modulate hepatic and pituitary 
deiodinases activity [13]. Thyrocytes themselves are able to 
respond to circulating LPS because of their expression of func-
tional Toll-like receptor 4 (TLR4), which is able to induce both 

Na+/I symporter (NIS) and thyroglobulin (Tg) gene expres-
sion [61]. LPS is also able to decrease thyroid hormone recep-
tor expression in hepatic extracts [13]. Interestingly, SCFAs 
(Short Chain Fatty Acids) (butyrate, propionate and acetate) 
produced by resident microbiota are able to inhibit histone 
deacetylase and to activate Mitogen-activated protein kinase 
(MAPK) pathway that may induce hyperphosphorylation and 
thus increased transcription of thyroid hormone receptor [13]. 
Some papers reported a variation in SCFA concentration in 

Fig. 2   Main elements involved 
in the “gut-thyroid axis”
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patients with different thyroid disorders [31]. Another key ele-
ment of the thyroid-gut axis is represented by bile acids home-
ostasis. Indeed, secondary biliary acids, formed in the colon 
through deconjugation and dehydroxylation by colic micro-
biota, are able to interact with Takeda G-protein coupled recep-
tor 5 (TGR5), a receptor that stimulates type-2 deiodinases in 
brown adipose tissue, increasing local triiodothyronine (T3) 
production. On the other hand, thyroid hormones regulate 
biliary acids’ metabolism increasing the liver expression of 
cholesterol 7α-hydroxylase (CYP7A1). Interestingly, one of 
the secondary bile acids, deoxycholic acid, possesses a selec-
tive antimicrobial effect due to its ability to induce bacterial 
membrane damage. Noticeably, the composition of primary 
and secondary biliary acids is significantly different in patients 
with hyper- or hypothyroidism [21, 31].

In the next paragraphs, we will stress the relationship 
between the microbiota, its byproducts and the more com-
mon thyroid disorders.

4.1 � Hashimoto’s thyroiditis and hypothyroidism

Already in the 80’s, it has been shown that GM conferred a 
greater susceptibility to the development of thyroiditis in 
rodents grown in conventional conditions compared to GF ones 
[62]. To note, sequences homologies have been found between 
thyroid-specific antigens [thyroid peroxidase (TPO) and Tg] 
and surface antigens of several bacteria, both pathogens or com-
mensals, normally belonging to gut microbiota [63]. Later, it 
has been proven that TLR4 activation by LPS is able to trigger 
thyroiditis in NOD H2h4 mice [64]. Other clues of a role for 
GM in Hashimoto’s thyroiditis (HT) pathogenesis are related 
to the detection of the leakiness of the gut barrier detected in 
a morphologic and functional study in euthyroid patients with 
this disorder [65]. This evidence has been strengthened by the 
evidence that serum zonulin, an indirect index of increased gut 
permeability, is increased in HT patients [66].

Recently, a meta-analysis described the significant dif-
ferences of GM composition in HT patients compared to 
healthy subjects. Sawicka-Gutaj et al. [44] reported that 
ACE and Chao1, indices describing microbial richness, and 
the Shannon index, reflecting the communities’ diversity, 
were increased in HT patients as compared to healthy con-
trols. However, the Simpson index, which reflects the com-
munity diversity too, was lower in HT patients [44]. Overall, 
these results are in keeping with the longer gastrointestinal 
transit time that is a key sign in hypothyroid patients and that 
has been related to increased prevalence of small intestine 
bacterial overgrowth [57].

At phylum level, Bacteroidetes showed an increased 
relative abundance and Firmicutes a slightly reduced one 
compared to control subjects. To note, the Firmicutes/Bac-
teroidetes (F/B) ratio is known to be an indicator of normal 
intestinal homeostasis; this ratio’s increase or decrease has 

been suggested as flag of dysbiosis. [42]. A decrease in this 
ratio has been described in GD but in HT patients inconsist-
ent results were reported [44].

At family level, some studies demonstrate that Lachno-
spiraceae, Bacteroidaceae, Enterobacteriaceae, Alcaligen-
aceae, Coriobacteriaceae, Erysipelotrichiaceae and Bacil-
lobacteriaceae were increased in the gut microbiota of the 
HT patients; differently, Ruminococcaceae, Prevotellaceae, 
and Veillonellaceae were reduced [42]. Interestingly, these 
last two families are involved in the induction of regulatory 
T lymphocytes (Tregs) in the gut [42, 43].

At genus level, it was observed that Bacteroides, Faecalibac-
terium, Prevotella and Lachnoclostridium genera were lower, 
while Blautia, Ruminococcus, Roseburia, Fusicatenibacter, 
Romboutsia, Dorea and Eubacterium genera were higher in 
HT patient fecal samples than in healthy controls [44].

At species level, the most important result of the above meta-
analysis was the increased relative abundance of Bacteroides 
fragilis, a bacterium able to activate the expression of NLR 
family pyrin domain containing 3 (NLRP3), an inflammasome 
component overexpressed in thyroid tissue of patients with HT 
[33]. When analyzed by Spearman’s correlation, some phy-
lum, family and genus such as Bacteroides, Ruminococcaceae, 
Enterobacteriaceae, Veillonella, Streptococcus and Lactobacil-
lus positively correlated with antithyroperoxidase antibodies 
(TPO) and negatively with TSH levels; moreover, the genus 
Streptococcus positively correlated with antithyroglobulin anti-
bodies levels [42, 44, 47].

One study examined the gut microbiota composition in 
untreated patients with non-autoimmune hypothyroidism as 
compared to healthy subjects [67]. The authors described 
greater richness but lower diversity in the hypothyroid 
group, with increased F/B ratio and LPS serum concen-
tration; also the SCFA producing ability was significantly 
reduced [67]. In the last years, it has been also evaluated the 
relationship between functional thyroid disorders and the 
composition of microbiota belonging to body niches dif-
ferent from the gut one [48]. A significant alpha and beta 
diversity on salivary samples has been described by Dong 
et al. [68] by comparing the microbiota of 20 healthy control 
(HC) and 20 subjects affected by subclinical hypothyroidism 
(SH). It was observed that salivary microbial composition 
of SH group was characterized by a major richness without 
the identification of a dominant species. At the phylum level, 
there was a similar composition between the two groups but 
a different distribution of 45 taxa [68].

4.1.1 � Microbiota composition and levothyroxine treatment

In patients with hypothyroidism, oral levothyroxine sodium 
is the treatment of choice. This treatment must be personal-
ized based on the weight and age of patients, but its efficacy 
depends on the absorbed hormonal fraction [26]. It has been 
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hypothesized that levothyroxine treatment efficacy might be 
influenced by the composition of the gut microbiota [69]. 
Indeed, once absorbed at the small intestine level, thyroxine 
is metabolized by deiodinases but a significant fraction may 
be glucurono-conjugated and sulfated at liver level, render-
ing it more soluble in water and allowing its elimination in 
the intestine along with the bile [70]. It has been demon-
strated that bacterial glucuronidase and sulfatase activities 
are able to give back thyroxine the possibility to be reab-
sorbed through the enterohepatic recycling [71, 72]. A recent 
study compared gut microbiota composition in subclinical 
hypothyroid patients with stable or increasing levothyrox-
ine requirement, describing a different relative abundance 
at genus level in Alistipes and Ruminococcus (some strains 
belonging to these genera possess beta-glucuronidase activ-
ity) and in Anaerotruncus genus (involved in intestinal bar-
rier stability through butyrate production) [73].

4.2 � Graves’ disease, with or without orbital 
involvement, and antithyroid treatment

Using animal models established by immunization with 
human TSHR, Masetti et al. [74] and Moshkelgosha et al. 
[75] analyzed how differences in gut microbiota influence 
the clinical manifestation of GD and Graves’ ophthalmopa-
thy (GO) with two experiments: the first one comparing the 
same mouse model (BALB/c mice) placed in two different 
locations (Germany, UK); the second one comparing two 
different mice strains (C57BL/6 and BALB/c mice). Gut 
microbiota compositions resulted significantly different in 
both the experiments and correlated with clinical manifes-
tation of GD/GO. In another experiment, Moshkelgosha 
et al. [76], before the TSHR immunization, administrated 
antibiotic vancomycin that lowered the richness and diver-
sity of gut microbiota, also reducing F/B ratio. A significant 
reduction of Tregs in orbital lymph nodes and GD/GO-like 
clinical features has been observed. These studies suggested 
a crucial role of gut microbiota in the clinical manifestation 
of GD and GO.

In the last years a growing number of papers has faced the 
study of gut microbiota in patients with GD and GO. A condi-
tion of increased intestinal permeability, proved by the increase 
of circulating markers of leaky gut (LPS, zonulin, and D-lac-
tate) has been described in these patients by Zheng et al. [77]. 
Moreover, higher LPS levels were associated with more severe 
hyperthyroidism, higher TSH Receptor Antibodies (TRAb) 
concentrations, and a worse course of both hyperthyroidism 
and orbitopathy [78]. A recent meta-analysis [44] examined 
12 papers, mostly from China, analyzing a total of 563 patients 
with GD/GO who underwent fecal microbial analysis. The 
meta-analysis showed a clear trend toward decreasing values of 
all indices of richness and diversity in GD patients as compared 
to healthy controls. In most of the studies, the F/B ratio was 

lower in GD patients than in healthy individuals, suggesting 
the presence of dysbiosis in GD patients. Similar modifications 
were observed in GO patients. However, quite opposite results 
have been reported by Masetti et al. [23] that anticipated the 
results of the INDIGO study, a large-scale analysis in GD and 
GO patients in four European countries. In this study, fecal sam-
ples were obtained from untreated patients or within 6 weeks 
from treatment initiation. No significant differences emerged 
in alpha and beta diversity indices. Bacteroidetes were signifi-
cantly decreased, while the F/B ratio was significantly higher in 
GD/GO than in healthy controls. These conflicting results may 
be explained by the different geographical origin of the patients 
with different environmental exposures, namely dietary habit 
[78]. Back to the results in GD patients from Sawicka-Gutaj 
et al. [44], a trend toward an increased abundance of Bacte-
roidetes and Actinobacteria at the phylum level, reflected in 
a higher abundance of Prevotella and Bifidobacterium at the 
genus level, has been observed. Similarly, a higher abundance 
of Prevotella was reported in GO patients.

Among clinical parameters, TRAb levels positively 
correlated with Prevotella, Bifidobacterium and Lactoba-
cillus, while CAS (clinical activity score) was associated 
with Bacteroides abundance [79]. Noticeably, some spe-
cies belonging to Prevotella genus, through the activation 
of TLR 2, are able to induce the secretion of proinflam-
matory cytokines and to promote neutrophil recruitment. 
An increased concentration of Prevotella genus has been 
described in HIV infection, obesity, hypertension and Non-
alcoholic Fatty Liver Disease (NAFLD), as well [80]. Simi-
larly, some Bifidobacterium and Lactobacillus strains could 
exert a pathogenic activity in autoimmune thyroid disorders 
(ATD) through molecular mimicry, due to their structural 
homology with the amino acid sequences of human TPO 
and Tg [81]. This evidence could explain the findings of 
Jiang et al. [82] and Chen et al. [83], which, analyzing the 
fecal microbiota in GD patients, revealed that the abundance 
of Lactobacillus was significantly higher in TPO autoanti-
bodies (TPOAb) positive GD patients than that in TPOAb 
negative ones. Moreover, it could potentially justify the 
conflicting findings of Ishaq et al. [84] who, antithetically, 
described a reduction in Bifidobacterium and Lactobacillus 
in GD patients.

Fewer evidence is available about the effect of GD/GO 
therapy on microbiota and vice versa. Maier et al. [85] 
assessed the effect of methimazole (MMI) and of propylthi-
ouracil (PTU) on 40 selected bacterial strains in vitro, find-
ing minimal influence. On the contrary, Chen et al. [83] 
analyzed GM in MMI treated GD patients reporting a sig-
nificantly improved diversity after 3–5 months treatment 
and a significant reduction of Lactobacillus. Sun et al. [86] 
compared microbiota modifications in GD patients treated 
with MMI or PTU. The MMI group showed more Firmicutes 
at the phylum level, while the PTU group was characterized 
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by higher abundance of Bacteroidetes. The microbial dys-
biosis index (MDI) and the F/B ratio suggested that dysbio-
sis occurred in both drug-treated groups. Interestingly, GD 
treatment reduced some SCFA-producing bacteria. It has 
been reported that, upon PTU treatment, a higher percentage 
of patients had subtherapeutic drug levels than under MMI 
medication [87]. A possible explanation could stem from 
intrinsic microbial enzymatic activity. Noticeably, some bac-
terial strains possess trimethylamine monooxygenase, which 
can metabolize PTU the same way as liver flavin-dependent 
monooxygenase (FMO3) [18]. Yan et al. [88] reported that 
Prevotella might also affect the therapeutic efficacy of drugs 
for GD. Glucocorticoids and immunosuppressive drugs (aza-
thioprine and mycophenolate) also used in the treatment of 
GO are known to affect microbiota composition, however 
data regarding specifically GO patients are lacking [34].

4.3 � Thyroid cancer

It is accepted that dysbiosis has a carcinogenic effect on 
gastrointestinal cells, but its role on extraintestinal ones 
still needs to be ascertained. However, carcinogenesis relies 
mainly on two mechanisms: DNA damage and cellular apop-
tosis, on one side, inflammatory reactions and immune sur-
veillance on tumor growth, on the other [25, 40]

In patients with TC or thyroid nodules, one study [89] 
showed an increase in gut microbial richness and diversity 
compared to healthy controls. Specifically, at phyla level, 
Firmicutes were increased in stool sample of TC patients, 
with an increase in Streptococcus and reduction in Butyrici-
monas and Lactobacillus [89]. Reduction of Butyricimonas 
and Lactobacillus can affect some products of bacterial 
metabolism, such as SCFAs and especially butyrate, impor-
tant for its immunoregulatory effect. Therefore, their reduc-
tion could lead to increased cellular proliferation, and ulti-
mately to a higher risk of cancer [89]. Another study [90] 
instead, showed a reduction in microbial richness, especially 
of the butyrate-producing gut microbiota, both in TC and in 
thyroid nodules with a high Thyroid Imaging Reporting and 
Data System (TI-RADS) score, meaning a higher ultrasound 
risk of being malignant. To note, in one of these cohorts 
[91], 2/3 of patients had lymph node metastases at diagnosis.

A further interesting finding is the existence of an intra-
tumoral microbiota, mainly represented by intracellular bac-
teria found in cancer cells and peritumoral tissues. It has 
been shown that, in patients with thyroid cancer, tumoral and 
intestinal microbiota are different [92]. In detail, a preva-
lence of Proteobacteria was seen in thyroid samples, while 
Firmicutes were more represented in stools. Other studies 
[93, 94], instead, investigated the difference between tumoral 
and peritumoral microbiota composition. Results displayed 
a general lower microbic abundance in tumor tissue, associ-
ated with reduced richness and diversity indexes, while an 

increase in Sphingomonas was observed [94]. Noticeably, 
Sphingomonas abundance was higher in N1 stage compared 
to N0 stages [94]. Owing to these findings, Sphingomonas 
genus has been proposed as a marker to distinguish tumoral 
from peritumoral tissue and to suspect the presence of lymph 
node metastases [29, 37]. From a clinical point of view, thy-
roid microbioma appeared to be different between sexes and 
histologic tumor subtypes, and a strong positive correlation 
with MACIS score (distant Metastasis, patient Age, Com-
pleteness of resection, local Invasion, and tumor Size) was 
found for Micrococcus luteus and Bradyrhizobium sp [94]. 
GM could have an impact on treatment as well. Radioactive 
Iodine treatment (RAI) is a common tool in the post-oper-
ative management of TC to prevent or to treat recurrences, 
and iodine uptake by cancer cells is essential for its efficacy. 
GM can influence iodine uptake and could be associated to 
RAI-refractory papillary thyroid carcinoma through differ-
ent mechanisms involving NIS and thyroglobulin expression 
as well as TSH levels [95]. Noticeably, an in vitro study 
demonstrated that SCFAs (butyric acid) can inhibit histone 
deacetylase, activating NIS re-expression in thyroid can-
cer cells and inducing iodine uptake and redifferentiation. 
The modulation of SCFAs production has been proposed as 
intriguing field of research, since they are thought to exert 
a regulatory effect also in immune microenvironment [41].

4.4 � Thyroid‑related micronutrients  
and gut microbiota

Intestinal barrier is a semi-permeable wall that allows the 
uptake of nutrients from the intestine being some of them 
key for normal thyroid functioning. In the following section 
we will discuss the interaction between gut microbiota and 
representing some of the main thyroid-related micronutrients 
(Fig. 3).

4.4.1 � Iodine

Iodine is an obliged constituent of thyroid hormones’ struc-
ture and most of the iodine contained in the human body 
is stored in the thyroid [24]. Iodine uptake by thyroid is 
an active process and one of the limiting steps of thyroid 
hormones synthesis. The NIS, the widely diffuse iodine 
transporter, uses the flux obtained by the exchange by intra-
cellular H+ with extracellular Na+ to co-transport iodine 
against its electrochemical gradient [96]. Also, iodine intes-
tinal absorption is mediated by the NIS located in the apical 
part of plasma membrane of epithelial gastrointestinal tract. 
Further transporters responsible for intestinal iodine absorp-
tion are Na + /multivitamin transporters and cystic fibrosis 
transporter but to a lesser extent [22].

In 1972, a paper by Vought showed the role of gut micro-
biota in modulating iodine absorption in  rats: animals 
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treated with kanamycin, an antibiotic lowering total bacte-
rial counts in rats, showed a reduced radioiodine uptake at 
3 h and following 42 and 72 days of treatment, compared to 
conventional reared rats [97]. This evidence is in keeping 
with the results of the study by Nicola et al. demonstrat-
ing that LPS is able to increase NIS gene expression [61]. 
However, in human studies, the results are more conflict-
ing. Indeed, in subjects with short bowel syndrome and in 
parenteral nutrition, iodine excretion was not significantly 
different from healthy controls, in spite of the differ-
ent microbiota composition between the two groups [31, 
44, 47]. Similar results were observed in iodine urinary 
excretion in post-bariatric patients by Michalaki et al. [98]  
However, in humans with inflammatory bowel diseases, a 
condition usually accompanied by dysbiosis, it was observed  
a condition of iodine malabsorption [18, 22]. Furthermore, it 
has been observed that the reduction in butyrate-producing  
gut microbiota is related to a reduction in iodine uptake 
and this evidence was associated with the pathogenesis of 
high-risk thyroid nodules [48]. Indeed SCFAs, especially 
butyric acid, through the inhibition of histone deacetylase, 

may activate NIS re-expression in thyroid cancer cells (see. 
Thyroid cancer section) [41].

On the other side, due to its intrinsic antimicrobial activ-
ity, iodine may alter gut microbiota composition, affecting 
both resident and pathogen bacteria [24, 31]. Indeed, it has 
been clearly demonstrated that iodine may interfere with 
the electron chain transport, by inhibiting ATP production 
in aerobic bacteria; its ability to disrupt microorganism cell 
wall structures has also been described [99, 100]. The effect 
of iodine supplementation has been analyzed in some animal 
models indicating that the overall effect of iodine on micro-
biota modulation would depend on the individual condition 
of host microbial composition [101, 102].

4.4.2 � Selenium

Selenium concentration in the thyroid is higher than in any 
other organ [103]. It is an essential constituent of a group of 
proteins known as selenoproteins that are involved in sev-
eral processes, the more important being the antioxidant and 
anti-inflammatory actions as well as the metabolic activity 

Fig. 3   Main evidence of the bidirectional relationship between micronutrients homeostasis and gut microbiota composition obtained in murine 
models ( ), in chickens ( ) and in humans ( )
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on thyroid hormones [103]. In nature, selenium exists in 
inorganic forms, selenate and selenite, and in organic ones, 
as a sulfur amino acid analog, selenomethionine and sele-
nocysteine [30]. The absorption of these compounds occurs 
in duodenum, cecum and colon, being the absorption of 
organic forms quicker than the inorganic forms’ one.

Selenium and gut microbiota composition interact each 
other. Indeed about 25% of all bacteria possesses genes 
encoding selenoproteins: Escherichia coli, for example, 
possesses three selenoproteins in its structure [104]. Some 
species of Lactobacillus, are able to convert intracellular 
selenite into the organic forms, facilitating selenium absorp-
tion in human body [30]. A study on germ-free as compared 
to normally reared mice suggested a partial sequestration of 
selenium by intestinal microbiota [105]. This kind of compe-
tition with the host for selenium uptake is mostly evident in 
condition of limited selenium availability [104]. Moreover, 
a different intake of selenium is able to modulate the com-
position of gut microbial environment: compared to mice 
fed with a selenium-deficient diet, animals with supranutri-
tional supplementation showed a lower relative abundance 
of Dorea and an increased abundance of Turicibacter, that 
exerts antinflammatory activity in the gut, and Akkermansia, 
that is known for its protective effect in intestinal barrier 
integrity [106]. To note, Akkermansia showed a positive cor-
relation with reduced orbital pathology in a murine model 
of GO [76]. A double-blind randomized clinical trial carried 
out in 2011 showed that selenite supplementation improves 
the ocular outcome in patients with mild GO [107]. The 
recommendation of a 6-month selenium supplementation to 
patients with mild and active GO of recent onset is present 
in the 2021 EUGOGO guidelines [108]. Indeed, selenium 
exerts a beneficial activity on immune system modulation, 
also promoting Tregs cytokines secretion [41]. Frequently, a 
selenium deficit is described in Hashimoto’s thyroiditis and 
the administration of selenium seems to be able to reduce 
thyroid autoantibodies levels [30]. In patients affected by 
Hashimoto’s thyroiditis not replaced with levothyroxine, it 
was observed an increase in some Lactobacillus species, 
that are positively associated with selenium levels [30, 40].

4.4.3 � Iron

Iron plays a key role in thyroid function because of TPO 
enzyme contains iron in the active center and is also involved 
in the storage and secretion of thyroid hormones [22]. Iron 
deficiency has a deep impact on thyroid metabolism because 
when anemia occurs it may lower oxygen transport, inducing 
a condition resembling the thyroid impairment of hypoxia 
[18, 22]. In particular, animal models of iron deficiency 
show a thyroid functions impairment [22]. The uptake of all 
forms of iron (inorganic, heme, and ferritin) occurs mainly 
in the duodenum and upper jejunum [18]. Iron is absorbed  

in the reduced form of Fe (II) and the efficiency of colonic 
iron absorption is only about 15% as compared the one 
occurring in the duodenum [109, 110]. However, this per-
centage may be modulated by the pH variation in the colon 
that may be caused by SCFAs production [111]. Moreover, it 
has been demonstrated that Lactobacillus fermentum shows 
ferric-reducing activity, enabling Fe(III) to Fe(II) reduction, 
thus facilitating iron absorption [31, 109]. Indeed, bacteria 
are able to modulate iron bioavailability owed to several 
high-affinity proteins facilitating its uptake. Therefore, as 
observed for selenium, gut microbiota and the host compete 
for iron absorption [18, 31]. Animal studies observed that 
an iron poor diet interferes with bacterial growth, while a 
rich one reduces the biodiversity of gut microbiota [18]. In 
humans, iron supplementation increases Enterobacteriaceae 
and Bacteroidetes while decreases Lactobacillaceae and Bifi-
dobacteria. To note, these latter, require no iron to grow [1, 
18]. The competition for unabsorbed iron also modulates 
the microbiota composition with detrimental effects for 
commensals. A heme rich gut environment provides nutri-
ents for the proliferation of bacterial species that are able to 
metabolize this compound. Notably, an excessive intake of 
iron increases pathogenic intestinal bacteria (Salmonella, 
Shigella, pathogenic E. coli) which require iron for their 
colonization and virulence [22, 109]. Likewise, in humans 
exposed to iron excess diet, the modification of SCFAs pro-
duction which may be observed.

4.4.4 � Zinc

The role of zinc in thyroid pathophysiology is due to its 
involvement in both deiodinase and superoxide dismutase 
activities. Furthermore, it is a component in thyroid hor-
mone binding transcription factor [22, 112]. Indeed, zinc 
is involved in the synthesis of the chief components of the 
whole thyroid machinery [thyrotropin-releasing hormone 
(TRH), TSH and of thyroid hormones]. Beyond that, it 
may influence the triiodothyronine binding with its nuclear 
receptor [22, 46]. In humans, it has been observed a recipro-
cal relationship between thyroid disorder and zinc metabo-
lism since hypothyroid patients often present reduced levels 
of zinc as well as zinc deficiency correlates with low level 
of free thyroid hormones [46].

Some animal studies, conducted on mice and chicken, 
described a correlation between gut microbiota composi-
tion and zinc. Human evidence supported the effect of zinc 
supplementation in inhibiting the growth of pathogens (i.e., 
diarrhea pathogenic E. coli-related), promoting the growth 
of beneficial bacteria such as Lactobacillus [18, 113]. Fur-
thermore, in human affected by thyroid autoimmune dis-
eases, the relative abundance of Lactobacillus and Bifido-
bacterium, positively correlate with zinc levels [40].
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4.5 � Nutritional management of thyroid disorders

It has been clearly demonstrated that dietary habit is one 
of the major determinants of gut microbiota composition 
[114]. In some of the selected reviews [15, 19, 34, 39, 
43] the possible interplay between diet, GM and thyroid 
autoimmunity are reported. Some studies detected significant 
differences between the dietary habits in patients with 
Hashimoto’s thyroiditis compared to healthy subjects. One 
of them [66] tried to correlate HT, diet and gut microbial 
composition. However, despite the observed difference in 
microbiota composition, it was difficult to discriminate 
the contribution of diet and/or of disease to the microbial 
signature of patients. A beneficial effect of gluten free diet 
has been proposed in patients with Hashimoto’s thyroiditis 
[115]: the rationale of this proposal came from the partially 
shared genetic background of these two autoimmune disorders 
and the frequent co-presence in the same subject. However, 
the combined results of the trials published on this topic 
does not justify the use of this elimination diet in patients 
with Hashimoto’s thyroiditis [116]. Furthermore, this diet, 
frequently characterized by low complex carbohydrate and 
fiber as well as a high saturated fatty acids and sugar intakes, 
is often accompanied by deficiencies in iron, calcium, 
magnesium, vitamin D, E and some of group B [117]. 
Due to the multiple deficit in micronutrients and vitamins 
sometimes detected in patients with Hashimoto’s thyroiditis, 
its inflammatory nature and the dysbiosis described in 
this disorder, Inhatowitz et al. [19] suggested a nutritional 
approach. This diet is based on the following principles: to 
consume an adequate amount of proteins; to increase the 
intake of polyunsaturated fatty acids (particularly omega -3) 
while lowering the one of saturated fatty acids, due to their 
potential conducive to gut leakiness; to choose products with 
lower degree of processing; to consume an adequate amount 
of fibers that may properly nourish gut microbiota; to measure, 
and in case of deficiency, to supplement micronutrients and 
vitamins. Furthermore, Inhatowitz et al. [19] emphasized the 
possible coexistence, in patients with thyroid autoimmunity, 
of concomitant gastrointestinal autoimmune comorbidities: 
these diseases, such as celiac disease, gastric atrophy or 
inflammatory bowel disorders, may exacerbate micronutrients 
and vitamins deficiency [118].

As far as concern with Graves’ disease patients, a paper 
described a lower risk of thyroid hyperfunction in people 
following lacto-ovo and pesco-vegetarian diets compared 
to omnivores [119]. Noteworthy, several papers examined 
the beneficial effect of Mediterranean diet in several patho-
logical conditions (type 2 diabetes mellitus, cardiovascular 
disorders and some type of cancer). From a gut microbial 
point of view, it is characterized by higher abundance of 
Bacteriodetes and Prevotella and by a lower concentration of 
Firmicutes. Studies on GD’s microbiota composition often 

described an increased abundance of Prevotella, and it has 
been hypothesized that Mediterranean diet might not be a 
good choice for these patients [34]. However, most of the 
data about gut microbiota composition were obtained ana-
lyzing Asian populations, preventing to draw clear conclu-
sion on the effect of this diet in GD/GO patients [34]. This 
field remains fully open to novel information.

4.6 � Probiotics, prebiotics and synbiotics

The term probiotics has been introduced in the early 70’s 
to define live microorganisms that, given in the appropriate 
amount, exert beneficial effects on the host’s health [120]. 
In the last years, other compounds have been added to pro-
biotics as over-the-counter products such as “prebiotics”, 
that are “substrates selectively utilized by host microorgan-
isms conferring a health benefit” [121], and “synbiotics”, 
that are a mixture of pro- and prebiotics [122]. Probiotics 
are among the most consumed food supplements worldwide 
and may be produced as enrichment for food or as lyophi-
lized compounds, commercialized in granulated or in pills 
formulations [123]. Despite the general popularity of these 
products, the indications and the actual benefit of their use 
are not always clear and universally supported. Despite some 
animal studies described a thyroid function benefit derived 
from probiotic supplementation [124], only few studies 
examined the effect of their use in patients with thyroid dis-
orders. The recent systematic review with meta-analysis by 
Zawadzka et al. [49] included the RCTs [125–128] dealing 
with the effect of 8 weeks probiotic or symbiotic supplemen-
tation in hypothyroid patients treated with levothyroxine. 
All the studies reported lower TSH values in supplemented 
patients than in control ones, without reaching statistical 
significance. Patients supplemented with synbiontic experi-
enced a lower severity of constipation while the other symp-
toms were similar in supplemented and un-supplemented 
patients. To note, in the study by Spaggiari et al. [125] a 
lower need for LT4 dose adjustments has been described in 
supplemented patients and, in one by Talebi et al. [128], a 
slightly reduced LT4 requirement in the synbiotic-treated 
patients has been detected. However, these small variations 
and the low number of patients, prevented the authors to 
give a clear result about this topic. Furthermore, these stud-
ies lack characterization, before and after supplementation, 
of patients’ microbiota. The overall results of these RCT 
indicated that routine administration of probiotics and/or 
prebiotics should not be recommended to patients with pri-
mary hypothyroidism.

Three further studies analyzed the effect of probiotic 
and prebiotic supplementation in Graves’ disease patients 
treated with methimazole. In particular, the coadministra-
tion of methimazole and Bifidobacterium longum led to an 
improvement of thyroid hormones levels and a drop in TRAb 
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levels to the normal ones in 9 patients; this last effect was 
not observed in the 8 patients treated with MMI alone [129]. 
A further study [130], examined the effect of the co-treat-
ment with methimazole and berberine, a natural alkaloid, 
suggesting a role for it in modulating gut microbiota in 10 
patients with GD. A randomized trial on the use of LAB4 
probiotic (a mixture of two Lactobacillus acidophilus strains 
Plus Bifidobacterium bifidum and Bifidobacterium anima-
lis) demonstrated the ability of probiotic mixture to modify 
microbiota composition in GD patients. It was shown a sig-
nificant reduction of Firmicutes abundance and a transient 
decrease of IgA and IgG serum concentration without a clear 
effect on TRAb levels as well as on the relapse rate of the 
disease. In an animal model of GD, the administration of 
LAB4 promoted the induction of GD/GO phenotypes, in 
spite of increased orbital concentration of Treg lymphocytes 
[76]. These result, also considering the increased relative 
abundance of Lactobacillus that characterized patients with 
both GD and GO as well as the demonstration that specific 
probiotic strains are able, in experimental settings, to exac-
erbate different autoimmune disorders [12], seem to sug-
gest that, in supplementing these patients, probiotic formula 
should not contain Lactobacillus strains [34].

A RCT published in 2022 [131] investigated the role of a 
mixture of probiotic species in alleviating symptoms related 
to thyroid hormone withdrawal in thyroidectomized patients 
waiting for the administration of radioactive iodine treat-
ment. In the 25 patients supplemented with probiotics, the 
lack of energy, constipation and dry mouth incidence as well 
as serum LPS and lipid values were lower as compared to 
the 25 un-supplemented patients.

4.7 � Gut microbiota transplantation

Only five papers cited in the 38 reviews included in this 
systematic review examined the effects of gut microbiota 
transplantation. In particular, animal models received in two 
experiments a transplantation from animal models’ stool, 
while in three of them, the animals were transplanted with 
human fecal content. In Fig. 4 are depicted the designs and 
the main results of the five studies on this topic. The first 
study on this topic was published in 1988 [62] and evaluated 
the role of intestinal flora in determining the susceptibility 
to autoimmune thyroiditis in female PVG/c strain rats. The 
authors noticed that rats belonging to the same species, that 
had been reared under specific pathogen-free (SPF) condi-
tions, were significantly less susceptible to the induction 
of experimental autoimmune thyroiditis (by thymectomy 
and irradiation) than conventionally raised rats. The same 
authors treated a group of female PVG/c SPF rats with 
kanamycin and then thymectomized them. Afterward, they 
transplanted a fraction of them with the homogenized fecal 
content of a Wistar conventionally reared rat. Then, both the 

groups (transplanted and not) were irradiated with 4 doses of 
25 Gray whole-body irradiation. The conventionalized group 
showed a higher incidence of experimental autoimmune 
thyroiditis compared to SPF rats (Fig. 4a). Another study 
examined the effect of cecal microbial transplantation in 
Mongolian gerbils [132]. In this experiment gerbils, that had 
become hyperthyroid due to previous levothyroxine treat-
ment, were transplanted with the cecal microbiota from con-
trol animals by intragastric gavage. This procedure attenu-
ated hyperthyroid thermogenesis, with a quicker recovery of 
body temperature and resting metabolic rate, increased type 
2 deiodinase expression in the liver, and higher decline of 
both T3 and T4 levels compared to control animals, that had 
been treated only with intragastric saline solution (Fig. 4b).

The effect of fecal microbial transplantation from humans 
with GD to SPF female BALB/c mice has been analyzed 
[133]. Following treatment with multiple antibiotics, the 
authors transplanted homogenized fecal flora from patients 
with GD and from healthy subjects to the murine samples, 
confirming through PCoA analysis that the transplant was 
successful. Then they transfected a part of the animal sample 
with the adenovirus containing TSHR amino acid residues 
1–289; the rest of the sample was transfected with the blank 
adenovirus vector, which exerted no significant effect on thy-
roid function and immuno-inflammation in the mice (Fig. 4c). 
The group of mice transfected with the adenovirus contain-
ing TSHR amino acid residues 1–289 showed higher total 
thyroxine, TRAb and interleukin-17A levels and lower levels 
of IL-10. However, some differences appeared depending on 
the source of the microbiota transplantation they received: in 
the mice group with transplantation from GD patients, the 
incidence of Graves’ disease was 73% compared to the one of 
mice transplanted with fecal content of healthy subjects that 
was 26%. The functional and immuno-inflammation mark-
ers were also significantly different in the two groups. The 
authors concluded that a dysbiotic state alone may not be suf-
ficient to trigger Graves’ disease, but it may be a key factor 
together with other pathogenic events in determining the onset 
and the course of this disorder (Fig. 4c).

A further paper examined the effect of transplantation from 
human donors bearing Graves’ sight-threatening ophthal-
mopathy to an animal model recipient constituted by female 
BALB/c mice [76]. The animals were immunized with the 
human thyrotropin receptor (hTSHR)-A subunit (hTSHR289). 
The human fecal material transfer caused a variation in mice’s 
microbiota composition that initially was similar to the donors’ 
one, an increased severity of induced GD and an augmented 
orbital brown adipose tissue volume (Fig. 4d).

The last paper, on the contrary, analyzed the effect of 
transplanted human fecal microbiota from patients with 
non-autoimmune primary hypothyroidism to pathogen-
free BALB/c male mice [67]. Following multiple antibi-
otic treatments, mice transplanted showed decreased TT4 
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Fig. 4   Designs and results of the experiments on Fecal Microbial Transplantation in murine models of thyroid disorders available in the litera-
ture: a ref. [62], b ref. [132], c ref. [133], d ref. [76], e ref. [67]
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concentration, reduced expression of tight junction mol-
ecules (occludin and ZO-1) as well as higher circulating 
LPS levels. On the contrary, fecal SCFAs, such as butyrate 
and acetate, concentration was reduced (Fig. 4e).

5 � Conclusions

The systematic analysis of these reviews confirms the 
existence of the gut-thyroid axis, due to several evidence 
of mutual interference of these two systems. However, the 
identification of a causal link between the variations of 
the intestinal microbiota composition and the pathogen-
esis of the most common thyroid diseases is still far from 
being demonstrated. Until now, in fact, the studies have 
been conducted above all in Asia and in a small number of 
patients and not always taking into account the numerous 
environmental and personal elements (pollution, ethnic-
ity, dietary habits, lifestyle, drug intake) that exert a key 
role in shaping gastrointestinal microenvironment. Fur-
ther large-scale studies, involving different ethnic groups 
and areas of the world, are necessary in order to identify 
whether specific microbial signatures of thyroid disorders 
do exist. This analysis will then have to be integrated by 
metagenomic studies that can identify altered metabolic 
pathways in patients with different thyroid diseases. The 
identification of specific microbial and metabolomic pro-
files must be a prerequisite for the rationale and targeted 
use of the microbiota modulating agents (diet, probiotics 
and microbiota transplantation) for preventive and thera-
peutic purposes of the most common thyroid disorders.
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