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HFD  high fat diet
ATP  adenosine triphosphate
TNFα	 	tumor	necrosis	factorα
COX	 	cyclooxygenase
NOX	 	nicotinamide	adenine	dinucleotide	phosphate	

oxidase
NOS	 	nitric	oxide	synthase
PTMs	 	post-translational	modifications;
AMP	 	adenosine	monophosphate
AMPK	 	AMP-activated	protein	kinase
FoxO	 	forkhead	box	transcription	factor
TRX	 	thioredoxin
TRXS	 	oxidized	thioredoxin
TRXH	 	reduced	thioredoxin
GSH	 	reduced	glutathione
GSSG	 	oxidized	glutathione
SODs	 	superoxide	dismutases
CAT	 	catalase
GPX	 	glutathione	peroxidases
PRDXs	 	peroxiredoxins
NADPH	 	nicotinamide	adenine	dinucleotide	phosphate
IDH	 	isocitrate	dehydrogenase
G6PDH	 	glucose-6-phosphate	dehydrogenase
6PGDH	 	6-phosphogluconate	dehydrogenase

Abbreviations
MetS	 	metabolic	syndrome
IR	 	insulin	resistance
INSR	 	insulin	receptor
IRS	 	insulin	receptor	substrate
MUO	 	metabolically	unhealthy	obesity
MHO	 	metabolically	healthy	obesity
T2DM	 	type	2	diabetes	mellitus
NAFLD	 	non-alcoholic	fatty	liver	disease
OS	 	oxidative	stress
ROS	 	reactive	oxygen	species
mRNA	 	messenger	RNA
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Abstract
The	incidence	of	childhood	obesity	and	metabolic	syndrome	has	grown	notably	in	the	last	years,	becoming	major	public	
health	 burdens	 in	 developed	 countries.	Nowadays,	 oxidative	 stress	 is	well-recognized	 to	 be	 closely	 associated	with	 the	
onset	 and	 progression	 of	 several	 obesity-related	 complications	within	 the	 framework	 of	 a	 complex	 crosstalk	 involving	
other	 intertwined	pathogenic	 events,	 such	 as	 inflammation,	 insulin	 disturbances,	 and	 dyslipidemia.	Thus,	 understanding	
the	molecular	 basis	 behind	 these	 oxidative	 dysregulations	 could	 provide	 new	 approaches	 for	 the	 diagnosis,	 prevention,	
and	 treatment	of	childhood	obesity	and	associated	disorders.	 In	 this	 respect,	 the	 transcriptomic	characterization	of	miR-
NAs	bares	great	potential	because	of	their	 involvement	in	post-transcriptional	modulation	of	genetic	expression.	Herein,	
we	provide	a	comprehensive	literature	revision	gathering	state-of-the-art	research	into	the	association	between	childhood	
obesity,	 metabolic	 syndrome,	 and	 miRNAs.	We	 put	 special	 emphasis	 on	 the	 potential	 role	 of	 miRNAs	 in	 modulating	
obesity-related	pathogenic	events,	with	particular	focus	on	oxidative	stress.
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PPP	 	pentose	phosphate	pathway
GSHR	 	glutathione	reductase
TRXR	 	thioredoxin	reductase
SIRT	 	sirtuin
NF-𝜅B	 	nuclear	factor	𝜅B
Nrf	 	nuclear	factor	E2-related	factors
Keap1	 	Kelch-like	ECH-associated	protein	1
RAGE	 	receptors	for	advanced	glycation	end	products
TLRs	 	toll-like	receptors
HO1	 	heme-oxygenase	1
PPARs	 	peroxisome	proliferator	activated	receptors
RXR	 	retinoid	X	receptor
PPRE	 	PPAR-responsive	regulatory	elements
OGTT	 	oral	glucose	tolerance	test
MDA	 	malondialdehyde
OGT	 	O-linked	N-acetylglucosamine	transferase
AGEs	 	advanced	glycation	end-products
PGC-1α	 	proliferator-activated	receptor	gamma	

coactivator-1
mitomiRs	 	mitochondria-located	miRNAs
ER	 	endoplasmic	reticulum
LDL	 	low-density	lipoprotein
mTOR	 	mammalian	target	of	rapamycin
NCOA	 	nuclear	receptor	coactivator;
DGCR8	 	DiGeorge	Critical	Region	8
BACH1	 	BTB	domain	and	CNC	homolog	1
SMADs	 	small-mothers-against-decapentaplegic	

proteins
HAMP	 	hepcidin	antimicrobial	peptide
AKT	 	AKT	serine/threonine	kinase
ARE	 	antioxidant	response	element
eNOS	 	endothelial	nitric	oxide	synthase
ILR	 	interleukin	receptor
JAK	 	Janus	kinase;	PI3K,	phosphoinositide	

3-kinase
PDK	 	pyruvate	dehydrogenase	kinase
STAT	 	signal	transducer	and	activator	of	transcription
SLC7A11	 	solute	carrier	family	7	member	11
AP2	 	adaptor-related	protein	complex	2
AGO2	 	argonaute	2
BMP	 	bone	morphogenic	protein
BMPR	 	bone	morphogenic	protein	receptor
Cp	 	ceruloplasmin
CD163	 	cluster	of	differentiation	163
DMT1	 	divalent	metal	transporter	1
FPN	 	ferroportin;
Hp	 	haptoglobin
HCP1	 	heme	carrier	protein	1
HO1	 	heme	oxygenase	1
HFE	 	hemochromatosis	protein
Hb	 	hemoglobin
HJV	 	hemojuvelin

PCBP	 	poly(rC)-binding	protein
Tf  transferrin
TfR	 	transferrin	receptor

1 Introduction to childhood obesity and 
metabolic syndrome

Childhood	 obesity	 is	 nowadays	 a	 pandemic	 health	 issue,	
affecting	over	41	million	children	under	five	according	 to	
recent	estimations	from	the	World	Health	Organization	[1].	
Obesity	is	closely	related	to	various	cardiovascular	risk	fac-
tors,	such	as	hyperglycemia,	dyslipidemia,	and	high	blood	
pressure,	 which	 altogether	 constitute	 the	 so-called	 meta-
bolic	 syndrome	 (MetS)	 and	 represent	 the	main	 drivers	 of	
obesity-related	deleterious	repercussions	over	health.	Nota-
bly,	around	one	 third	of	children	with	obesity	 suffer	 from	
MetS	 components,	 with	 insulin	 resistance	 (IR)	 being	 the	
most	prevalent	[2].	Nevertheless,	unlike	the	above-defined	
“metabolically	unhealthy	obesity”	(MUO),	part	of	the	popu-
lation	with	 obesity	 does	 not	 present	 comorbidities,	which	
is	 known	 as	 “metabolically	 healthy	 obesity”	 (MHO)	 [3].	
In	 this	 respect,	 it	 is	 also	 noteworthy	 that	 obesity-related	
metabolic	 complications	may	 in	 turn	 trigger	 several	 other	
pathologies,	such	as	type	2	diabetes	mellitus	(T2DM),	non-
alcoholic	fatty	liver	disease	(NAFLD),	cardiovascular	dis-
eases,	and	even	cancer	[2].

Although	obesity	lacks	a	concrete	etiology,	it	is	known	to	
be	the	consequence	of	a	complex	cluster	of	interrelated	risk	
factors,	including	the	microbiome,	environmental,	genetic,	
perinatal,	 nutritional,	 psychosocial,	 and	 metabolic	 factors	
[4,	5].	In	particular,	inflammation	and	oxidative	stress	(OS)	
have	been	described	 to	be	 tightly	 interrelated	 in	a	vicious	
cycle	 that	 participates	 in	 many	 of	 the	 pathological	 pro-
cesses	behind	obesity	and	related	complications	[6].	On	the	
one	 hand,	 fat	 accumulation	 triggers	 chronic	 inflammation	
through	 several	 molecular	 mechanisms,	 namely	 immune	
response	activation,	cytokine	secretion,	oxygen	flow	shrink-
age,	cellular	necrosis,	and	disturbed	lipid	homeostasis	[7].	
In	this	vein,	increased	cytokine	secretion	by	adipocytes	and	
subsequent	 subclinical	 inflammation	 is	known	 to	promote	
MetS	in	subjects	with	obesity	[8].	Cytokines	also	have	a	role	
in	the	synthesis	of	acute	phase	proteins	[9]	and	the	invasion	
of	innate	immune	cells	into	adipose	tissue.	Neutrophil	infil-
tration	has	been	proposed	as	the	initial	step	in	the	recruit-
ment	of	macrophages	and	other	immune	cells	(such	as	T	or	
B	lymphocytes)	within	adipose	tissue.	These	macrophages	
in	adipose	tissue	are	believed	to	originate	from	bone	mar-
row	monocytes	[10,	11].	While	obese	fat	has	large	quantities	
of	the	pro-inflammatory	M1	type	of	macrophages,	lean	fat	
is	concentrated	in	the	M2	anti-inflammatory	type	of	macro-
phages	[12].	Eosinophil	levels,	which	are	necessary	for	the	
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maintenance	of	M2	macrophages,	have	been	reported	to	be	
downregulated	 in	 obesity	 [13,	 14].	Concurring	with	 these	
data,	 hypereosinophilic	mice	 have	 been	 found	 to	 be	 pro-
tected	 from	IR,	whereas	mice	 lacking	 them	develop	more	
body	fat,	impaired	glucose	tolerance,	and	decreased	insulin	
sensitivity	 [13,	14].	Finally,	natural	killer	T	cells	can	also	
play	relevant	roles	in	adipose	tissue	inflammation,	thereby	
influencing	the	susceptibility	to	develop	obesity	and	IR	in	
a	process	in	which	natural	killer	T	cells	are	influenced	and	
influence	 the	 microbiome	 [15].	Within	 this	 proinflamma-
tory	environment,	activated	immune	cells	liberate	reactive	
oxygen	 species	 (ROS)	and,	when	 sustained	 for	prolonged	
time	periods,	provoke	exacerbated	OS.	After	binding	their	
receptors,	cytokines	can	both	initiate	ROS	production	and	
promote	the	induction	of	other	inflammatory	signals.	Thus,	
proinflammatory	cytokines	such	as	interferon-𝛾	or	IL6,	and	
proinflammatory	 components	 such	 as	 lipopolysaccharide,	
have	been	found	to	increase	nicotinamide	adenine	dinucleo-
tide	phosphate	oxidase	(NOX)-dependent	ROS	production	
[6,	16].	At	the	same	time,	the	production	of	ROS	may	prime	
signaling	cascades	 that	bidirectionally	promote	proinflam-
matory	 gene	 expression.	 In	 this	 venue,	 reactive	 species	
can	lead	to	inflammation	through	the	activation	of	protein	
kinase	C,	c-Jun-N-terminal	kinase,	nuclear	factor	𝜅B	(NF-𝜅
B),	mitogen-activated	protein	kinases,	or	NOD-like	receptor	
protein	3	inflammasome,	among	others.	Along	the	process	
of	repairing	oxidatively	damaged	DNA,	signaling	cascades	
culminating	 in	NF-𝜅B	 activation	 are	 triggered,	 leading	 to	
proinflammatory	gene	 expression.	Similarly,	OS	has	 been	
linked	to	monocyte	adhesion	to	vascular	endothelial	cells,	
which	 also	 results	 in	NF-𝜅B	activation.	 In	human	macro-
phages,	a	marker	of	lipid	oxidation,	8-isoprostane,	is	known	
to	 activate	 mitogen-activated	 protein	 kinases	 and	 lead	 to	
increased	expression	of	 inflammatory	chemokines	such	as	
IL-8.	 Finally,	 OS	 mediates	 NOD-like	 receptor	 protein	 3	
inflammasome	 activation	 by	means	 of	 the	 dissociation	 of	
the	thioredoxin-interacting	protein/thioredoxin	(TRX)	com-
plex,	 thus	 allowing	 the	 interaction	 between	 thioredoxin-
interacting	 protein	 and	 NOD-like	 receptor	 protein	 3,	 and	
subsequently	 leading	 to	 its	 activation	 [6,	 16].	 Moreover,	
lipids,	 proteins,	 and	 nucleic	 acids	 can	 be	modified	 under	
pro-oxidative	 environments,	 which	 may	 subsequently	 act	
as	danger-associated	molecular	patterns	(DAMPs)	and	pro-
voke	innate	immune	responses	[17].	Accordingly,	childhood	
obesity	 and	MetS	 have	 repeatedly	 been	 associated	with	 a	
sharpened	 pro-inflammatory	 milieu	 (i.e.,	 increased	 cyto-
kines,	disturbed	white	blood	cell	counts)	[18]	and	impaired	
redox	metabolism,	 this	 latter	 reflected	 in	 reduced	 content	
of	endogenous	and	exogenous	antioxidants	[19] and raised 
levels	of	oxidative	damage	byproducts	[20].	In	this	respect,	
we	have	recently	demonstrated	that	depletions	in	erythroid	
antioxidant	 systems	are	primary	hallmarks	 in	 the	onset	of	

childhood	obesity,	with	MUO	children	presenting	a	sharp-
ened	pro-oxidative	erythroid	environment	when	compared	
to	MHO	subjects,	as	reflected	in	higher	levels	of	OS	byprod-
ucts	and	impaired	antioxidant	capacity	[20,	21].

In	this	context,	studies	involving	pediatric	patients	are	of	
major	interest	to	get	new	insights	into	the	molecular	basis	
behind	the	onset	of	obesity	at	early	ages	and,	thus,	to	facili-
tate	the	development	of	efficient	therapies	to	prevent	further	
complications.	To	 this	 end,	 it	 is	 critical	 to	 understand	 the	
contribution	 of	 genetic	 and	 epigenetic	 traits	 in	 childhood	
obesity	and	its	comorbidities.	In	this	review	article,	we	aim	
to	 gather	 state-of-the-art	 research	 into	 the	 role	 of	 micro-
ribonucleic	 acids	 (miRNAs)	 in	 obesity-related	 pathogenic	
events,	with	particular	focus	on	OS.

2 An overview on the association between 
miRNAs and childhood obesity

miRNAs	are	short	(19–23	nucleotides),	single-stranded,	and	
non-coding	RNA	molecules	participating	in	post-transcrip-
tional	regulation	of	genetic	expression,	which	are	known	to	
modulate	up	to	60%	of	the	genes	encoded	within	the	human	
genome	 [22].	 In	particular,	 they	 act	 as	 regulators	 of	mes-
senger	 RNA	 (mRNA)	 degradation	 and	 as	 protein	 synthe-
sis	blockers	by	binding	 to	untranslated	regions	 (UTRs)	of	
target	mRNAs	 [23].	Nevertheless,	 recent	findings	 suggest	
that	 miRNAs	 might	 also	 up-regulate	 gene-transcription	
[24].	To	 date,	 ca.	 2500	mature	miRNAs	 are	 registered	 in	
the	miRbase	human	database	(Release	22.1,	October	2018,	
http://www.mirbase.org/)	 [25].	As	 each	miRNA	 is	 able	 to	
target	above	one	hundred	genes	and,	in	turn,	multiple	miR-
NAs	 participate	 in	 the	 expression	 of	 the	 same	 transcript,	
miRNA	dysregulations	may	provoke	profound	disturbances	
in	a	multitude	of	biological	networks	[25].	Although	miR-
NAs	 modulate	 genetic	 expression	 within	 cells,	 they	 can	
also	 be	 loaded	 into	 extracellular	 vesicles	 (e.g.,	 exosomes	
or	 microvesicles)	 and	 released	 to	 the	 circulation,	 thereby	
being	 protected	 against	 RNase	 degradation	 and	 allowing	
cell-to-cell	communication.	In	this	venue,	miRNAs	sorting	
into	extracellular	vesicles	seems	to	be	a	selective	process,	
although	 the	mechanism	 by	which	 the	 cells	 choose	miR-
NAs	to	be	loaded	and	secreted	remains	unclear	[26].	Inter-
estingly,	most	body	fluids	 (e.g.,	 blood,	breast	milk,	 urine,	
or	saliva)	contain	exosomes	or	microvesicles,	opening	the	
window	 to	 new	 transcriptomics	 strategies	 in	 biomedical	
research.	Thus,	the	study	of	miRNAs	has	gained	great	inter-
est	in	recent	years	to	characterize	complex	health	processes,	
including	obesity	and	its	related	syndromes	[27].

Many	authors	have	previously	delved	into	the	potential	
role	of	miRNAs	as	predictors	of	obesity	development	in	neo-
nates	[28,	29]	and	as	biomarkers	of	early	childhood	obesity	
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proinflammatory	 molecules	 and	 diminished	 inflammation	
resolution	capacity	compared	to	females	[50–52].

Numerous	 authors	 have	 also	 explored	 the	 plausible	
link	between	miRNAs	and	a	myriad	of	childhood	obesity-
related	 comorbidities,	 such	 as	MetS	 [53–55],	 T2DM	 [56,	
57],	NAFLD	[58],	chronic	kidney	disease	[59],	nephropa-
thy	[60],	endothelial	dysfunction	[61],	colitis	[62],	or	cancer	
[63,	64].	Interestingly,	miRNAs	have	also	shown	potential	
as	biomarkers	of	response	to	intervention	strategies	against	
obesity	[65–67].	In	this	respect,	Liao et al.	proved	exercise-
based	strategies	to	affect	some	obesity-related	miRNAs	in	
childhood	obesity	 [68].	Also,	 liraglutide	 is	 known	 to	pro-
mote	the	browning	of	white	adipose	tissue	by	downregulat-
ing	miR-27b	expression	[69].	Accordingly,	several	authors	
hypothesize	 that	 personalized	 therapeutic	 strategies	 based	
on	microRNAs	administration	or	 inhibition	bears	promise	
for	treating	obesity	and	metabolic	disorders	[70–73].

3 The involvement of miRNAs in central 
pathogenic events behind obesity: 
adipogenesis, insulin metabolism, and 
inflammatory processes

Childhood	 obesity	 is	 a	 multifactorial	 disorder	 in	 which	
a	 number	 of	 closely	 interrelated	 pathogenic	 events	 par-
ticipate,	namely	adipogenesis,	 insulin	metabolism,	 inflam-
mation,	 and	OS.	Thus,	 understanding	 the	molecular	 basis	
underlying	these	disturbances	is	a	topic	of	great	interest.

Since	obesity	can	primarily	be	regarded	as	an	abnormal	
or	excessive	fat	accumulation,	altered	adipogenesis	can	be	
considered	as	a	pivotal	player	in	childhood	obesity.	In	this	
vein,	although	most	of	the	molecular	pathways	involved	in	
adipogenesis	 are	 shared	 between	 subjects	 with	 and	 with-
out	obesity,	the	onset	and	progression	of	obesity	have	been	
related	to	specific	miRNA	perturbations	along	this	process.	
Thus,	patients	with	obesity	showed	a	stronger	downregula-
tion	of	miRNAs	involved	in	adipogenesis	when	compared	
to	 lean	 subjects	 [74].	As	 expected,	many	 of	 the	miRNAs	
that	are	differentially	expressed	in	visceral	adipose	tissue	of	
children	with	obesity	have	been	reported	to	be	enriched	in	
pathways	related	to	lipid	metabolism	[75].	Some	of	the	most	
affected	pathways	at	the	transcriptomics	level	by	these	obe-
sity-related	miRNAs	have	been	found	to	be	fatty	acid	oxi-
dation,	ketogenesis,	 lipogenesis,	and	lipid	uptake	[76–78],	
which	could	be	directly	 related	 to	 increased	adipogenesis,	
fat	mass	gain,	and	liver	steatosis	[79–81].	On	the	other	hand,	
obesity	 is	 also	 known	 to	 hamper	 some	miRNA-mediated	
protective	 mechanisms	 that	 could	 modulate	 adipogenesis	
[82–84],	adipose	 tissue	browning	[85,	86],	and	autophagy	
inhibition	[78].

[30,	31].	In	fact,	childhood	obesity	has	been	described	to	be	
accompanied	by	profound	deregulations	 in	 the	 circulating	
miRNA	profile	[32].	On	the	one	hand,	it	has	been	reported	
that	obese	mice	adipocytes	release	more	miRNA-containing	
exosomes	compared	to	lean	mice	adipocytes	[33].	Besides	
these	changes	in	absolute	miRNA	contents,	obesity	is	also	
recognized	to	be	the	pathology	with	the	highest	percentage	
of	genetic	variants	in	the	3’UTR	region	of	mRNAs,	which	
modulate	 their	 interaction	 with	 miRNAs	 [34,	 35].	 More-
over,	Mansego et al.	 proved	 that	 several	miRNAs	 coding	
regions	present	CpG	methylation	patterns	specific	to	child-
hood	obesity,	pinpointing	to	a	role	of	epigenetic	regulation	
in	 obesity	 development	 [36].	 Transcriptomics	 techniques	
have	also	been	widely	employed	to	unravel	the	association	
between	miRNAs	and	obesity-related	 risk	 factors,	 includ-
ing	 diet,	 gut	microbiota,	 perinatal	 conditions,	 and	 genetic	
background.

For	 instance,	 higher	Mediterranean	 diet	 adherence	 has	
been	related	 to	a	switch	 toward	healthier	circulating	miR-
NAs	 profile	 [37],	 whereas	 high-caloric	 diet	 consumption	
leads	 to	 increased	 levels	 of	 miRNAs	 involved	 in	 obesity	
development	and	progression	 [38].	Furthermore,	miRNAs	
are	 known	 to	 participate	 in	 appetite	 control	 in	 childhood	
obesity	by	regulating	hormones	such	as	leptin	[39]	or	neuro-
peptide	Y	[40].	In	this	vein,	growing	evidence	supports	that	
miRNAs,	diet,	and	gut	microbiota	may	bidirectionally	mod-
ulate	each	other.	Thus,	miRNA-10a-5p	has	been	proposed	to	
improve	high	fat	diet	(HFD)-triggered	glucose	intolerance	
and	 IR	 through	 the	modulation	of	 the	microbiome	and	 its	
metabolism	[41,	42].	External	stimuli	during	fetal	develop-
ment	also	have	great	impact	on	the	onset	of	obesity	[4].	Obe-
sity	induced	by	maternal	diet	negatively	impacts	offspring	
body	composition	in	a	process	that	is	accompanied	by	age-
dependent	alterations	in	miRNA-582	expression	[43].	Joshi 
et al.	 reported	 that	 in	 utero	 exposure	 to	maternal	 obesity	
provokes	sexually	dimorphic	perturbations	in	miRNA	pro-
files	[44].	Similarly,	both	paternal	HFD	and	exercise	have	
been	described	to	elicit	a	sex-specific	effect	on	T2DM	risk	
in	 offspring	 by	 altering	 sperm	 miRNA	 expression	 [45].	
Finally,	sex	is	also	known	to	influence	circulating	concen-
trations	of	some	miRNAs	in	adolescents	with	obesity	[46],	
which	 in	 turn	 show	 sexually	 dimorphic	 associations	with	
inflammatory	biomarkers	[47].	This	concurs	with	the	gen-
eral	observation	that	female	subjects	are	more	susceptible	to	
weight	gain,	although	men	are	prone	to	suffer	from	obesity-
related	comorbidities	[4].	This	could	be	mainly	allocated	to	
sex	differences	in	adipose	tissue	distribution,	as	young	men	
normally	have	higher	visceral	fat	depots,	whilst	pre-meno-
pausal	women	accumulate	subcutaneous	adipose	tissue	[48,	
49].	Indeed,	visceral	adipose	tissue	has	increased	levels	of	
pro-inflammatory	macrophages	than	subcutaneous	adipose	
tissue,	 so	male	adults	 and	children	have	 raised	content	of	
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resulting	 in	 higher	 expression	 of	 pro-inflammatory	mark-
ers	such	as	TNFα	and	IL6	[101].	Furthermore,	 the	above-
mentioned	raise	of	circulating	cytokines	may	also	mediate	
acute	phase	protein	production	[9]	and	infiltration	of	innate	
immune	 system	 cells	 into	 adipose	 tissue.	 In	 this	 context,	
miRNAs	 have	 been	 proposed	 as	main	 drivers	 of	 immune	
cell	differentiation,	and	immune	cell-derived	miRNAs	to	be	
involved	in	the	occurrence	of	obesity-related	complications.	
For	instance,	miR-150	is	known	to	suppress	obesity-related	
inflammation	 by	 modulating	 B-cell	 development,	 activa-
tion,	 and	 function	 in	 adipose	 tissue	 [102].	Also,	miRNAs	
can	 regulate	 macrophage	 infiltration	 rate	 and	 switching	
between	 pro-inflammatory	 and	 anti-inflammatory	 pheno-
types,	exerting	both	protective	and	harmful	effects	against	
obesity-related	 inflammation	 and	 IR	 [26,	33].	Changes	 in	
monocyte’s	miRNA	cargo	have	been	 related	 to	 inflamma-
tory	 action.	 Thus,	 obese	monocytes	 have	 lower	 levels	 of	
miR-146b-5p,	an	important	driver	of	globular	adiponectin’s	
anti-inflammatory	action	[103].	Recently,	Macartney-Coxso 
et al.	showed	gastric	bypass	to	lower	the	circulating	levels	
of	miR-223-3p,	 a	miRNA	 targeting	NOD	 like	 receptor	 3,	
thereby	 resulting	 in	 reduced	adipose	 concentration	of	 this	
proinflammatory	marker	[104].

4 Childhood obesity, oxidative stress, and 
miRNAs

4.1 The molecular basis of oxidative stress

OS	 is	 a	phenomenon	provoked	by	an	 imbalanced	genera-
tion	of	ROS	with	 respect	 to	 the	detoxification	capacity	of	
antioxidant	 defenses	 [6,	 16].	 On	 the	 one	 hand,	 reactive	
species	 may	 have	 an	 endogenous	 (e.g.,	 cyclooxygenase,	
COX;	Fenton	 reaction;	 glucose	 autooxidation;	NOX;	 per-
oxisomes;	 uncoupling	 of	 nitric	 oxide	 synthase,	 NOS)	 or	
exogenous	 (e.g.,	 bacteria,	 cigarette	 smoking,	medications,	
industrial	 chemicals,	 ozone,	 X-rays)	 origin	 [105].	 Under	
situations	of	ROS	overproduction,	 biomolecules	may	 suf-
fer	modifications	 that	 cause	 their	 degradation	 or	 inactiva-
tion.	In	particular,	post-translational	modifications	(PTMs)	
of	 proteins	 are	 relevant	OS-derived	 cellular	 damages	 that	
affect	protein	lifespan,	protein-protein	interactions,	protein	
solubility,	and	enzyme	function	[106].	Among	them,	protein	
glycosylation	 is	 one	 of	 the	most	 abundant	 PTMs	 regulat-
ing	 the	proteome	and	can	be	 expressed	 in	different	 forms	
(e.g.,	 O-glycosylation,	 N-glycosylation,	 or	 O-GlcNAcyla-
tion)	[107].	Moreover,	ROS	can	also	activate	autophagy	by	
modulating	the	PI3K-Akt-mTOR	axis,	AMP-activated	pro-
tein	kinase	(AMPK),	or	forkhead	box	transcription	factor	O	
(FoxO)	[108].

Obesity	and	its	common	comorbidities	are	also	charac-
terized	by	profound	disturbances	in	insulin	homeostasis	and	
related	biological	processes,	such	as	carbohydrate	and	lipid	
metabolisms.	Pancreatic	β-cells	are	responsible	for	sensing	
glucose	 levels	and	mediate	 insulin	secretion	 in	a	 two-step	
process.	First,	glucose	enters	the	β-cell,	where	it	is	metabo-
lized	 in	 the	 glycolytic	 pathway	 and	 the	 tricarboxylic	 acid	
cycle	to	produce	adenosine	triphosphate	(ATP).	The	increase	
in	cellular	ATP	levels	promotes	the	closure	of	ATP-sensitive	
potassium	 channels,	 provoking	 membrane	 depolarization	
and	 the	 opening	 of	 voltage-dependent	 calcium	 channels.	
The	raise	in	cellular	calcium	content	finally	triggers	insulin	
secretion.	For	the	second	phase,	actin	filaments	need	to	be	
reorganized	to	accomplish	the	recruitment	of	intracellularly	
stored	 granules	 [87–89].	 Once	 released,	 insulin	 binds	 to	
the	α	chain	of	its	membrane-located	receptor,	thus	causing	
structural	changes	in	the	β	chain	thanks	to	tyrosine	kinase	
mediated	auto-phosphorylation	of	 tyrosine	residues.	Then,	
phosphorylated	 receptors	 recruit	 intracellular	 components	
to	initiate	signaling	pathways.	Depending	on	the	tissue	and	
the	 intracellular	 substrate,	 insulin	 may	 promote	 glucose	
utilization	 and	 storage	 by	 activating	 glycolysis,	 glycogen	
synthesis,	and	adipogeneses;	by	inhibiting	gluconeogenesis,	
lipolysis,	and	glucagon	secretion;	or	by	increasing	glucose	
transport	[90].	Within	this	tangled	crosstalk	of	intertwined	
processes,	miRNAs	are	recognized	to	be	directly	involved	
in	 regulating	 insulin	 signaling	 and	 glucose	metabolism	 at	
different	levels,	thereby	being	capable	of	promoting	either	
insulin	sensitivity	[91]	or	IR	[92,	93]	in	subjects	with	obe-
sity.	In	particular,	numerous	studies	have	proven	the	ability	
of	miRNAs	to	alter	carbohydrate	metabolism	by	modulat-
ing:	(i)	insulin	transcription	and	secretion	[92],	(ii)	insulin	
signaling	(e.g.,	the	PI3K-AktmTOR	pathway	[91,	93],	insu-
lin	 receptor	 [94],	 insulin	 receptor	 substrates	 [26],	 insulin-
like	 growth	 factor	 1	 receptor	 [94]),	 (iii)	 glucose	 transport	
[26,	93],	 (iv)	gluconeogenesis	[95],	 (v)	glycogenesis	[96],	
(vi)	glycogenolysis	[94],	and	even	(vii)	OS-mediated	pan-
creatic	β-cell	dysfunction	and	apoptosis	[97].

To	conclude,	a	few	authors	have	also	described	obesity-
related	miRNA	dysregulations	to	be	tightly	correlated	with	a	
multitude	of	inflammation	biomarkers,	such	as	tumor	necro-
sis	factor	α	(TNFα),	interleukin	1	receptor	antagonist,	IL-8,	
IL-15,	procalcitonin,	adiponectin,	or	C-reactive	protein	[47,	
98,	99].	In	this	vein,	it	has	recently	been	demonstrated	that	
the	typical	inflammatory	status	present	in	childhood	obesity	
could	modulate	miRNA	contents	 in	 adipocytes.	Thus,	 the	
expression	of	miR-424	has	been	found	to	be	higher	in	adi-
pose	tissue	of	children	with	obesity,	whereas	TNFα	can	bind	
to	its	promoter	region	and,	consequently,	decrease	its	tran-
scription	[100].	Interestingly,	the	inoculation	of	gut	micro-
biome	 from	 children	with	 obesity	 to	mice	 resulted	 in	 the	
enrichment	of	colon	and	 liver	pro-inflammatory	miRNAs,	
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products	 (RAGE)	 and	 toll-like	 receptors	 (TLRs)	 activate	
NF-𝜅B,	which	may	exert	both	anti-	 and	pro-oxidant	 roles	
by	 targeting	manganese-SOD,	 ferritin	heavy	chain,	heme-
oxygenase	 1	 (HO1),	 GPx,	 or	 NOX	 [113–115].	 Finally,	
peroxisome	 proliferator	 activated	 receptors	 (PPARs)	 can	
heterodimerize	 with	 retinoid	 X	 receptors	 (RXR)	 to	 bind	
PPAR-responsive	regulatory	elements	(PPRE),	thereby	reg-
ulating	gene	expression	[116].	Peroxisomes	also	contain	dif-
ferent	ROS	generating	and	scavenging	enzymes,	and	their	
size	and	enzymatic	availability	is	influenced	by	PPARs	and	
inflammation	[117].

4.2 Background on the association between 
childhood obesity and oxidative stress

Childhood	obesity	and	MetS	are	well-known	to	be	charac-
terized	by	increased	circulating	and	cellular	levels	of	ROS	
and	OS	byproducts,	together	with	significant	perturbations	
in	 multiple	 antioxidant	 systems.	 We	 have	 recently	 dem-
onstrated	 that	 children	 with	 obesity	 and	 concomitant	 IR	
exhibit	 compromised	 erythroid	 antioxidant	 defenses	 after	
undergoing	an	oral	glucose	tolerance	test	(OGTT),	the	most	
used	technique	for	the	diagnosis	of	metabolic	impairments	
[118].	When	 facing	 this	 stressful	 situation	 caused	by	glu-
cose	overload,	MUO	children	display	an	exacerbated	oxida-
tive	milieu,	as	mirrored	by	an	impaired	redox	status	(e.g.,	
altered	GSH/GSSG,	NADP/NADPH)	and	increased	levels	
of	erythroid	malondialdehyde	(MDA)	and	carbonyl	groups	
[20].	 Similarly,	 chronic	 overnutrition	 leads	 to	 persistently	
increased	 blood	 glucose,	which	 is	 toxic	 for	 our	 organism	
by	generating	free	radicals	(i.e.,	glucotoxicity)	[119].	Under	
this	scenario,	proteins	are	expected	to	suffer	from	glycosyl-
ation,	although	we	recently	found	children	with	obesity	and	
IR	to	have	decreased	rates	of	catalase	O-GlcNAcylation,	a	
reaction	that	is	mediated	by	O-linked	N-acetylglucosamine	
transferase	 (OGT)	 [21].	 In	 this	 line,	high	monosaccharide	
concentrations	 also	 provoke	 glycation	 of	 other	 biomol-
ecules	 and,	 consequently,	 result	 in	 the	 overproduction	 of	
pro-oxidative	mediators,	especially	advanced	glycation	end-
products	(AGEs)	[120,	121].	In	turn,	AGEs	interaction	with	
its	 receptor	 triggers	 the	 activation	of	NOX,	which	 is	 also	
activated	 under	 proinflammatory	 conditions	 in	 a	 process	
that	is	mediated	by	protein	kinase	C	[122–124].	Moreover,	
AGEs	may	also	mediate	NF-kB	up-regulation	 [113,	 114].	
Conversely,	 SIRTs,	 Nrf2,	 PPAR-γ,	 and	 activated	 AMPK	
expressions	have	been	found	 to	be	diminished	 in	children	
with	obesity	and	metabolic	impairments	[125–127].	In	this	
respect,	Gastaldi et al.	described	that	weight	loss	results	in	
upregulated	expression	of	peroxisome	proliferator-activated	
receptor	gamma	coactivator-1	(PGC-1α),	thus	contributing	
to	the	improvement	of	insulin	sensitivity	[128].

To	face	such	stressful	situations,	 the	organism	disposes	
of	a	well-organized	barrier	of	antioxidant	defenses,	which	
comprises	a	number	of	stable	molecules	capable	of	neutral-
izing	 free	 radicals	 to	 minimize	 toxic	 effects	 and	 cellular	
damage.	This	antioxidant	system	is	composed	by	endoge-
nous	(e.g.,	TRX;	glutathione,	GSH;	α-lipoic	acid,	melatonin,	
coenzyme	Q10,	albumin,	uric	acid,	ferritin)	and	exogenous	
(e.g.,	ascorbic	acid,	α-tocopherol,	carotenoids,	polyphenols,	
trace	elements)	compounds,	as	well	as	by	various	antioxi-
dant	 enzymes	 [109].	Antioxidant	 enzymes	 can	 in	 turn	 be	
divided	 into	 primary	 enzymes,	 when	 they	 act	 directly	 in	
scavenging	ROS,	or	secondary	enzymes,	when	their	role	is	
to	support	the	action	of	endogenous	non-enzymatic	antioxi-
dants.	The	most	important	primary	antioxidant	enzymes	are	
superoxide	dismutases	(SODs),	catalase	(CAT),	glutathione	
peroxidases	(GPX)	and	peroxiredoxins	(PRDXs).	SODs	are	
metalloenzymes	responsible	for	the	detoxification	of	super-
oxide	radicals	into	H2O2.	Then,	the	hydrogen	peroxide	pro-
duced	by	SODs	must	be	detoxified	by	peroxidases.	To	this	
end,	PRDXs	encompass	different	isoforms	with	one	or	two	
redox-active	cysteine	residues.	The	reactivation	of	PRDXs	
is	 accomplished	by	using	TRX	as	 reducing	agent.	On	 the	
other	hand,	GPXs	are	selenium-dependent	oxidoreductases	
that	use	GSH	as	the	electron	donor.	Finally,	CAT	is	a	heme	
group-containing	 enzyme	 composed	 by	 four	 monomers.	
Although	CAT	does	not	 require	GSH	or	TRX	as	 electron	
donors,	 its	 activity	 is	 dependent	 on	 nicotinamide	 adenine	
dinucleotide	 phosphate	 (NADPH)	 as	 a	 reducing	 power	
source.	 Therefore,	 reducing	 power	 generation	 by	 second-
ary	antioxidant	enzymes	 is	 required	for	a	correct	 function	
of	antioxidant	enzymes.	Together	with	 isocitrate	dehydro-
genase	 (IDH),	 which	 mediates	 NADPH	 recycling	 in	 the	
mitochondria,	 glucose-6-phosphate	 (G6PDH)	 and	 6-phos-
phogluconate	 (6PGDH)	 dehydrogenases	 are	 the	 main	
sources	 of	 cellular	 reducing	 power	 through	 the	 pentose	
phosphate	pathway	(PPP).	This	NADPH	can	in	turn	be	used	
for	GSH	 and	TRX	 reduction	 by	 the	 action	 of	 reductases,	
such	 as	 glutathione	 reductase	 (GSHR)	 and	 thioredoxin	
reductase	(TRXR)	[109,	110].

In	this	context,	several	signaling	pathways	may	partici-
pate	in	antioxidant	defense	modulation.	Sirtuins	(SIRT)	are	
involved	 in	 sensing	 and	 regulating	 redox	 status	 in	 cells,	
exerting	 a	 protective	 effect	 against	 oxidative	 stressors.	
SIRTs	are	able	to	deacetylate	other	proteins	that	participate	
in	response	against	cell	stress,	such	as	FoxO	transcription	
factors,	NF-𝜅B,	 or	 nuclear	 factor	 E2-related	 factors	 (Nrf)	
[111].	 In	 the	absence	of	ROS,	Kelch-like	ECH-associated	
protein	1	(Keap1)	binds	to	Nrf2	and	triggers	its	degradation.	
Nevertheless,	Keap1	 is	 oxidized	 in	 the	 presence	 of	ROS,	
which	 prevents	 its	 binding	 to	Nrf2.	 Once	 in	 the	 nucleus,	
Nrf2	 activates	 genes	 of	 the	 antioxidant	 system	 [112].	 On	
the	 other	 hand,	 the	 receptors	 for	 advanced	 glycation	 end	
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miR-182-5p	to	lower	ROS,	MDA,	and	oxidized	low-density	
lipoprotein	(LDL)	in	cellular	models	of	atherosclerosis	by	
targeting	 TLR4	 or	 metalloproteinase	 domain-containing	
protein	22	 [141–143].	Similarly,	miR-200a	and	miR-200b	
control	protein	PTMs	by	degrading	OGT	mRNA,	although	
their	 levels	 are	 diminished	 under	 hyperglycemic	 states,	
as	well	 as	 by	modulating	 endothelial	 inflammation	 under	
conditions	of	high	circulating	glucose	[144].	On	 the	other	
hand,	COX2	and	endothelial	NOS	are	predicted	targets	of	
miR-6796-5p/miR-4697-3p	 and	 miR-92a/miR-221/miR-
222,	 respectively,	 which	 are	 known	 to	 be	 upregulated	 in	
MUO	subjects,	thereby	pointing	to	a	plausible	role	of	these	
miRNAs	 in	metabolic	 disease	 prevention	 in	 patients	with	
obesity	through	OS	reduction	[145–147].	High	glucose	and	
AGEs	 levels	 have	 been	 described	 to	 repress	 miR-126,	 a	
miRNA	with	proven	protective	effect	over	endothelial	pro-
genitor	cells,	thus	resulting	in	increased	generation	of	proin-
flammatory	cytokines	and	ROS	[148].	In	contrast,	miR-34a	
mediates	AGEs-induced	 apoptosis	 of	 endothelial	 progeni-
tor	cells.	In	fact,	some	drugs	improve	endothelial	function	
and	regenerative	capacity	of	damaged	diabetic	endothelial	
cells	by	inhibiting	miR-34a	[149].	[33]	Furthermore,	many	
miRNAs	 affected	 by	 glucose	 and	 cholesterol	 levels	 have	
been	 found	 to	directly	modulate	NOXs	protein	 levels	and	
activity,	leading	to	higher	superoxide	levels	and	oxidative/
nitrative	stress	[61,	144,	150,	151].	Finally,	a	number	of	obe-
sity-related	miRNAs	are	also	capable	of	regulating	AMPK	
and	mammalian	target	of	rapamycin	(mTOR),	which	trigger	
ROS-induced	autophagy	[61].

To	conclude,	 it	 is	worth	mentioning	 that	miRNAs	may	
serve	 as	master	 regulators	 of	 antioxidant	 enzyme	 expres-
sion	 and	 activity	 in	 obesity	 as	 well.	 They	 can	 indirectly	
affect	 their	 expression	by	modulating	SIRTs,	Nrf,	PPARs,	
PGC-1α,	FokO,	TLRs,	Keap1,	and	NF-𝜅B	[33,	61,	97,	146,	
152–159],	but	also	modify	oxidative	metabolism	by	directly	
targeting	 specific	 antioxidant	 enzymes.	 Thus,	 miR-34a,	
miR-217,	 and	miR-383,	which	 are	 upregulated	 in	 athero-
sclerotic	lesions,	obesity,	and	diabetes,	are	known	to	target	
SIRT1,	which	in	turn	is	an	important	regulator	of	metabolic	
disorders	 by	 promoting	 eNOS	 transcription	 and	 activity	
[33,	 146,	 153,	 155].	As	 described	 by	Kong et al.,	 under	
hyperglycemic	 states,	 long	 non	 coding	RNAs	may	 act	 as	
miRNAs	 sponges,	 buffering	 their	 effect	 and	 reverting	OS	
and	cell	damage	[154].	Similarly,	miR-221/222	and	miR-33	
exert	pro-atherogenic	effects	by	targeting	PGC-1α	and	alter-
ing	mitochondrial	biogenesis	and	OS	[146].	In	response	to	
glucose	oscillations,	miR-21	also	affects	ROS	generation	by	
targeting	FoxO	[152].	Complementarily,	miRNAs	can	play	
an	important	role	in	the	pathophysiology	behind	metabolic	
disorders	by	regulating	PPARs.	Upon	inflammatory	stimuli,	
miR-27b	lead	to	PPARγ	mRNA	destabilization	[156,	157].	
On	 the	 other	 hand,	 scientific	 evidence	 points	 to	 a	 pivotal	

As	 expected,	 the	 above-mentioned	 oxidative	 distur-
bances	behind	obesity	and	MetS	are	normally	accompanied	
by	 extensive	 dysregulations	 in	 concentrations	 and	 activi-
ties	of	various	antioxidant	enzymes.	 In	a	study	performed	
in	2018,	 although	no	differences	were	described	 in	 serum	
SOD	activity	between	subjects	with	normal	and	high	body	
fat,	a	depleted	activity	was	found	when	concomitant	MetS	
was	present	 [129].	However,	 data	 regarding	SOD	activity	
in	children	with	obesity	are	contradictory,	since	it	has	been	
described	to	be	both	increased	and	decreased,	as	reviewed	
by	Codoñer-Franch et al.	 [130].	 In	 this	 line,	we	 reported	
that	CAT,	GSHR,	and	GPx	could	be	the	antioxidant	enzymes	
that	are	majorly	affected	by	IR	in	prepuberal	children	with	
obesity.	 This	 was	 accompanied	 by	 a	 blunted	 capacity	 of	
reducing	power	generation	through	the	PPP,	as	reflected	in	
diminished	G6PDH	and	6PGDH	activities	along	an	OGTT	
[20].	 This	 concurs	 with	 previous	 studies	 describing	 that	
mitochondrial	NADPH	production	by	IDH2	protects	mice	
from	HDF-induced	OS	[131].

4.3 The involvement of miRNAs in obesity-related 
oxidative stress

Among	many	other	mechanisms,	miRNAs	seem	to	play	a	
bidirectional	role	in	the	onset	of	the	characteristic	OS	exac-
erbation	that	is	observed	in	childhood	obesity	and	MetS.	On	
the	one	hand,	the	expression	and	secretion	of	miRNAs	may	
be	 affected	 by	 various	 sources	 of	 ROS,	 and	 dysregulated	
miRNAs	can	 in	 turn	 influence	 the	expression	and	activity	
of	antioxidant	defenses	(Fig.	1)	[132–134].	Moreover,	miR-
NAs	suffer	from	oxidative	modifications	that	lead	to	mRNA	
target	 misrecognition,	 a	 process	 that	 has	 previously	 been	
related	to	the	development	of	cardiac	hypertrophy	and	ini-
tiation	of	apoptotic	events	in	cardiac	cells	[135–137].	Addi-
tionally,	 it	 is	 noteworthy	 that	 obesity	 is	 characterized	 by	
lower	mitochondrial	key	gene	expression	and	abundance.	In	
this	venue,	mitochondria-located	miRNAs	(mitomiRs)	are	
main	 regulators	 of	 mitochondrial	 function	 and	 adipogen-
esis,	being	involved	in	hyperlipidemia	and	hyperglycemia-
induced	mitochondrial	dysfunction	through	the	modulation	
of	 its	 fusion-fission,	 mitophagy,	 or	 even	 thermogenesis	
[138,	139].	Furthermore,	miRNAs	participate	in	endoplas-
mic	 reticulum	 (ER)	 stress	 generation	 by	 disturbing	 cen-
tral	metabolic	pathways,	 thus	 leading	 to	 the	characteristic	
hyperlipoproteinemia	 that	 is	observed	 in	MetS	and	affect-
ing	proadaptive	or	proapototic	pathways.	Similarly,	altered	
miRNA	expression	has	been	linked	to	ER	stress	induction	
by	nutrient	oversupply	[140].

Regarding	oxidative	damage,	many	obesity-related	miR-
NAs	have	been	described	to	target	several	of	the	above-men-
tioned	mechanisms	of	ROS	production.	For	instance,	it	has	
been	 reported	 the	ability	of	miR-140-5p,	miR-221-3p	and	
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antioxidant	enzymes	are	scarce.	PRDX2	has	been	described	
to	be	downregulated	by	miR-200c,	which	is	upregulated	in	
obese	subjects	and	implicated	in	diabetes-related	endothe-
lial	dysfunction	 [61].	Also,	miR-34a	overexpression	 leads	
to	OS	 in	obesity-related	NAFLD	by	 lowering	TRX	levels	
[146].	Similarly,	miR-204	also	participates	 in	TRX	down-
regulation	in	a	mechanism	involving	TRX-interacting	pro-
tein,	responsible	for	TRX	inhibition	[163].	Finally,	it	is	also	

role	of	miRNAs	in	controlling	the	expression	of	SODs	and	
GPxs	in	obesity.	Obesity	has	been	shown	to	influence	SOD	
expression	in	a	process	in	which	miR-17	and	miR-21	take	
part.	In	other	studies,	miR-17,	miR-29b,	miR-137,	and	miR-
185	have	been	described	to	target	several	GPx	isoforms	in	
an	 adipogenesis-independent	 process	 that	 is	 regulated	 by	
circulating	glucose	 levels	 [160–162].	Nevertheless,	works	
assessing	the	impact	of	miRNAs	over	the	expression	of	other	

Fig. 1	 Overview	of	the	main	miRNAs	involved	in	oxidative	stress	response	in	obesity	and	related	comorbidities
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which	 in	 turn	 downregulates	 fatty	 acid-binding	 protein	
7	 and	 reduces	 intracellular	 lipid	 accumulation	 in	 cultured	
hepatic	 cells	 [173].	 Finally,	 the	 anti-obesogenic	 effect	 of	
garlic	seems	to	be,	at	least	in	part,	mediated	by	diallyl	tri-
sulfide,	whose	oral	administration	in	HFD	rats	reduced	both	
triglyceride	levels	and	white	adipose	tissue	weight	gain	in	a	
process	accompanied	by	miR-335	inhibition	and	decreased	
levels	of	 lipogenic	mRNAs	 [174].	Nevertheless,	 it	 should	
be	noted	here	that	most	works	studying	the	effect	of	antioxi-
dant	compounds	over	miRNAs	profile	have	been	carried	out	
in	vitro	using	high	concentrations,	rather	than	using	in	vivo	
approximations	with	metabolites	 at	 low	 concentrations	 in	
the	circulation	[175].

Despite	all	these	efforts,	antioxidant	strategies	currently	
face	several	limitations.	Almost	all	of	them	are	non-specific	
strategies	that	may	affect	other	essential	pathways.	In	addi-
tion,	OS	is	normally	a	secondary	agent	in	the	development	
of	diseases,	 and	not	 the	primary	cause,	 so	addressing	 this	
problem	usually	has	no	beneficial	effect	on	the	pathogenesis	
of	the	disease.	Moreover,	the	high	affinity	of	cellular	compo-
nents	for	reactive	species	limits	the	usefulness	of	mimetics,	
with	lower	chelating	capacity.	In	this	line,	the	agents	com-
monly	used	 in	 antioxidant	 strategies	may	not	 reach	effec-
tive	concentrations	in	the	body	for	different	reasons,	such	as	
their	 low	half-life	[168].	In	conclusion,	deeper	knowledge	
of	the	molecular	bases	underlying	OS	is	needed	to	develop	
successful	therapeutic	strategies.

4.5 Childhood obesity, Iron Metabolism, and 
miRNAs

Metals	 and	 metalloid	 elements	 can	 regulate	 oxidative	
metabolism	though	different	mechanisms,	either	by	gener-
ating	ROS	via	 redox	 cycling	 reactions	 (redox-active	met-
als,	e.g.,	iron,	copper),	by	depleting	endogenous	antioxidant	
levels	(redox-inactive	metals,	e.g.,	cadmium,	mercury),	and	
by	 directly	 contributing	 to	 the	 antioxidant	 defense	 (e.g.,	
selenium,	 manganese).	 Accordingly,	 disruptions	 in	 metal	
metabolism	may	provoke	excessive	ROS/RNS	production,	
with	 subsequent	oxidative	damage	 in	 lipids,	 proteins,	 and	
DNA	 [176].	 In	 this	 regard,	 some	 studies	 have	 previously	
reported	a	close	link	between	childhood	obesity	and	metal	
blood	levels	[177–179].	Interestingly,	we	found	that	metal	
disturbances	are	tightly	inter-related	to	the	typical	hallmarks	
behind	 childhood	 obesity	 and	 comorbidities,	 namely	 OS,	
inflammation,	 impaired	 insulin	metabolism,	 and	 dyslipid-
emia,	and	in	turn	can	be	modulated	by	different	risk	factors	
[177,	180–183].	In	particular,	growing	evidence	suggest	that	
childhood	obesity	 and	MetS	 could	be	 related	 to	profound	
iron	metabolism	dysregulations	 at	multiple	 levels,	 includ-
ing	absorption,	storage,	transport,	utilization,	and	recycling,	
as	 recently	 reviewed	 [184].	 First,	 childhood	 obesity	 and	

recognized	that	miRNAs	control	reducing	power	generation	
by	affecting	 the	 levels	 and	activities	of	G6PDH,	6PGDH,	
and	IDH	[164–167].	In	this	line,	miR-1,	miR-206,	and	miR-
613	have	been	proposed	as	a	therapeutic	target	for	the	treat-
ment	of	different	 types	of	cancer	 thanks	 to	 their	ability	 to	
downregulate	G6PDH	and	6PGDH	[164,	165].

4.4 Antioxidant-based therapeutic strategies in the 
management of obesity-related complications

The	 scientific	 community	 has	 made	 great	 efforts	 in	 the	
search	 of	 successful	 antioxidant-based	 therapies	 for	 the	
treatment	 of	 a	 wide	 variety	 of	 diseases.	 Thus,	 strategies	
based	on	 increasing	 the	synthesis	of	antioxidant	enzymes,	
ROS	 removal,	 increase	 of	 antioxidant	 species	 using	 pre-
cursors,	 inhibition	of	ROS	sources,	use	of	dietary	antioxi-
dants,	or	inhibition	of	redox	signaling	have	extensively	been	
explored	[168].	As	reviewed	by	Wang	et	al.,	antioxidant	sup-
plementation	may	have	positive	effects	on	several	indicators	
of	obesity	(BMI,	HOMA-IR,	or	fasting	blood	glucose)	and	
related	components	such	as	antioxidant	capacity	(MDA	or	
SOD),	inflammatory	biomarkers	(TNFα),	and	lipid	metabo-
lism	(total	cholesterol,	triglycerides,	or	LDL)	[169].

On	the	basis	of	the	above-mentioned	rationale	linking	OS	
to	an	altered	 regulation	of	miRNAs,	various	authors	have	
also	investigated	the	utility	of	restoring	the	miRNA	profile	
as	 a	 candidate	 therapeutic	 tool	 to	 prevent	 obesity-related	
OS.	 In	 this	 venue,	Cannataro et al.	 assessed	 the	 changes	
in	miRNAs	 that	 a	ketogenic	diet	 could	exert	 in	 a	popula-
tion	with	obesity.	They	found	that	 the	dietary	intervention	
induced	a	lean-like	miRNA	profile,	which	was	accompanied	
by	a	switch	into	a	better	oxidative	control	[170].	Indeed,	the	
consumption	 of	 antioxidant	 compounds	 such	 as	 polyphe-
nols	may	target	specific	miRNAs	related	 to	OS	in	obesity	
and	modulate	 their	 activity	 (e.g.,	 by	 influencing	miRNAs	
functionality	through	alterations	in	their	binding	capacity	to	
the	target	mRNA,	or	by	regulating	their	biogenesis	process),	
consequently	 reducing	 the	 risk	of	developing	chronic	dis-
eases	[171,	172].	Specifically,	 resveratrol	supplementation	
in	patients	with	hypertension	has	been	proved	 to	 result	 in	
improved	inflammatory	profiles	by	means	of	the	modulation	
of	miR-21,	miR-155,	and	miR-34a.	Many	other	antioxidant	
compounds,	such	as	pterostilbene,	carnosic	acid,	and	mela-
tonin,	also	appeared	to	downregulate	miR-34a	in	fructose	fed	
rats	and	HFD	mice,	leading	to	restoration	of	SIRT1	activity,	
inhibition	of	lipogenic	activity,	alleviated	dyslipidemia,	and	
anti-apoptotic	effects	 [146].	Also,	curcumin	and	polydatin	
restore	 the	expression	of	miR-200a,	 thus	 reducing	 inflam-
masome	activation	and	resulting	in	higher	Nrf2-dependent	
antioxidant	 defense	 through	 miR-200a-mediated	 regula-
tion	of	Keap1	[146].	Lycopene	supplementation	improved	
hepatic	steatosis	in	HFD	mice	by	restoring	miR-21	levels,	
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Although	 the	 involvement	 of	 miRNAs	 in	 obesity-
associated	OS	has	been	 investigated	relatively	often,	 their	
implication	 in	 regulating	 iron	 metabolism	 remains	 quite	
unexplored.	 In	 this	 respect,	 it	 is	 nowadays	 recognized	
that	the	relationship	between	miRNAs	and	iron	is	bidirec-
tional,	since	miRNAs	modulate	iron	metabolism	and,	at	the	
same	time,	the	different	biomolecules	participating	in	iron	
metabolism	also	affect	miRNA	production	and	expression	
(Fig.	2).	In	fact,	the	RNA-binding	protein	DiGeorge	Criti-
cal	Region	8	(DGCR8),	cofactor	of	the	ribonuclease	DRO-
SHA	 and	 crucial	 player	 in	 processing	 miRNAs	 primary	
transcripts	 (pri-miRNA),	 constitutes	 a	 highly	 active	 com-
plex	when	reacting	with	ferric	heme,	whereas	its	reduction	

MetS	 have	 been	 reported	 to	 impact	 iron/heme	 absorption	
and	assimilation	by	enterocytes,	as	well	as	iron	transfer	into	
the	circulation.	Furthermore,	proteins	involved	in	iron	trans-
port	and	storage,	like	transferrin	receptor,	nuclear	receptor	
coactivator	(NCOA)	4	or	ferritin,	seem	to	be	also	affected	
in	obesity.	Similar	alterations	have	been	described	in	other	
proteins	involved	in	iron	recycling,	such	as	haptoglobin	or	
hemopexin,	which	may	have	important	health	consequences	
considering	that	most	of	the	daily	required	iron	is	obtained	
though	 recycling	 mechanisms.	 Finally,	 obesity	 is	 also	
known	to	impair	iron	homeostasis	by	affecting	several	other	
pathways,	such	as	the	hepcidin-hemojuvelin	axis	or	hypoxia	
inducible	factors	[184].

Fig. 2	 Overview	of	the	main	miRNAs	involved	in	iron	metabolism	regulation	in	obesity	and	related	comorbidities
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overexpression	in	colorectal	cancer	cells,	which	targets	and	
downregulates	NCOA1	 and	TNF	 receptor	 associated	 fac-
tor	4.	This	tumor-suppressive	effect	is	lost	in	insulin/leptin	
resistant	models	(e.g.,	obesity-induced	models),	which	pre-
disposes	to	the	development	of	cancer	[197].

To	 conclude,	 a	 few	 authors	 have	 also	 explored	 the	
involvement	 of	 miRNAs	 in	 regulating	 hepcidin-medi-
ated	 iron	 homeostasis.	 Hepcidin	 is	 the	 main	 regulator	 of	
iron	metabolism	 by	 degrading	 ferroportin,	 a	 cellular	 iron	
exporter.	To	accomplish	 its	expression,	hemojuvelin	mod-
ulates	 the	binding	between	 the	bone	morphogenic	protein	
(BMP)	and	its	receptor,	establishing	a	complex	that	activates	
small-mothers-against-decapentaplegic	 proteins	 (SMADs)	
and	promotes	hepcidin	antimicrobial	peptide	(HAMP)	gene	
translation	 [184].	 In	 this	 sense,	 it	 is	 well	 established	 the	
potential	role	of	SMAD	protein	in	mediating	miRNAs	bio-
synthesis	 through	 transcriptional	 and	 post-transcriptional	
mechanisms	[198].	Hepcidin	expression	is	also	modulated	
by	 saturated	 fatty	acids	 in	a	process	 in	which	miR-214	 is	
involved.	Thus,	palmitic	acid	may	mediate	miR-214	overex-
pression	in	HepG2	cells,	and	miR-214	in	turn	was	described	
to	increase	HAMP	mRNA	levels	[199].

5 Concluding remarks

The	prevalence	of	childhood	obesity	and	associated	disor-
ders,	 such	 as	 type	 2	 diabetes	mellitus	 and	 cardiovascular	
diseases,	has	grown	at	a	frenetic	pace	in	the	last	years.	Now-
adays,	 these	 medical	 conditions	 have	 reached	 pandemic	
levels	and	represent	an	important	socio-economic	burden	in	
developed	countries.	Accordingly,	the	discovery	of	efficient	
approaches	 for	 diagnosing	 and	 treating	 childhood	 obesity	
and	 related	 complications	 has	 become	 an	 urgent	 need	 for	
public	 health	 systems.	 In	 this	 respect,	 oxidative	 stress	 is	
well-known	to	be	one	of	the	most	relevant	molecular	driv-
ers	 behind	 these	 metabolic	 disorders,	 within	 a	 complex	
crosstalk	 involving	 other	 intertwined	 pathogenic	 events,	
such	 as	 inflammation,	 insulin	 disturbances,	 and	 dyslipid-
emia	factors.	Therefore,	the	proper	regulation	of	oxidative	
metabolism	has	been	proposed	as	a	plausible	preventive	and	
therapeutic	strategy	for	managing	obesity.	However,	the	use	
of	antioxidant	molecules	in	clinical	trials	has	demonstrated	
limited	efficacy	up	to	date,	which	highlights	the	need	of	get-
ting	deeper	insights	into	the	molecular	mechanisms	behind	
obesity-related	oxidative	stress.

In	 the	 last	 decades,	 the	 study	 of	 miRNAs	 has	 gained	
great	 interest	 for	deciphering	complex	processes	 in	health	
and	 disease,	 including	 obesity	 and	 related	 comorbidities.	
Indeed,	 as	 each	 miRNA	 may	 target	 more	 than	 one	 hun-
dred	genes,	slight	dysregulations	in	their	expression	might	
cause	profound	impairments	in	a	wide	range	of	biological	

into	 ferrous	 heme	 leads	 to	 impaired	 activity	 [185–187].	
Hemin,	 a	heme	group	byproduct,	 also	 enhances	 the	 inter-
action	between	DGCR8	and	the	pri-miRNA	[188].	On	the	
other	hand,	miR-374a	has	been	linked	to	the	control	of	iron	
overload-induced	ROS	production,	thereby	inhibiting	iron-
induced	 release	 of	 cytokines	 and	 limiting	 hepatic	 stellate	
cell	 activation	 in	fibrotic	 processes	 [189].	 Some	miRNAs	
have	also	been	related	to	the	development	of	ferroptosis,	a	
newly	described	programmed	cell	death	dependent	on	iron.	
Indeed,	miR-140-5p,	which	 is	overexpressed	 in	exosomes	
from	obese	adipose	tissue-derived	macrophages,	promotes	
ferroptosis	in	cardiomyocytes	by	impeding	GSH	synthesis	
[190].	 Furthermore,	 besides	 controlling	 hemolysis,	 miR-
NAs	 also	 modulate	 erythropoiesis.	 Thus,	 lipopolysaccha-
ride-induced	inflammation	has	been	demonstrated	to	induce	
miR-122	secretion	in	mice,	which	affects	erythropoiesis	by	
reducing	erythropoietin	 levels,	which	enables	 establishing	
a	 link	between	 inflammation-related	anemia	and	miRNAs	
[191].

Various	studies	have	also	evidenced	a	close	link	between	
miRNAs	 and	 iron	 absorption.	 Iron	 can	 be	 absorbed	 by	
enterocytes	both	in	free	form	and	bound	to	ferritin	or	to	heme	
groups.	Once	absorbed	by	the	heme	carrier	protein	1,	heme	
groups	may	 be	 either	 degraded	 by	HO1,	 which	mediates	
anti-inflammatory,	antioxidant,	and	antiapoptotic	effects,	or	
directly	absorbed	into	the	circulation.	To	this	end,	the	regula-
tion	of	HO1	translation	is	mediated	by	antioxidant-response	
elements,	which	can	be	modulated	both	in	a	repressive	and	
an	inductive	way	through	BTB	domain	and	CNC	homolog	
1	 (BACH1)	 and	 Nrf2	 transcription	 factors,	 respectively.	
In	 this	 context,	 it	 has	 been	 reported	 that	 BACH1	mRNA	
is	 inhibited	 by	miR-155	 and	 let-7,	 thereby	 inducing	HO1	
expression	in	a	cytokine-triggered	mechanism	dependent	on	
NF-𝜅B,	stablishing	a	cytoprotective	process	to	face	inflam-
mation	[192,	193].	Conversely,	miR-7	exerts	positive	effects	
over	Nrf2	by	targeting	Keap1	and,	consequently,	over	HO1	
levels,	leading	to	reduced	intracellular	content	of	hydroper-
oxides	and	higher	levels	of	reduced	glutathione	[194].	Also,	
miR-92a,	 which	 is	 induced	 by	 oxidized-LDL	 and	AGEs,	
inhibits	HO1	 expression	 and	 impairs	 endothelial	 function	
in	 diabetic	mice,	 and	 its	 suppression	 ameliorates	OS	 and	
improves	 endothelial	 function	 [195].	 Finally,	 insulin	 also	
seems	 to	exert	 regulatory	effects	over	HO1	by	downregu-
lating	miR-155	and	miR-183,	which	are	predicted	to	target	
HO1	 in	adipocytes,	consequently	 resulting	 in	higher	HO1	
expression	in	a	dose-dependent	manner	[196].	Besides	the	
above-mentioned	mechanisms,	enterocytes	can	also	absorb	
dietary	 ferritin	 via	 endocytosis	 in	 a	 process	 that	 is	medi-
ated	by	 the	adaptor-related	2	protein	complex.	 In	 the	cell,	
NCOA	binds	ferritin	to	be	delivered	to	lysosomes	for	further	
degradation	and	iron	release	[184].	Interestingly,	treatment	
with	leptin	and	insulin	has	been	found	to	result	in	miR-4443	
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processes.	 Thus,	 many	 authors	 hypothesize	 that	 miRNA	
profile	 restoration	 to	 normal	 ranges	 can	 be	 regarded	 as	 a	
powerful	therapeutic	tool	to	fight	against	oxidative	damage.	
In	this	work,	we	provide	a	comprehensive	literature	revision	
to	delve	into	the	current	knowledge	about	miRNAs	dysreg-
ulation	 in	 childhood	 obesity	 and	 metabolic	 syndrome.	 In	
particular,	we	 have	 focused	 on	 revising	 the	 potential	 role	
that	these	non-coding	RNAs	might	play	on	modulating	the	
characteristic	pathogenic	hallmarks	occurring	in	childhood	
obesity,	with	special	emphasis	on	oxidative	stress.
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